Laser-Powered Sails Would be Great for Exploring the Solar System too

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

Between the exponential growth of the commercial space industry (aka. NewSpace) and missions planned for the Moon in this decade, it’s generally agreed that we are living in the “Space Age 2.0.” Even more ambitious are the proposals to send crewed missions to Mars in the next decade, which would see astronauts traveling beyond the Earth-Moon system for the first time. The challenge this represents has inspired many innovative new ideas for spacecraft, life-support systems, and propulsion.

In particular, missions planners and engineers are investigating Directed Energy (DE) propulsion, where laser arrays are used to accelerate light sails to relativistic speeds (a fraction of the speed of light). In a recent study, a team from UCLA explained how a fleet of tiny probes with light sails could be used to explore the Solar System. These probes would rely on a low-power laser array, thereby being more cost-effective than similar concepts but would be much faster than conventional rockets.

Continue reading “Laser-Powered Sails Would be Great for Exploring the Solar System too”

An Exoplanet is Definitely Orbiting Two Stars

Artist's impression of Kepler-16b, the first planet known to definitively orbit two stars - what's called a circumbinary planet. The planet, which can be seen in the foreground, was discovered by NASA's Kepler mission. Credit: NASA/JPL-Caltech/T. Pyle

Remember that iconic scene in Star Wars, where a young Skywalker steps out onto the surface of Tatooine and watches the setting of two suns? As it turns out, this may be what it is like for lifeforms on the exoplanet known as Kepler-16, a rocky planet that orbits in a binary star system. Originally discovered by NASA’s Kepler mission, an international team of astronomers recently confirmed that this planet orbits two stars at once – what is known as a circumbinary planet.

Continue reading “An Exoplanet is Definitely Orbiting Two Stars”

Astronomers Detect the Closest Fast Radio Burst Ever Seen

A cluster of ancient stars (left) close to the spiral galaxy Messier 81 (M81) is the source of extraordinarily bright and short radio signals. The image shows in blue-white a graph of how one flash’s brightness changed over the course of only tens of microseconds. (Image credit: ASTRON/Daniëlle Futselaar, artsource.nl)

Fast Radio Bursts (FRBs) are among the top mysteries facing astronomers today. First discovered in 2007 (the famous “Lorimer Burst“), these energetic events consist of huge bursts of radio waves that typically last mere milliseconds. While most events observed to date have been one-off events, astronomers have detected a few FRBs that were repeating in nature. The cause of these bursts remains unknown, with theories ranging from rotating neutron stars and magnetars to extraterrestrials!

Since the first event was detected fifteen years ago, improvements in our instruments and dedicated arrays have led to many more detections! In another milestone, an international team of astronomers recently made high-precision measurements of a repeating FRB located in the spiral galaxy Messier 81 (M81)- the closest FRB observed to date. The team’s findings have helped resolve some questions about this mysterious phenomenon while raising others.

Continue reading “Astronomers Detect the Closest Fast Radio Burst Ever Seen”

A Detailed Simulation of the Universe Creates Structures Very Similar to the Milky Way and its Surroundings

Simulation of dark matter and gas. Credit: Illustris Collaboration (CC BY-SA 4.0)

In their pursuit of understanding cosmic evolution, scientists rely on a two-pronged approach. Using advanced instruments, astronomical surveys attempt to look farther and farther into space (and back in time) to study the earliest periods of the Universe. At the same time, scientists create simulations that attempt to model how the Universe has evolved based on our understanding of physics. When the two match, astrophysicists and cosmologists know they are on the right track!

In recent years, increasingly-detailed simulations have been made using increasingly sophisticated supercomputers, which have yielded increasingly accurate results. Recently, an international team of researchers led by the University of Helsinki conducted the most accurate simulations to date. Known as SIBELIUS-DARK, these simulations accurately predicted the evolution of our corner of the cosmos from the Big Bang to the present day.

Continue reading “A Detailed Simulation of the Universe Creates Structures Very Similar to the Milky Way and its Surroundings”

NASA is Upping the Power on its Lunar Wattage Challenge!

Credit: HeroX

For years, NASA has been gearing up for its long-awaited return to the Moon with the Artemis Program. Beginning in 2025, this program will send the first astronauts (“the first woman and first person of color”) to the Moon since the end of the Apollo Era. Beyond that, NASA plans to establish the necessary infrastructure to allow for a “sustained program of lunar exploration,” such as the Lunar Gateway and the Artemis Base Camp.

Beyond these facilities, several elements are essential to ensuring a long-term human presence on the Moon. These include shelter from the elements, food, air, water, and of course, power. To address this last element, NASA has teamed up with HeroX – the leading crowdsourcing platform – to launch the NASA Watts on the Moon Challenge. This competition is entering Phase II and will award an additional $4.5 million for innovative concepts that supply power to future lunar missions.

Continue reading “NASA is Upping the Power on its Lunar Wattage Challenge!”

