Remember When Life was Found in a Martian Meteorite? Turns out, it was Just Geology

The Alan Hills meteorite is a part of history to Mars aficionados. It came from Mars and meteorite hunters discovered in Antarctica in 1984. Scientists think it’s one of the oldest chunks of rock to come from Mars and make it to Earth.

The meteorite made headlines in 1996 when a team of researchers said they found evidence of life in it.

Did they?

Continue reading “Remember When Life was Found in a Martian Meteorite? Turns out, it was Just Geology”

Is That a Fossil on Mars? Non-Biological Deposits can Mimic Organic Structures

NASA's Perseverance rover, which is searching signs of ancient life on Mars. Some of the rocks in this image are volcanic in origin. (credit: NASA/JPL-Caltech/MSSS)
NASA's Perseverance rover, which is searching signs of ancient life on Mars. Some of the rocks in this image are volcanic in origin. (credit: NASA/JPL-Caltech/MSSS)

There’s nothing easy about searching for evidence of life on Mars. Not only do we somehow have to land a rover there, which is extraordinarily difficult. But the rover needs the right instruments, and it has to search in the right location. Right now, the Perseverance lander has checked those boxes as it pursues its mission in Jezero Crater.

But there’s another problem: there are structures that look like fossils but aren’t. Many natural chemical processes produce structures that mimic biological ones. How can we tell them apart? How can we prepare for these false positives?

Continue reading “Is That a Fossil on Mars? Non-Biological Deposits can Mimic Organic Structures”

Animals Could Have Been Around Hundreds of Millions of Years Earlier Than Previously Believed

Credit: Elizabeth Turner/Laurentian University

According to the most widely accepted theories, evolutionary biologists assert that life on Earth began roughly 4 billion years ago, beginning with single-celled bacteria and gradually giving way to more complex organisms. According to this same evolutionary timetable, the first complex organisms emerged during the Neoproterozoic era (ca. 800 million years ago), which took the form of fungi, algae, cyanobacteria, and sponges.

However, due to recent findings made in the Arctic Circle, it appears that sponges may have existed in Earth’s oceans hundreds of millions of years earlier than we thought! These findings were made by Prof. Elizabeth Turner of Laurentian University, who unearthed what could be the fossilized remains of sponges that are 890 million years old. If confirmed, these samples would predate the oldest fossilized sponges by around 350 million years.

Continue reading “Animals Could Have Been Around Hundreds of Millions of Years Earlier Than Previously Believed”

Since Perseverance is Searching for Life, What Will it Be Looking for?

The rocks seen here along the shoreline of Lake Salda in Turkey were formed over time by microbes that trap minerals and sediments in the water. These so-called microbialites were once a major form of life on Earth and provide some of the oldest known fossilized records of life on our planet. NASA's Mars 2020 Perseverance mission will search for signs of ancient life on the Martian surface. Studying these microbial fossils on Earth has helped scientists prepare for the mission. Image Credit: NASA/JPL-Caltech

You have to be careful what you say to people. When NASA or someone else says that the Perseverance rover will be looking for fossil evidence of ancient life, the uninformed may guffaw loudly. Or worse, they may think that scientists are looking for actual animal skeletons or something.

Of course, that’s not the case.

So what is Perseverance looking for?

Continue reading “Since Perseverance is Searching for Life, What Will it Be Looking for?”

70 Million Years Ago, Days Were 30 Minutes Shorter, According to this Ancient Clam

Fossil rudist bivalves (Vaccinites) from the Al-Hajar Mountains, United Arab Emirates. Credit: Wikipedia, Wilson44691 – Own work, Public Domain

Has humanity been doing it all wrong? We’re busy staring off into space with our futuristic, ultra-powerful telescopes, mesmerized by ethereal nebulae and other wondrous objects, and trying to tease out the Universe’s well-kept secrets. Turns out, humble, ancient clams have something to tell us, too.

