Exploration at its Finest: Cassini Visits Dione

[/caption]

After completing its most recent flyby of Enceladus, Cassini made a pass by Dione — its final visit of the icy moon for the next three years. Coming within  5,000 miles (8000 km) of Dione on May 2, Cassini captured some fantastic images of the moon’s heavily-cratered and frozen surface. Here’s just a few of the raw images that arrived back here on Earth earlier today:

Crescent-lit Dione, with some reflected light via Saturnshine
A nearly fully-lit Dione, with Saturn's rings in the background
Dione's extensively-cratered limb
Some of Dione's signature "wispy lines", bright icy faces of sheer cliffs now known to be tectonic in origin
A color-composite image of an ancient impact crater on the edge of Dione's Saturn-facing side - this could be from the impact that spun the moon 180 degrees. (NASA/JPL/SSI/J. Major)

698 miles (1123 km) in diameter, Dione orbits Saturn at about the same distance that the Moon orbits Earth. Its composition is two-thirds water ice, which at the incredibly cold temperatures found around Saturn behaves like rock does here on Earth.

 

Cassini won’t visit Dione so closely again until June 2015, after spending three years angled high out of the equatorial plane while it studies Saturn’s rings and polar regions.

As Carolyn Porco, Cassini Imaging Team Leader said today, “This is exploration at its finest. It won’t continue forever. So, enjoy it while it lasts!”

See more on the Cassini Imaging Central Laboratory for Operations (CICLOPS) site here.

Image credits: NASA/JPL/Space Science Institute 

 

Enceladus On Display In Newest Images From Cassini

Enceladus' southern ice geysers are brilliant in backlit sunlight (NASA/JPL/SSI/J. Major)

[/caption]

The latest images are in from Saturn’s very own personal paparazzi, NASA’s Cassini spacecraft, fresh from its early morning flyby of the ice-spewing moon Enceladus. And, being its last closeup for the next three years, the little moon didn’t disappoint!

The image above is a composite I made from two raw images (this one and this one) assembled to show Enceladus in its crescent-lit entirety with jets in full force. The images were rotated to orient the moon’s southern pole — where the jets originate — toward the bottom.

Cassini was between 72,090 miles (116,000 km) and 90,000 miles (140,000 km) from Enceladus when these images were acquired.

This morning’s E-19 flyby completed a trio of recent close passes by Cassini of the 318-mile (511-km) -wide moon, bringing the spacecraft as low as 46 miles (74 km) above its frozen surface. The goal of the maneuver was to gather data about Enceladus’ internal mass — particularly in the region around its southern pole, where a reservoir of liquid water is thought to reside — and also to look for “hot spots” on its surface that would give more information about its overall energy distribution.

Cassini had previously discovered that Enceladus radiates a surprising amount of heat from its surface, mostly along the “tiger stripe” features — long, deep furrows (sulcae) that gouge its southern hemisphere, they are the source of the water-ice geysers.

Cassini also used the flyby opportunity to study Enceladus’ gravitational field.

By imaging the moon with backlit lighting from the Sun the highly-reflective ice particles in the jets become visible. More direct lighting reduces the jets’ visibility in images, which must be exposed for the natural light of the scene or risk “blowing out” due to Enceladus’ natural high reflectivity.

The images below are raw spacecraft downloads right from the Cassini’s imaging headquarters in Boulder, CO.

Enceladus' geysers in action on May 2, 2012. (NASA/JPL/SSI)
Enceladus sprays ice into the hazy E ring, which orbits Saturn (NASA/JPL/SSI)

Cassini also swung closely by Dione during this morning’s flyby but the images from that encounter aren’t available yet. Stay tuned to Universe Today for more postcards from Saturn!

As always, you can follow along with the ongoing Cassini mission on JPL’s dedicated site here, as well as on the Cassini Imaging Central Laboratory for Operations (CICLOPS) site.

Cassini Slips Through Enceladus’ Spray

Cassini's latest view of Enceladus' icy spray, acquired on April 14, 2012.

[/caption]

Spray it again, Enceladus! This Saturday the Cassini spacecraft paid another visit to Enceladus, Saturn’s 318-mile-wide moon that’s become famous for its icy geysers.During its latest close pass Cassini got a chance to “taste” Enceladus’ spray using its ion and neutral mass spectrometer, giving researchers more information on what sort of watery environment may be hiding under its frozen, wrinkled surface.

The image above shows a diagonal view of Enceladus as seen from the night side. (The moon’s south pole is aimed at a 45-degree angle to the upper right.) Only by imaging the moon backlit by the Sun can the geysers of fine, icy particles be so well seen.

