Tracking Satellites Through GEOSat Eclipse Season

Geosat flare

You can spot ‘GEOSat’ satellites in far-flung orbits… if you know exactly where and when to look.

Watch the sky long enough, and you’re bound to see one.

Seasoned observers are very familiar with seeing satellites in low Earth orbit, as these modern artificial sky apparitions lit by sunlight grace the dawn or dusk sky. Occasionally, you might even see a flare from a passing satellite, as a reflective solar panel catches the last rays of sunlight passing overhead just right…

Continue reading “Tracking Satellites Through GEOSat Eclipse Season”

A Titan Mission Could Refuel on Site and Return a Sample to Earth

Visualization of sample return launch from Titan. Credits: Katherine Miller

This decade promises to be an exciting time for space exploration! Already, the Perseverance rover landed on Mars and began conducting science operations. Later this year, the next-generation James Webb Space Telescope, the Double Asteroid Redirection Test (DART), and Lucy spacecraft (the first mission to Jupiter’s Trojan asteroids) will launch. Before the decade is out, missions will also be sent to Europa and Titan to extend the search for signs of life in our Solar System.

Currently, NASA’s plan for exploring Titan (Saturn’s largest moon) is to send a nuclear-powered quadcopter to explore the atmosphere and surface (named Dragonfly). However, another possibility that was presented this year as part of the NASA Innovative Advanced Concepts (NIAC) program is to send a sample-return vehicle with Dragonfly that could fuel up using liquid methane harvested from Titan’s surface.

Continue reading “A Titan Mission Could Refuel on Site and Return a Sample to Earth”

There Should be About 7 Interstellar Objects Passing Through the Inner Solar System Every Year

A Hubble image of Comet 2IBorisov from October 2019. Image Credit: By NASA, ESA, and D. Jewitt (UCLA) - https://imgsrc.hubblesite.org/hvi/uploads/image_file/image_attachment/31897/STSCI-H-p1953a-f-1106x1106.png, Public Domain, https://commons.wikimedia.org/w/index.php?curid=83146132

In October 19th, 2017, the first interstellar object ever detected flew past Earth on its way out of the Solar System. Less than two years later, a second object was detected, an easily-identified interstellar comet designated as 2I/Borisov. The appearance of these two objects verified earlier theoretical work that concluded that interstellar objects (ISOs) regularly enter our Solar System.

The question of how often this happens has been the subject of considerable research since then. According to a new study led by researchers from the Initiative for Interstellar Studies (i4is), roughly 7 ISOs enter our Solar System every year and follow predictable orbits while they are here. This research could allow us to send a spacecraft to rendezvous with one of these objects in the near future.

Continue reading “There Should be About 7 Interstellar Objects Passing Through the Inner Solar System Every Year”

The Giant Magellan Telescope’s 6th Mirror has Just Been Cast. One More to Go

By 2029, the Giant Magellan Telescope (GMT) in northern Chile will begin collecting its first light from the cosmos. As part of a new class of next-generation instruments known as “extremely large telescopes” (ELTs), the GMT will combine the power of sophisticated primary mirrors, flexible secondary mirrors, adaptive optics (AOs), and spectrometers to see further and with greater detail than any optical telescopes that came before.

At the heart of the telescope are seven monolithic mirror segments, each measuring 8.4 m (27.6 ft) in diameter, which will give it the resolving power of a 24.5 m (80.4 ft) primary mirror. According to recent statements from the GMT Organization (GMTO), the University of Arizona’s Richard F. Caris Mirror Lab began casting the sixth and seventh segments for the telescope’s primary mirror (which will take the next four years to complete).

More

Microbes Found That Survive on the by-Products of Radioactive Decay

The rocks seen here along the shoreline of Lake Salda in Turkey were formed over time by microbes that trap minerals and sediments in the water. These so-called microbialites were once a major form of life on Earth and provide some of the oldest known fossilized records of life on our planet. NASA's Mars 2020 Perseverance mission will search for signs of ancient life on the Martian surface. Studying these microbial fossils on Earth has helped scientists prepare for the mission. Image Credit: NASA/JPL-Caltech

In addition to investigating the big questions about life in our Universe (origins, evolution, distribution, etc.), one of the chief aims of astrobiologists is to characterize extraterrestrial environments to determine if life could exist there. However, there are still unresolved questions about the range of conditions under which life can survive and thrive. Placing better constraints on this will help astrobiologists search for life beyond Earth.

