Hubble Captures ‘Fake’ Cosmic Collision

The image above looks like a classic example of a collision between two galaxies. However, Hubble scientists have determined, this is just an illusion, a trick of perspective. The two galaxies, NGC 3314A and B are actually tens of millions of light years apart instead of merging in a galactic pileup. From our vantage point on Earth the two just happen to appear to be overlapping at great distances from each other.

How did the Hubble scientists figure this out? The biggest hint as to whether galaxies are interacting is usually their shapes. The immense gravitational forces involved in galactic mergers are enough to pull a galaxy out of shape long before it actually collides. Deforming a galaxy like this does not just warp its structure, but it can trigger new episodes of star formation, usually visible as bright blue stars and glowing nebulae.

In the case of NGC 3314, there is some deformation in the foreground galaxy (called NGC 3314A, NGC 3314B lies in the background), but the Hubble team says this is almost certainly misleading. NGC 3314A’s deformed shape, particularly visible below and to the right of the core, where streams of hot blue-white stars extend out from the spiral arms, is not due to interaction with the galaxy in the background.

Studies of the motion of the two galaxies indicate that they are both relatively undisturbed, and that they are moving independently of each other. This indicates in turn that they are not, and indeed have never been, on any collision course. NGC 3314A’s warped shape is likely due instead to an encounter with another galaxy, perhaps nearby NGC 3312 (visible to the north in wide-field images) or another nearby galaxy.

The chance alignment of the two galaxies is more than just a curiosity, though. It greatly affects the way the two galaxies appear to us.

NGC 3314B’s dust lanes, for example, appear far lighter than those of NGC 3314A. This is not because that galaxy lacks dust, but rather because they are lightened by the bright fog of stars in the foreground. NGC 3314A’s dust, in contrast, is backlit by the stars of NGC 3314B, silhouetting them against the bright background.

Such an alignment of galaxies is also helpful to astronomers studying gravitational microlensing, a phenomenon that occurs when stars in one galaxy cause small perturbations in the light coming from a more distant one. Indeed, the observations of NGC 3314 that led to this image were carried out in order to investigate this phenomenon.

This mosaic image covers a large field of view (several times the size of an individual exposure from Hubble’s Advanced Camera for Surveys). Thanks to a long exposure time of more than an hour in total exposure time for every frame, the image shows not only NGC 3314, but also many other more distant galaxies in the background.

The color composite was produced from exposures taken in blue and red light.

Image caption: The Hubble Space Telescope has produced an incredibly detailed image of a pair of overlapping galaxies called NGC 3314. While the two galaxies look as if they are in the midst of a collision, this is in fact a trick of perspective: the two are in chance alignment from our vantage point.
Credit:
NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and W. Keel (University of Alabama)

Source: ESA

Black Hole Growth Out of Whack in Some Galaxies

Galaxies NGC 4342 and NGC 4291. (X-ray: NASA/CXC/SAO/A.Bogdan et al; Infrared: 2MASS/UMass/IPAC-Caltech/ NASA/NSF)

[/caption]

From a Chandra press release:

New evidence from NASA’s Chandra X-ray Observatory challenges prevailing ideas about how black holes grow in the centers of galaxies. Astronomers long have thought that a supermassive black hole and the bulge of stars at the center of its host galaxy grow at the same rate — the bigger the bulge, the bigger the black hole. However, a new study of Chandra data has revealed two nearby galaxies with supermassive black holes that are growing faster than the galaxies themselves.

The mass of a giant black hole at the center of a galaxy typically is a tiny fraction — about 0.2 percent — of the mass contained in the bulge, or region of densely packed stars, surrounding it. The targets of the latest Chandra study, galaxies NGC 4342 and NGC 4291, have black holes 10 times to 35 times more massive than they should be compared to their bulges. The new observations with Chandra show the halos, or massive envelopes of dark matter in which these galaxies reside, also are overweight.

This study suggests the two supermassive black holes and their evolution are tied to their dark matter halos and did not grow in tandem with the galactic bulges. In this view, the black holes and dark matter halos are not overweight, but the total mass in the galaxies is too low.

“This gives us more evidence of a link between two of the most mysterious and darkest phenomena in astrophysics — black holes and dark matter — in these galaxies,” said Akos Bogdan of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., who led the new study.

NGC 4342 and NGC 4291 are close to Earth in cosmic terms, at distances of 75 million and 85 million light years. Astronomers had known from previous observations that these galaxies host black holes with relatively large masses, but are not certain what is responsible for the disparity. Based on the new Chandra observations, however, they are able to rule out a phenomenon known as tidal stripping.

Tidal stripping occurs when some of a galaxy’s stars are stripped away by gravity during a close encounter with another galaxy. If such tidal stripping had taken place, the halos mostly would have been missing. Because dark matter extends farther away from the galaxies, it is more loosely tied to them than the stars and more likely to be pulled away.

To rule out tidal stripping, astronomers used Chandra to look for evidence of hot, X-ray-emitting gas around the two galaxies. Because the pressure of hot gas — estimated from X-ray images — balances the gravitational pull of all the matter in the galaxy, the new Chandra data can provide information about the dark matter halos. The hot gas was found to be distributed widely around NGC 4342 and NGC 4291, implying that each galaxy has an unusually massive dark matter halo and that tidal stripping is unlikely.

“This is the clearest evidence we have, in the nearby universe, for black holes growing faster than their host galaxy,” said co-author Bill Forman, also of CfA. “It’s not that the galaxies have been compromised by close encounters, but instead they had some sort of arrested development.”