During the flyby Cassini passed within 46 miles (74 km) of Enceladus’ surface.

This image was captured during the closest approach, revealing the distressed terrain of Enceladus’ south pole. Although a bit blurry due to the motion of the spacecraft, boulders can be made out resting along the tops of high , frozen ridges. (Edited from the original raw image to enhance detail.)

Enceladus' southern fissures, the source of its spray. (NASA/JPL/SSI/J. Major)

This flyby occurred less than three weeks after Cassini’s previous visit to Enceladus. Why pay so much attention to one little moon?

Basically, it’s the one place in our solar system that we know of where a world is spraying its “habitable zone” out into space for us to sample.

“More than 90 jets of all sizes near Enceladus’s south pole are spraying water vapor, icy particles, and organic compounds all over the place,” said Carolyn Porco, planetary scientist and Cassini Imaging science team leader, during a NASA interview in March. “Cassini has flown several times now through this spray and has tasted it. And we have found that aside from water and organic material, there is salt in the icy particles. The salinity is the same as that of Earth’s oceans.

“In the end, it’s the most promising place I know of for an astrobiology search,” said Porco. (Read the full interview here.)

A crescent-lit Enceladus sprays its "habitable zone" out into space.

Not to be left out, Tethys was also paid a visit by Cassini. The 662-mile-wide moon boasts one of the most extensively cratered surfaces in the Solar System, tied with its sister moons Rhea and Dione. In this raw image captured by Cassini on April 14, we can see some of the moon’s ancient, larger craters, including Melanthius with its enormous central peak.

Saturn's moon Tethys, imaged by Cassini on April 14, 2012.

Cassini passed Tethys at a distance of about 6,000 miles (9000 km) after departing Enceladus. Cassini’s composite infrared spectrometer looked for patterns in Tethys’ thermal signature while other instruments studied the moon’s geology.

Image credits: NASA/JPL/Space Science Institute. See more images from the Cassini mission on the CICLOPS site here.

 

“Snowing Microbes” On Saturn’s Moon?

Cassini image of Enceladus from Dec. 2010 (NASA/JPL/SSI)

[/caption]

Enceladus, Saturn’s 318-mile-wide moon that’s become famous for its ice-spraying southern jets, is on astronomers’ short list of places in our own solar system where extraterrestrial life could be hiding — and NASA’s Cassini spacecraft is in just the right place to try and sniff it out.

On March 27, Cassini came within 46 miles (74 km) of Enceladus’ south pole, the region where the moon’s many active water-ice jets originate from. This was Cassini’s closest pass yet over the southern pole, allowing the spacecraft to use its ion and neutral mass spectrometer — as well as its plasma spectrometer, recently returned to service — to taste the icy spray emanating from deep fissures called “tiger stripes” that scar Enceladus’ surface.

(Fly along with Cassini toward Enceladus’ jets here.)

“More than 90 jets of all sizes near Enceladus’s south pole are spraying water vapor, icy particles, and organic compounds all over the place,” said Carolyn Porco, planetary scientist and Cassini Imaging science team leader. “Cassini has flown several times now through this spray and has tasted it. And we have found that aside from water and organic material, there is salt in the icy particles. The salinity is the same as that of Earth’s oceans.”

In addition to water, salt and organics, there is also a surprising amount of heat — heat generated in part by tidal friction, helping keep Enceladus’ underground water reserves liquid.

“If you add up all the heat, 16 gigawatts of thermal energy are coming out of those cracks,” Porco said.

This creates, in effect, a so-called “Goldilocks zone” of potential habitability orbiting around Saturn… a zone that Cassini has easy access to.

“It’s erupting out into space where we can sample it. It sounds crazy but it could be snowing microbes on the surface of this little world,” Porco said. “In the end, it’s the most promising place I know of for an astrobiology search. We don’t even need to go scratching around on the surface. We can fly through the plume and sample it. Or we can land on the surface, look up and stick our tongues out. And voilà…we have what we came for.”

Cassini's view down into a jetting "tiger stripe" in August 2010

Cassini’s latest results — and images! — from the flyby should be landing on Earth any time now. Stay tuned to Universe Today for more updates on Cassini and Enceladus.

Read more on NASA Science News here.

Image credits: NASA/JPL/SSI.

UPDATE: For images from Cassini’s flyby, showing closeups of Enceladus as well as Dione and Janus, check out the CICLOPS team page here.

Titan’s Colorful Crescent

Titan's thick atmosphere shines in backlight sunlight

[/caption]

Made from one of the most recent Cassini images, this is a color-composite showing a backlit Titan with its dense, multi-layered atmosphere scattering sunlight in different colors. Titan’s atmosphere is made up of methane and complex hydrocarbons and is ten times as thick as Earth’s. It is the only moon in our solar system known to have a substantial atmosphere.