To get a better understanding of how ecosystems can exist beneath the ocean floor (so far from the Sun) a team of researchers led by the University of Rhode Island’s Graduate School of Oceanography (GSO) conducted a study on microbes in ancient seafloor sediment. What they found, to their surprise, was that these lifeforms are sustained primarily by chemicals created by the natural irradiation of water molecules.

Continue reading “Microbes Found That Survive on the by-Products of Radioactive Decay”

Apollo Rocks Reveal the Moon’s Early History

A Full Moon, as imaged by NASA's Lunar Reconnaissance Orbiter. Credit: NASA Goddard's Scientific Visualization Studio

During the Apollo Era, one of the most important operations conducted by astronauts was sample-returns, where lunar rocks were procured and brought back to Earth. The study of these rocks revealed a great deal about the composition, structure, and geological history of the Moon. This led to profound discoveries, including the presence of water on the Moon and the fact that both Earth and its only satellite formed together.

Over time, scientists have taken advantage of new techniques and technology to conduct more in-depth analyses to learn more about the formation and evolution of the Moon. Recently, a team of researchers from Brown University and the Carnegie Institution for Sciences (CIS) examined some of these samples for sulfur isotopes to shed new light on the early history of the Moon and its evolution.

Continue reading “Apollo Rocks Reveal the Moon’s Early History”

Gliese 486b is a Hellish World With Temperatures Above 700 Kelvin

Credit and ©: MPIA/RenderArea

In the past two and a half decades, astronomers have confirmed the existence of thousands of exoplanets. In recent years, thanks to improvements in instrumentation and methodology, the process has slowly been shifting from the process of discovery to that of characterization. In particular, astronomers are hoping to obtain spectra from exoplanet atmospheres that would indicate their chemical composition.

This is no easy task since direct imaging is very difficult, and the only other method is to conduct observations during transits. However, astronomers of the CARMENES consortium recently reported the discovery of a hot rocky super-Earth orbiting the nearby red dwarf star. While being extremely hot, this planet has retained part of its original atmosphere, which makes it uniquely suited for observations using next-generation telescopes.

Continue reading “Gliese 486b is a Hellish World With Temperatures Above 700 Kelvin”

Another Big Iceberg Just Broke off from Antarctica

The wing of NASA's DC-8 cuts across the frozen expanse of the Brunt Ice Shelf, with its 100-foot-high cliff face. Credit: Michael Studinger/NASA.

Glaciologists have been closely monitoring ice shelves in Antarctica for signs of cracks and chasms that indicate breakups. The loss of ice around the Earth’s polar regions is one of many consequences of climate change, which is leading to rising ocean levels and various feedback mechanisms. Recently, the ESA’s Copernicus Sentinel-1 satellite witnessed a giant iceberg breaking off from Antarctica’s Brunt Ice Shelf on February 26th.

The Copernicus Sentinel mission consists of two polar-orbiting satellites that rely on C-band synthetic aperture radar imaging to conduct Earth observations in all weather conditions. In recent years, it has been monitoring the Brunt Ice Shelf for signs of cracks and chasms. According to the images it recently captured, an iceberg larger than New York City broke free and began floating out to sea.

Continue reading “Another Big Iceberg Just Broke off from Antarctica”

Nancy Grace Roman Telescope is Getting an Upgraded new Infrared Filter

NASA’s Wide Field Infrared Survey Telescope (WFIRST) is now named the Nancy Grace Roman Space Telescope, after NASA’s first Chief of Astronomy. Credits: NASA

In 2025, the Nancy Grace Roman space telescope will launch to space. Named in honor of NASA’s first chief astronomer (and the “Mother of Hubble“), the Roman telescope will be the most advanced and powerful observatory ever deployed. With a camera as sensitive as its predecessors, and next-generation surveying capabilities, Roman will have the power of “One-Hundred Hubbles.”

In order to meet its scientific objectives and explore some of the greatest mysteries of the cosmos, Roman will be fitted with a number of infrared filters. But with the decision to add a new near-infrared filter, Roman will exceed its original design and be able to explore 20% of the infrared Universe. This opens the door for exciting new research and discoveries, from the edge of the Solar System to the farthest reaches of space.

Continue reading “Nancy Grace Roman Telescope is Getting an Upgraded new Infrared Filter”