Continue reading “70 Million Years Ago, Days Were 30 Minutes Shorter, According to this Ancient Clam”

Mars 2020 Rover is Going to a Place on Mars That’s Perfect for Preserving Fossils

Jezero Crater on Mars. Lighter colors represent higher elevations. The Mars 2020 rover will investigate the "bathtub ring" of carbonates around the edge of the crater for microscopic fossils. The dark oval is the landing ellipse. Image NASA/MRO

Back in November 2018, NASA announced that the Mars 2020 rover would land in the Jezero Crater. Jezero Crater is a geologically diverse area, with an alluvial fan of sediment deposited by an incoming river. That sediment may contain preserved ancient organic molecules, and the deposit is clearly visible in satellite images of the Crater.

But the crater holds something else that has scientists intrigued, something that doesn’t show up so clearly in visible light images: a “bathtub ring” of carbonates, which scientists think could hold fossils.

Continue reading “Mars 2020 Rover is Going to a Place on Mars That’s Perfect for Preserving Fossils”

Confirmed. Fossils That Formed 3.5 billion Years Ago, Really are Fossils. The Oldest Evidence of Life Found So Far

A stromatolite from the Pilbara Craton in Australia. Image Credit: By Didier Descouens - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=15944367

The title of Earth’s Earliest Life has been returned to the fossils in the Pilbara region of Australia. The Pilbara fossils had held that title since the 1980s, until researchers studying ancient rocks in Greenland found evidence of ancient life there. But subsequent research questioned the biological nature of the Greenland evidence, which put the whole issue into question again.

Now a new study of the Pilbara fossils has identified the presence of preserved organic matter in those fossils, and handed the ‘Ancient Life’ crown back to them.

Continue reading “Confirmed. Fossils That Formed 3.5 billion Years Ago, Really are Fossils. The Oldest Evidence of Life Found So Far”

Fossilized Clams Had Evidence of a Meteorite Impact Inside Them

Some of the microtektites found by Mike Meyer inside fossilized clams in Florida. Image Credit: Photo by Meyer et al in Meteoritics and Planetary Science.

When an extraterrestrial object slams into the Earth, it sends molten rock high into the atmosphere. That debris cools and re-crystallizes and falls back down to Earth. Tiny glass beads that form in this process are called microtektites, and researchers in Florida have found microtektites inside fossilized clams.

Continue reading “Fossilized Clams Had Evidence of a Meteorite Impact Inside Them”

What the Oldest Fossil on Earth Means for Finding Life on Mars

Microscopic iron-carbonate (white) rosette with concentric layers of quartz inclusions (grey) and a core of a single quartz crystal with tiny (nanoscopic) inclusions of red hematite from the Nuvvuagittuq Supracrustal Belt in Québec, Canada. These may have formed through the oxidation of organic matter derived from microbes living around vents. Credit: Matthew Dodd/UCL.

Scientists have found evidence that life existed on Earth much earlier than previously thought and they say this discovery has implications for life springing up on other planets, particularly Mars.

Fossils of microscopic bacteria were discovered in Quebec, Canada in the Nuvvuagittuq Supracrustal Belt, a formation which contains some of the oldest sedimentary rocks in the world. Scientists estimate the fossils are at least 3.7 billion years old, and could be as old as 4.28 billion years. This is hundreds of millions of years older than previously found specimens.

“The most exciting thing about this discovery is that we know life managed to get a grip and start on Earth at such an early time in Earth’s evolution, which gives us exciting questions as to whether we are alone in the solar system or in the universe,” said PhD student Matthew Dodd from University College London (UCL), who is the first author on a new paper about the finding in the journal Nature. “If life happened so quickly on Earth then could we expect it to be a simple process and start on other planets, or was Earth really just a special case?”

Hematite tubes from the hydrothermal vent deposits that represent the oldest microfossils and evidence for life on Earth. The remains are at least 3.7 billion years old. Credit: Matthew Dodd/UCL

The tiny fossils are the remains of microorganisms that are smaller than the width of a human hair. The Nuvvuagittuq rocks are thought to have formed in an iron-rich deep-sea hydrothermal vent system that provided a habitat for Earth’s first life forms. These rocks are mostly composed of silica and hematite.

