It’s difficult to determine the shape of our galaxy. So difficult that only in the last century did we learn that the Milky Way is just one galaxy among billions. So it’s not surprising that despite all our modern telescopes and spacecraft we are still mapping the shape of our galaxy. And one of the more interesting discoveries is that the Milky Way is warped. One explanation for this is that our galaxy has undergone collisions, but a new study argues that it’s caused by dark matter.
Continue reading “The Milky Way's Disk is Warped. Is That Because our Dark Matter Halo is Tilted?”The Early Universe Should Be Awash in Active Galaxies, but JWST Isn't Finding Them
For decades the most distant objects we could see were quasars. We now know they are powerful active black holes. Active galactic nuclei so distant that they resemble star-like points of light. It tells us that supermassive black holes in the early Universe can be powerful monsters that drive the evolution of their galaxies. We had thought most early supermassive black holes went through such an active phase, but a new study suggests most supermassive black holes don’t.
Continue reading “The Early Universe Should Be Awash in Active Galaxies, but JWST Isn't Finding Them”Could This Supermassive Black Hole Only Have Formed by Direct Collapse?
Nearly every galaxy in the universe contains a supermassive black hole. Even galaxies that are billions of light years away. This means supermassive black holes form early in the development of a galaxy. They are possibly even the gravitational seeds around which a galaxy forms. But astronomers are still unclear about just how these massive gravitational beasts first appeared.
Continue reading “Could This Supermassive Black Hole Only Have Formed by Direct Collapse?”What Would the Milky Way Look Like From Afar?
Our understanding of galaxies is rooted in the fact that we can see so many of them. Some, such as the Andromeda and Pinwheel galaxies are fairly close, and others are more distant, but all of them give a unique view. Because of this, we can see how the various types of galaxies appear from different points of view, from face-on to edge-on and all angles in between. But there is one galaxy that’s a bit harder to map out, and that’s our own. Because we are in the galactic plane of the Milky Way, it can be difficult to create an accurate bird’s-eye view of our home galaxy. That’s where a recent study in Nature Astronomy comes in.
Continue reading “What Would the Milky Way Look Like From Afar?”New Clues to the Formation of Globular Clusters: Their Ultramassive Stars
Globular clusters are odd beasts. They aren’t galaxies, but like galaxies, they are a gravitationally bound collection of stars. They can contain millions of stars densely packed together, and they are old. Really old. They likely formed when the universe was only about 400 million years old. But the details of their origins are still unclear.
Continue reading “New Clues to the Formation of Globular Clusters: Their Ultramassive Stars”JWST Fails to Disprove the Big Bang
The James Webb Space Telescope (JWST) is revolutionizing our understanding of the early universe. With a mirror larger than Hubble and the ability to observe deep into the infrared, JWST is giving us a detailed view of that period of the universe when galaxies were just starting to form. The results have been surprising, leading some to argue that they disprove the big bang. But the big bang is still intact, as a recent study shows.
Continue reading “JWST Fails to Disprove the Big Bang”A Star was Blocking a Galaxy, but Now it’s Moved Enough That Astronomers can Finally Examine What it Was Hiding
One of the biggest puzzles in astronomy, and one of the hardest ones to solve, concerns the formation and evolution of galaxies. What did the first ones look like? How have they grown so massive?
A tiny galaxy only 20 million light-years away might be a piece of the puzzle.
Continue reading “A Star was Blocking a Galaxy, but Now it’s Moved Enough That Astronomers can Finally Examine What it Was Hiding”How Do Stars Get Kicked Out of Globular Clusters?
Globular clusters are densely-packed collections of stars bound together gravitationally in roughly-shaped spheres. They contain hundreds of thousands of stars. Some might contain millions of stars.
Sometimes globular clusters (GCs) kick stars out of their gravitational group. How does that work?
Continue reading “How Do Stars Get Kicked Out of Globular Clusters?”The Dark Energy Camera has Captured a Million Images, an Eighth of the Entire sky. Here are Some of its Best Pictures so far
In August 2013, the Dark Energy Survey (DES) began its six-year mission to map thousands of galaxies, supernovae, and patterns in the cosmic structure. This international collaborative effort is dedicated to investigating the mysterious phenomenon known as Dark Energy. This theoretical force counter-acts gravity and accounts for 70% of the Universe’s energy-mass density. Their primary instrument in this mission is the 570-megapixel Dark Energy Camera (DECam), mounted on the Victor M. Blanco 5-meter (16.4 ft) telescope at the Cerro Tlelolo Inter-American Observatory in Chile.
Between 2013 and 2019, the DECam took over one million exposures of the southern night sky and photographed around 2.5 billion astronomical objects – including galaxies, galaxy clusters, stars, comets, asteroids, dwarf planets, and supernovae. For our viewing pleasure, the Dark Energy Survey recently released fifteen spectacular images taken by the DECam during the six-year campaign. These images showcase the capabilities of the DECam, the types of objects it observed, and the sheer beauty of the Universe!
Continue reading “The Dark Energy Camera has Captured a Million Images, an Eighth of the Entire sky. Here are Some of its Best Pictures so far”Primordial Black Holes Could Have Triggered the Formation of Supermassive Black Holes
The early moments of the universe were turbulent and filled with hot and dense matter. Fluctuations in the early universe could have been great enough that stellar-mass pockets of matter collapsed under their own weight to create primordial black holes. Although we’ve never detected these small black holes, they could have played a vital role in cosmic evolution, perhaps growing into the supermassive black holes we see today. A new study shows how this could work, but also finds the process is complicated.
Continue reading “Primordial Black Holes Could Have Triggered the Formation of Supermassive Black Holes”