Gaia Finds Ancient Satellite Galaxy Pontus Embedded in Milky Way

Artist's impression of the ESA's Gaia Observatory. Credit: ESA

A recent study looked at stellar streams hidden in Gaia data, to uncover evidence of an ancient remnant dubbed Pontus.

Our home galaxy the Milky Way is a monster with a ravenous past. In its estimated 12 billion years of existence, our galaxy has swallowed smaller satellite galaxies whole, with collisions resulting in massive rounds of star formation. We see threads of these remnant mergers as streams of stars and clusters, strung out around the Milky Way.

Continue reading “Gaia Finds Ancient Satellite Galaxy Pontus Embedded in Milky Way”

One Crater on the Moon is Filled with Ice and Gas that Came from a Comet Impact

In the coming years, NASA and other space agencies hope to explore the southern polar region of the Moon. Recent surveys of this region have revealed an environment rich in volatiles – elements that vaporize rapidly due to changes in conditions. In particular, missions like NASA’s Lunar Reconnaissance Orbiter (LRO) and the Lunar CRater Observation and Sensing Satellite (LCROSS) have detected abundant water ice in the permanently-shadowed craters around the South Pole-Aitken Basin.

Where this water came from has remained the subject of much debate, with theories ranging from it being deposited by volcanic activity or solar wind to being delivered by comets. After examining LCROSS data on the Cabeus crater near the Moon’s south pole, a multinational team of researchers from the U.S. and France determined that the water ice and volatiles in the crater were likely delivered by the impactor (a comet) that created it.

Continue reading “One Crater on the Moon is Filled with Ice and Gas that Came from a Comet Impact”

NASA and HeroX are Crowdsourcing the Search for Life on Mars

This low-angle self-portrait of NASA's Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called "Buckskin." The MAHLI camera on Curiosity's robotic arm took multiple images on Aug. 5, 2015, that were stitched together into this selfie. Credits: NASA/JPL-Caltech/MSSS

For almost sixty years, robotic missions have been exploring the surface of Mars in search of potential evidence of life. More robotic missions will join in this search in the next fifteen years, the first sample return from Mars (courtesy of the Perseverance rover) will arrive here at Earth, and crewed missions will be sent there. Like their predecessors, these missions will rely on mass spectrometry to analyze samples of the Martian sands to look for potential signs of past life.

Given how much data we can expect from these missions, NASA is looking for new methods to analyze geological samples. To this end, NASA has partnered with the global crowdsourcing platform HeroX and the data-science company DrivenData to launch the Mars Spectrometry: Detect Evidence for Past Life challenge. With a prize purse of $30,000, this Challenge seeks innovative methods that rely on machine learning to automatically analyze Martian geological samples for potential signs of past life.

Continue reading “NASA and HeroX are Crowdsourcing the Search for Life on Mars”

Lasers Could Send Missions to Mars in Only 45 Days

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

NASA and China plan to mount crewed missions to Mars in the next decade. While this represents a tremendous leap in terms of space exploration, it also presents significant logistical and technological challenges. For starters, missions can only launch for Mars every 26 months when our two planets are at the closest points in their orbit to each other (during an “Opposition“). Using current technology, it would take six to nine months to transit from Earth to Mars.

Even with nuclear-thermal or nuclear-electric propulsion (NTP/NEP), a one-way transit could take 100 days to reach Mars. However, a team of researchers from Montreal’s McGill University assessed the potential of a laser-thermal propulsion system. According to their study, a spacecraft that relies on a novel propulsion system – where lasers are used to heat hydrogen fuel – could reduce transit times to Mars to just 45 days!

Continue reading “Lasers Could Send Missions to Mars in Only 45 Days”

A THIRD Planet Found Orbiting Nearby Proxima Centauri

This artist’s impression shows Proxima d, a planet candidate recently found orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The planet is believed to be rocky and to have a mass about a quarter that of Earth. Two other planets known to orbit Proxima Centauri are visible in the image too: Proxima b, a planet with about the same mass as Earth that orbits the star every 11 days and is within the habitable zone, and candidate Proxima c, which is on a longer five-year orbit around the star.

In August of 2016, astronomers with the European Southern Observatory (ESO) announced that they had discovered an exoplanet orbiting in neighboring Proxima Centauri. Based on Radial Velocity measurements (aka. Doppler Photometry), the discovery team estimated that the planet was roughly the same size and mass as Earth and orbited with Proxima Centauri’s Circumsolar Habitable Zone (HZ). In 2020, this planet was confirmed by follow-up observations.

In that same year, a second exoplanet (Proxima c) roughly seven times the mass of Earth (a Super-Earth or mini-Neptune) was confirmed. As if that wasn’t enough, an international team of astronomers with the ESO recently announced that they detected a third exoplanet around Proxima Centauri – Proxima d! This Mars-sized planet orbits about halfway between its host star and Proxima b and is one of the lightest exoplanets ever discovered.

Continue reading “A THIRD Planet Found Orbiting Nearby Proxima Centauri”