“Our discovery supports the idea that life emerged from hot, seafloor vents shortly after planet Earth formed,” Dodd said in a press release. “This speedy appearance of life on Earth fits with other evidence of recently discovered 3,700 million year old sedimentary mounds that were shaped by microorganisms.”

Prior to this discovery, the oldest microfossils reported were found in Western Australia and were dated at 3.4 billion years old, leading scientists to speculate that life probably started around 3.7 billion years ago. But the new finding suggests that life existed as early as 4.5 billion years ago, just 100 million years after Earth formed.

“The microfossils we discovered are about 300 million years older than the previously thought oldest microfossils,” said Dr. Dominic Papineau, a professor of geochemistry and astrobiology at UCL, “so they are within a few hundred million years from within the accretion of the solar system and the planet Earth and the Sun and the Moon and so on.”

The Blueberries of Mars are actually concretions of iron rich minerals from water – ground or standing pools – created over thousands of years during periodic epochs of wet climates on Mars. (Photo Credits: NASA/JPL/Cornell)

Papineau said the structures in the rocks that contained the fossils were spheroids, and since they are made of hematite, they are reminiscent of the discovery in 2004 by the Mars Exploration Rover Opportunity of beds of rounded hematite concretions, that MER scientists called “blueberries.” These rounded concretions formed on Earth when significant volumes of groundwater flowed through permeable rock, and chemical reactions triggered minerals to precipitate and start forming a layered, spherical ball.

The concretions may bear on the search for evidence of past life on Mars because bacteria on Earth can make concretions form more quickly, according to previous research.

“The origin of this structure is not fully understood even on Earth where we find them,” Papineau said. “We don’t know really how organic matter can potentially be involved in making these structures.”

Both the MER rovers, Opportunity and Spirit, as well as the Curiosity rover have all found evidence of past water on Mars. In addition, Curiosity has identified traces of elements like carbon, hydrogen, nitrogen, oxygen, and more — the basic building blocks of life. It also found sulfur compounds in different chemical forms, a possible energy source for microbes. If Mars really was warmer and wetter in the past, as the evidence seems to point, Mars would have been the perfect spot for living organisms.

While the finding of ancient fossils on Earth doesn’t necessarily mean there is past or present life on Mars, in conjunction with the Curiosity rover finding of the raw ingredients for life, it is enticing to know that the environment on early Mars was likely very similar to early Earth, where life did spring up.

You can see details and hear the researchers talk about their findings in the video below:

Source: EurekAlert

Newly Found Ancient Fossils Show Possibilities For Finding Martian Life

Fossilized remains found in Greenland have been dated to 3.7 billion years ago, 220 million years older than when life is believed to have emerged. Credit: A.P. Nutman et al./Nature

Fossilized remains are a fascinating thing. For paleontologists, these natural relics offer a glimpse into the past and a chance to understand what kind of lifeforms lurked there. But for astronomers, fossils are a way of ascertaining precisely when it was that life first began here on our planet – and perhaps even the Solar System.

And thanks to a team of Australian scientists, the oldest fossils to date have been uncovered. These fossilized remains have been dated to 3.7 billion years of age, and were of a community of microbes that lived on the ancient seafloor. In addition to making scientists reevaluate their theories of when life emerged on Earth, they could also tell us if there was ancient life on Mars.

The fossil find was made in what is known as the Isua Supracrustal Belt (ISB), an area in southwest Greenland that recently became accessible due to the ice melting in the area. According to the team, these fossils – basically tiny humps in rock measuring between one and four centimeters (0.4 and 1.6 inches) tall – are stromatolites, which are layers of sediment packed together by ancient, water-based bacterial colonies.

The Australian team searching for fossilized remains in the Isua supracrustal belt (ISB) in southwest Greenland. Credit: uow.edu.au
The Australian team searching for fossilized remains in the Isua supracrustal belt (ISB) in southwest Greenland. Credit: uow.edu.au

According to the team’s research paper, which appeared recently in Nature Communications, the fossilized microbes grew in a shallow marine environment, which is indicated by the seawater-like rare-earth elements and samples of sedimentary rock that were found with them.