Titan’s high-level hydrocarbon haze is nicely visible as a pale blue band encircling the moon.

Color image of Titan and sister moon Dione, seen by Cassini on Dec. 10. (NASA/JPL/SSI and J. Major)

At 3,200 (5,150 km) miles wide, Titan is one of the largest moons in the solar system – even larger than Mercury. Its thick atmosphere keeps a frigid and gloomy surface permanently hidden beneath opaque clouds of methane and hydrocarbons.

This image was made from three raw images acquired by Cassini on December 13. The raw images were in the red, green and blue visible light channels, and so the composited image you see here approximates true color.

This particular flyby of Titan (designated T-79) gave Cassini’s instruments a chance to examine Titan in many different wavelengths, as well as map its surface and measure its atmospheric temperature. Cassini passed by the giant moon at a distance of about 2,228 miles (3,586 kilometers) traveling 13,000 mph (5.8 km/sec). Read more on the flyby page here.

Credit: NASA / JPL / Space Science Institute. Edited by Jason Major.

See more color-composite images of Titan and other moons of Saturn on my Flickr set here.

NASA Prepares for Asteroid’s Close Pass by Earth

Radar image of asteroid 2005 YU55, acquired in April 2010. Credit: NASA/Cornell/Arecibo.

[/caption]

On Tuesday, November 8, at 6:28 p.m. EST, an asteroid the size of an aircraft carrier will soar past our planet at a distance closer than the Moon… and NASA scientists will be watching!

2005 YU55, a 400-meter (1,300-foot) -wide C-type asteroid, was discovered in December 2005 by Robert McMillan of the Spacewatch Program at the University of Arizona, Tucson. It’s pretty much spherical in shape and dark – darker than charcoal, in fact! Scientists with NASA’s Near-Earth Objects Observation Program will begin tracking it on November 4 using the 70-meter radar telescope at the Deep Space Network in Goldstone, California , as well as with the Arecibo Planetary Radar Facility in Puerto Rico beginning November 8. They will continue tracking 2005 YU55 through November 10.

Animation of 2005 YU55's trajectory on Nov. 8. (NASA/JPL) Click to play.

YU55’s orbit is well understood by scientists. It has come this way before, and although this is the closest it’s come to Earth in at least two centuries it will still be at least 324,600 kilometers (201,700 miles) away at nearest approach. That’s about 85% of the distance to the Moon.

It will approach from the sunward side, making viewing in visible light difficult until after it’s made its closest pass.

Other than the excitement it will most likely cause amongst radar astronomers, 2005 YU55 will have no physical effect on our planet. (There have been some rumors circulating online about this particular asteroid’s upcoming pass, in regards to earthquakes and tidal fluctuations and atmospheric disturbances and other such nonsense… the bottom line is that, like the ill-fated comet Elenin, 2005 YU55 has never been known to pose any threat to Earth.)

“YU55 poses no threat of an Earth collision over, at the very least, the next 100 years,” said Don Yeomans, manager of NASA’s Near-Earth Object Program Office at JPL. “During its closest approach, its gravitational effect on the Earth will be so miniscule as to be immeasurable. It will not affect the tides or anything else.”

The 70m telescope at the Goldstone Deep Space Communications Complex in California's Mojave Desert. (NASA/JPL)

Scientists are very eager though to have a prime opportunity to study this quarter-mile-wide world as it makes its closest pass. The giant telescopes at Goldstone and Arecibo will bounce radar waves off the asteroid, mapping its size and shape, and hopefully obtain some very high-resolution images.

“Using the Goldstone radar operating with the software and hardware upgrades, the resulting images of YU55 could come in with resolution as fine as 4 meters per pixel. We’re talking about getting down to the kind of surface detail you dream of when you have a spacecraft fly by one of these targets.”

– Lance Benner, JPL radio astronomer

Even though YU55 will remain at a safe distance the event is still quite notable. The last time an object this large came so close to Earth was in 1976… and scientists weren’t even aware of it at the time. Luckily we now have programs like the Near-Earth Objects Observations Program – a.k.a. “Spaceguard” –  to identify asteroids like this, hopefully in time to know if they could become a danger to our planet in either the near or distant future.

As of now, no large space rock with Earth’s name on it has been positively identified… but that doesn’t mean there’s nothing out there either. We need to keep diligent, keep looking and, above all, keep funding programs like this. If anything, this pass should serve as a reminder – however harmless – that we certainly are not alone in the solar system!

