SpinLaunch Hurls a Test Vehicle Kilometers Into the air. Eventually, it’ll Throw Them Almost all the way to Orbit

For today’s commercial space companies providing launch services to orbit, the name of the game is simple: “do it cheaper.” To reduce the costs of launching payloads to space and encourage the commercialization of Low Earth Orbit (LEO), entrepreneurs have turned to everything from reusable rockets and 3-D printing to air-launch vehicles and high-altitude balloons. And yet, there is one concept that truly seems like something out of this world!

This concept is known as a mass accelerator, a kinetic energy space launch system that is an alternative to chemical rockets. In recent news, the commercial space company SpinLaunch conducted the first launch test of its Suborbital Accelerator for the first time. The success of this vertical test is a crucial stepping stone towards the creation of the company’s proposed Orbital Launch System (OLS), which will conduct regular payload launches soon.

Continue reading “SpinLaunch Hurls a Test Vehicle Kilometers Into the air. Eventually, it’ll Throw Them Almost all the way to Orbit”

Maybe There’s No Way to Tell if Habitable Planets Orbit Proxima Centauri… Yet!

This artist’s impression shows the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image between the planet and Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface. Credit: ESO/M. Kornmesser

Our closest stellar neighbor is Proxima Centauri, an M-type (red dwarf) star located over 4.24 light-years away (part of the Alpha Centauri trinary system). In 2016, the astronomical community was astounded to learn that an Earth-like planet orbited within this star’s circumsolar habitable zone (HZ). In addition to being the closest exoplanet to Earth, Proxima b was also considered the most promising place to look for extraterrestrial life for a time.

Unfortunately, the scientific community has been divided on whether or not life could even be possible on this planet. All of these studies indicate that this question cannot be answered until astronomers characterize Proxima b’s atmosphere, ideally by observing it as it passes in front (aka. transited) of its host star. But in a new NASA-supported study, a team led by astrophysicists at the University of Chicago determined that this is an unlikely possibility.

Continue reading “Maybe There’s No Way to Tell if Habitable Planets Orbit Proxima Centauri… Yet!”

A new Simulation of the Universe Contains 60 Trillion Particles, the Most Ever

Illustris simulation, showing the distribution of dark matter in 350 million by 300,000 light years. Galaxies are shown as high-density white dots (left) and as normal, baryonic matter (right). Credit: Markus Haider/Illustris

Today, the greatest mysteries facing astronomers and cosmologists are the roles gravitational attraction and cosmic expansion play in the evolution of the Universe. To resolve these mysteries, astronomers and cosmologists are taking a two-pronged approach. These consist of directly observing the cosmos to observe these forces at work while attempting to find theoretical resolutions for observed behaviors – such as Dark Matter and Dark Energy.

In between these two approaches, scientists model cosmic evolution with computer simulations to see if observations align with theoretical predictions. The latest of which is AbacusSummit, a simulation suite created by the Flatiron Institute’s Center for Computational Astrophysics (CCA) and the Harvard-Smithsonian Center for Astrophysics (CfA). Capable of processing nearly 60 trillion particles, this suite is the largest cosmological simulation ever produced.

Continue reading “A new Simulation of the Universe Contains 60 Trillion Particles, the Most Ever”

Our Complete Guide to November’s ‘Almost Total’ Lunar Eclipse

Friday morning’s partial lunar eclipse will flirt with with totality, as the longest for more than a century.

If you’re like us, we never miss a chance to catch a lunar eclipse, be it penumbral, partial or total. Lunar eclipses are a great time to catch the surety of the clockwork Universe at its best, as the Moon slides into and then exits the Earth’s shadow.

First the bad news: Friday morning’s eclipse in the early hours of November 19th isn’t completely total. However, the good news is that at its maximum around 9:04 Universal Time (UT)/4:04 AM Eastern Time (EST) the eclipse narrowly misses totality, at 97.5% partial.

Continue reading “Our Complete Guide to November’s ‘Almost Total’ Lunar Eclipse”

Not Saying it was Aliens, but ‘Oumuamua Probably Wasn’t a Nitrogen Iceberg…

Artist’s impression of the interstellar object, `Oumuamua, experiencing outgassing as it leaves our Solar System. Credit: ESA/Hubble, NASA, ESO, M. Kornmesser

On October 19th, 2017, astronomers made the first-ever detection of an interstellar object (ISO) passing through our Solar System. Designated 1I/2017 U1′ Oumuamua, this object confounded astronomers who could not determine if it was an interstellar comet or an asteroid. After four years and many theories (including the controversial “ET solar sail” hypothesis), the astronomical community appeared to land on an explanation that satisfied all the observations.

The “nitrogen iceberg” theory stated that ‘Oumuamua was likely debris from a Pluto-like planet in another solar system. In their latest study, titled “The Mass Budget Necessary to Explain ‘Oumuamua as a Nitrogen Iceberg,” Amir Siraj and Prof. Avi Loeb (who proposed the ET solar sail hypothesis) offered an official counter-argument to this theory. According to their new paper, there is an extreme shortage of exo-Plutos in the galaxy to explain the detection of a nitrogen iceberg.