They are also similar to colonies of microbes that can be found today, in shallow salt-water environments ranging from Bermuda to Australia. But of course, what makes this find especially interesting is just how old it is. Basically, the stone in the ISB is dated back to the early Archean Era, which took place between 4 and 3.6 billion years ago.

Based on their isotopic signatures, the team dated the fossils to 3.7 billion years of age, which makes them 220 million years older than remains that had been previously uncovered in the Pilbara Craton in north-western Australia. At the time of their discovery, those remains were widely believed to be the earliest fossil evidence of life on Earth.

As such, scientists are now reconsidering their estimates on when microbial life first emerged on planet Earth. Prior to this discovery, it was believed that Earth was a hellish environment 3.7 billion years ago. This was roughly 300 million years after the planet had finished cooling, and scientists believed it would take at least half a billion years for life to form after this point.

4.5 billion years ago, during the Hadean Eon, Earth was bombarded regularly by meteorites. Credit: NASA
4.5 billion years ago, during the Hadean Eon, Earth had a much different environment than it does today. Credit: NASA

But with this new evidence, it now appears that life could have emerged faster than that. As Allen P. Nutman – a professor from the University of Wallongong, Australia, and the study’s lead author – said in a university press release:

“The significance of stromatolites is that not only do they provide obvious evidence of ancient life that is visible with the naked eye, but that they are complex ecosystems. This indicates that as long as 3.7 billion years ago microbial life was already diverse. This diversity shows that life emerged within the first few hundred millions years of Earth’s existence, which is in keeping with biologists’ calculations showing the great antiquity of life’s genetic code.”

When life emerged is a major factor when it comes to Earth’s chemical cycles. Essentially, Earth’s atmosphere during the Hadean was believed to be composed of heavy concentrations of CO² atmosphere, hydrogen and water vapor, which would be toxic to most life forms today. During the following Archean era, this primordial atmosphere slowly began to be converted into a breathable mix of oxygen and nitrogen, and the protective ozone layer was formed.

The emergence of microbial life played a tremendous role in this transformation, allowing for the sequestration of CO² and the creation of oxygen gas through photosynthesis. Therefore, when it comes to Earth’s evolution, the question of when life arose and began to affect the chemical cycles of the planet has always been paramount.

The Curiosity rover took this photo of the Martian landscape on July 12, 2016. Imagine if we could listen to it at the same time. NASA now plans to include a microphone on the upcoming Mars 2020 Mission. Credit: NASA/JPL-Caltech
Could fossilized remains of microbes be found underneath Mars’ cold, dry landscape? Credit: NASA/JPL-Caltech

“This discovery turns the study of planetary habitability on its head,” said associate Professor Bennett, one of the study’s co-authors. “Rather than speculating about potential early environments, for the first time we have rocks that we know record the conditions and environments that sustained early life. Our research will provide new insights into chemical cycles and rock-water-microbe interactions on a young planet.”

The find has also inspired some to speculation that similar life structures could be found on Mars. Thanks to the ongoing efforts of Martian rovers, landers and orbiters, scientists now know with a fair degree of certainty that roughly 3.7 billion years ago, Mars had a warmer, wetter environment.

As a result, it is possible that life on Mars had enough time to form before its atmosphere was stripped away and the waters in which the microbe would have emerged dried up. As Professor Martin Van Kranendonk, the Director of the Australian Centre for Astrobiology at UNSW and a co-author on the paper, explained:

“The structures and geochemistry from newly exposed outcrops in Greenland display all of the features used in younger rocks to argue for a biological origin. This discovery represents a new benchmark for the oldest preserved evidence of life on Earth. It points to a rapid emergence of life on Earth and supports the search for life in similarly ancient rocks on Mars.”

Another thing to keep in mind is that compared to Earth, Mars experiences far less movement in its crust. As such, any microbial life that existed on Mars roughly 3.7 billion years ago would likely be easier to find.

This is certainly good news for NASA, since one of the main objectives of their Mars 2020 rover is to find evidence of past microbial life. I for one am looking forward to seeing what it leaves for us to pickup in its cache of sample tubes!

Further Reading: Nature Communications