Read more on the NASA/JPL press release here.

UPDATE: NASA will be holding a live Q&A on 2005 YU55 and other near-Earth objects on November 1 at 2:30 p.m. PDT (5:30 p.m. EDT)… watch live here.

 

 

Hello, Helene!

Color composite of Helene from June 18, 2011 flyby. NASA / JPL / SSI / J. Major

[/caption]

On June 18, 2011, the Cassini spacecraft performed a flyby of Saturn’s moon Helene. Passing at a distance of 6,968 km (4,330 miles) it was Cassini’s second-closest flyby of the icy little moon.

The image above is a color composite made from raw images taken with Cassini’s red, green and blue visible light filters. There’s a bit of a blur because the moon shifted position in the frames slightly between images, but I think it captures some of the subtle color variations of lighting and surface composition very nicely!

3D anaglyph of Helene assembled by Patrick Rutherford.

At right is a 3D anaglyph view of Helene made by Patrick Rutherford from Cassini’s original raw images … if you have a pair of red/blue glasses, check it out!

Cassini passed from Helene’s night side to its sunlit side. This flyby will enable scientists to create a map of Helene so they can better understand the moon’s history and gully-like features seen on previous flybys.

(When Cassini acquired the images, it was oriented such that Helene’s north pole was facing downwards. I rotated the image above to reflect north as up.)

Helene orbits Saturn at the considerable distance of 234,505 miles (377,400 km). Irregularly-shaped, it measures 22 x 19 x 18.6 miles (36 x 32 x 30 km).

Helene is a “Trojan” moon of the much larger Dione – so called because it orbits Saturn within the path of Dione, 60º ahead of it. (Its little sister Trojan, 3-mile-wide Polydeuces, trails Dione at the rear 60º mark.) The Homeric term comes from the behavioral resemblance to the Trojan asteroids which orbit the Sun within Jupiter’s path…again, 60º in front and behind. These orbital positions are known as Lagrangian points (L4 and L5, respectively.)

Read more on the Cassini mission site here.

An irregular crescent: Cassini's flyby of Helene on June 18, 2011.

Images: NASA / JPL / Space Science Institute.

Deep Impact

NASA's Deep Impact probe hits Comet Tempel 1 (NASA)

[/caption]
Deep Impact is the name of a NASA space mission whose primary objective was to study Comet Tempel 1 (a.k.a. 9P/Tempel). It was launched on 12 January, 2005, and the smart impactor crashed into the comet on 4 July, 2005.

Oh, and yes, Deep Impact is also the name of a movie … but the two have no connection (the science team came up with their name independently of the Hollywood studio), other than that they both concern a comet!

Comets had been the focus of several space probes before Deep Impact, perhaps the most famous of which is the ESA’s Giotto flyby of Comet Halley. However, flybys could not, and cannot, tell us much about what’s beneath the cometary surface; in particular, what the relative amounts of ices and dust is, how porous the comet body is, and so on. The Deep Impact mission was designed to address many of these unknowns.

The space probe consisted of two parts, a 370 kg copper Smart Impactor – that smashed into the comet – and the Flyby section, which watched the impact from a safe distance. In addition, many ground-based telescopes – including those of thousands of amateurs – and some space-based ones, watched the event from an even safer distance.

The mission was a great success in that the heavy copper section did, in fact, smash into the comet, and the other section did observe the impact up-close-and-personal, but safely. A great deal was learned about this comet – its composition and mechanical strength, etc – and comets in general. However, the plume which resulted from the impact was much denser than expected, so the Flyby did not get any images of the impact crater itself.

After the encounter with Comet Tempel 1, an extended mission for the Flyby was designed and implemented, called EPOXI, after its two objectives: the Extrasolar Planet Observation and Characterization (EPOCh) and the Deep Impact Extended Investigation (DIXI) … hence Extrasolar Planet Observation and Deep Impact Extended Investigation. The former uses the larger telescope on the space probe to look for exoplanet transits; the latter is a flyby of another comet, Hartley 2, now expected on 11 October, 2010.

There are several official Deep Impact websites, including NASA’s, JPL’s (Jet Propulsion Laboratory), and the University of Maryland’s on EPOXI.

The Deep Impact mission resulted in lots of Universe Today stories, far too many to mention here. Some of the best are Deep Impact Smashes into Temple 1, What the Ground Telescopes Saw During Deep Impact, Deep Impact Turns Up Cometary Ice, and Deep Impact Begins Searching for Extrasolar Planets.

Comets, our Icy Friends from the Outer Solar System is a good Astronomy Cast episode which gives a good background on comets.

Source: NASA