Continue reading “Not Saying it was Aliens, but ‘Oumuamua Probably Wasn’t a Nitrogen Iceberg…”

Court Turns Down Blue Origin’s Attempt to Prevent SpaceX’s Lander Contract

Illustration of SpaceX Starship human lander design that will carry the first NASA astronauts to the surface of the Moon under the Artemis program. Credits: SpaceX

For months, the commercial space sector has waited for a pivotal case to be resolved. This was none other than the legal action filed by Blue Origin in response to NASA selecting SpaceX to execute the Human Landing System (HLS) contract worth $2.9 billion. This system is a vital piece of the Artemis Program mission architecture, which will be used in the coming years to transport crew and cargo to the lunar surface.

In a recently-announced decision, the U.S. Court of Federal Claims officially shot Blue Origin’s protest down. This puts an end to nearly seven months of legal proceedings and gridlock following SpaceX’s selection back in April. While this means that SpaceX can get back to developing their concept – the Starship HLS – in preparation for the Artemis III missions, it is unclear if that mission will happen on schedule.

Continue reading “Court Turns Down Blue Origin’s Attempt to Prevent SpaceX’s Lander Contract”

Astronomers Measure the Atmosphere on a Planet Hundreds of Light-Years Away

An artist's conception of the hot Jupiter WASP-79b. (Image credit: NASA)

The field of extrasolar planet research has advanced by leaps and bounds over the past fifteen years. To date, astronomers have relied on space-based and ground-based telescopes to confirm the existence of 4,566 exoplanets in 3,385 systems, with another 7,913 candidates awaiting confirmation. More importantly, in the past few years, the focus of exoplanet studies has slowly shifted from the process of discovery towards characterization.

In particular, astronomers are making great strides when it comes to the characterization of exoplanet atmospheres. Using the Gemini South Telescope (GST) in Chile, an international team led by Arizona State University (ASU) was able to characterize the atmosphere of a “hot Jupiter” located 340 light-years away. This makes them the first team to directly measure the chemical composition of a distant exoplanet’s atmosphere, a significant milestone in the hunt for habitable planets beyond our Solar System.

Continue reading “Astronomers Measure the Atmosphere on a Planet Hundreds of Light-Years Away”

Will Water Bears be the First Interstellar Astronauts?

In just a few years, astronauts will walk on the surface of the Moon for the first time since the Apollo Era. In addition to the Artemis Program, NASA’s fabled return to the Moon, there are also a number of planned missions involving the European Space Agency (ESA), JAXA, China, and Russia. By the 2030s, NASA and China hope to send crewed missions to Mars, which will culminate in the creation of a permanent base on the surface.

When it comes to interstellar missions, however, there are no plans for crewed missions on the table. While there are proposals for sending robotic missions, sending astronauts to nearby stars and exoplanets simply isn’t feasible yet. However, according to new research led by the University of California, interstellar missions could be conducted in the near future that would have tardigrades (aka. “Water Bears”) as their crew.

Continue reading “Will Water Bears be the First Interstellar Astronauts?”

Could our Universe be Someone’s Chemistry Project?

This is a rendering of gas velocity in a massive galaxy cluster in IllustrisTNG. Black areas are hardly moving, and white areas are moving at greater than 1000km/second. The black areas are calm cosmic filaments, the white areas are near super-massive black holes (SMBHs). The SMBHs are blowing away the gas and preventing star formation. Image: IllustrisTNG

It is a pivotal time for astrophysicists, cosmologists, and philosophers alike. In the coming years, next-generation space and ground-based telescopes will come online that will use cutting-edge technology and machine learning to probe the deepest depths of the cosmos. What they find there, with any luck, will allow scientists to address some of the most enduring questions about the origins of life and the Universe itself.

Alas, one question that we may never be able to answer is the most pressing of all: if the Universe was conceived in a Big Bang, what was here before that? According to a new op-ed by Prof. Abraham Loeb (which recently appeared in Scientific American), the answer may be stranger than even the most “exotic” explanations. As he argued, the cosmos as we know it may be a “baby Universe” that was created by an advanced technological civilization in a lab!

Continue reading “Could our Universe be Someone’s Chemistry Project?”

Is the Universe Fine-Tuned for Life?

Credit: NASA

For decades, various physicists have theorized that even the slightest changes in the fundamental laws of nature would make it impossible for life to exist. This idea, also known as the “Fine-Tuned Universe” argument, suggests that the occurrence of life in the Universe is very sensitive to the values of certain fundamental physics. Alter any of these values (as the logic goes), and life would not exist, meaning we must be very fortunate to be here!

But can this really be the case, or is it possible that life can emerge under different physical constants, and we just don’t know it? This question was recently tackled by Luke A. Barnes, a postdoctoral researcher at the Sidney Institute for Astronomy (SIA) in Australia. In his recent book, A Fortunate Universe: Life in a Finely Tuned Cosmos, he and Sydney astrophysics professor Geraint F. Lewis argued that a fine-tuned Universe makes sense from a physics standpoint.

Continue reading “Is the Universe Fine-Tuned for Life?”