How can the mass of a black hole grow faster than the stellar mass of its host galaxy? The study’s authors suggest a large concentration of gas spinning slowly in the galactic center is what the black hole consumes very early in its history. It grows quickly, and as it grows, the amount of gas it can accrete, or swallow, increases along with the energy output from the accretion. After the black hole reaches a critical mass, outbursts powered by the continued consumption of gas prevent cooling and limit the production of new stars.

“It’s possible that the supermassive black hole reached a hefty size before there were many stars at all in the galaxy,” said Bogdan. “That is a significant change in our way of thinking about how galaxies and black holes evolve together.”

The results were presented June 11 at the 220th meeting of the American Astronomical Society in Anchorage, Alaska. The study also has been accepted for publication in The Astrophysical Journal.

Galactic Close Call Leaves a Bridge of Gas

Illustration of a hydrogen gas bridge connecting the Andromeda and Triangulum galaxies (Bill Saxton, NRAO/AUI/NSF)

[/caption]

An ancient passing between two nearby galaxies appears to have left the participants connected by a tenuous “bridge” of hydrogen gas, according to findings reported Monday, June 11 by astronomers with the National Radio Astronomy Observatory (NRAO).

Using the National Science Foundation’s Green Bank Telescope in West Virginia — the world’s largest fully-steerable radio telescope — astronomers have confirmed the existence of a vast bridge of hydrogen gas streaming between the Andromeda galaxy (M31) and the Triangulum galaxy (M33), indicating that they likely passed very closely billions of years ago.

The Robert C. Byrd Green Bank Telescope (GBT) in West Virginia (NRAO/AUI)

The faint bridge structure had first been identified in 2004 with the 14-dish Westerbork Synthesis Radio Telescope in the Netherlands but there was some scientific dispute over the findings. Observations with the GBT confirmed the bridge’s existence as well as revealed the presence of six large clumps of material within the stream.

Since the clumps are moving at the same velocity as the two galaxies relative to us, it seems to indicate the bridge of hydrogen gas is connecting them together.

“We think it’s very likely that the hydrogen gas we see between M31 and M33 is the remnant of a tidal tail that originated during a close encounter, probably billions of years ago,” said Spencer Wolfe of West Virginia University. “The encounter had to be long ago, because neither galaxy shows evidence of disruption today.”

The findings were announced Monday at the 220th Meeting of the American Astronomical Society in Anchorage, Alaska. Read more on the NRAO website here.

A Cotton Candy Pinwheel Galaxy

The Pinwheel Galaxy. Credit: X-ray: NASA/CXC/SAO; IR & UV: NASA/JPL-Caltech; Optical: NASA/STScI

[/caption]

Just in time for summer, this image of the Pinwheel Galaxy (M101) looks as pretty as a child’s toy and as delectable as cotton candy. This beautiful image combines data in the infrared, visible, ultraviolet and X-rays from four of NASA’s space-based telescopes. It’s like seeing with a regular camera, an ultraviolet camera, night-vision goggles and X-ray vision, all at the same time.

But within this multi-spectral view, you can see both young and old stars distributed along M101’s tightly-wound spiral arms. Composite images like this allow astronomers to see how features in one part of the spectrum match up with those seen in other parts.

The Pinwheel Galaxy is in the constellation of Ursa Major (also known as the Big Dipper). It is about 70 percent larger than our own Milky Way Galaxy, with a diameter of about 170,000 light years, and sits at a distance of 21 million light years from Earth. This means that the light we’re seeing in this image left the Pinwheel Galaxy about 21 million years ago – many millions of years before humans ever walked the Earth.

Write Your Name In Galaxies!

The name of everyone's favorite space news blog written in starlight!

[/caption]

Ever wanted to see your name in lights? How about star lights? Well there’s a fun little website that will let you assemble your name — or anything you want to say — using real galaxies as the letters… very cool!

Created by UK astronomer Steven Bamford, My Galaxies uses actual images of galaxies acquired through the Sloan Digital Sky Survey and Galaxy Zoo projects to create your message, which you can then share on Facebook, Twitter or email. You can even download a high-res version of the resulting PNG image (although I did find that I had to open the file in Photoshop and add a layer filled with black behind the galaxified letters, in order to clear out some background noise. Perhaps this can be fixed in the future.)

It’s a nice bit of coding, and makes for a cool banner or message for your favorite starry-eyed individual. Check it out!

“Really? There are galaxies that look like letters? OK, S and Z I can believe, but M? H? R? Capitals or little letters? What about punctuation, or numbers? Well, there aren’t many, but when you’ve got pictures of millions of galaxies and an energetic group of Zooites there isn’t much that can stay hidden!”

– Steven Bamford

Make your own My Galaxy message and read more about how it’s done here.

(Tip of the star-studded hat to Jennifer Oullette for the heads-up!)

Can You Find a Hubble Hidden Treasure?

Visible in the constellation of Andromeda, NGC 891 is located approximately 30 million light-years away from Earth. Credit: ESA/Hubble & NASA

[/caption]

Just look at the kind of stunning images that are buried in the archives from the Hubble Space Telescope! Here, Hubble turned its powerful wide field Advanced Camera for Surveys towards this spiral galaxy and took this close-up of its northern half. The entire galaxy, called NGC 891, stretches across 100,000 light-years and we see it exactly edge-on. Visible are filaments of dust and gas escaping the plane of the galaxy. A few foreground stars from the Milky Way shine brightly in the image, while distant elliptical galaxies can be seen in the lower right of the image.

This is just an example of the hidden gems in Hubble’s archives that have never been seen by the general public. There’s a new contest to find more — so how can you participate?

The HST has made over one million observations during its more than two decades in orbit. New images are published nearly every week, but hidden in Hubble’s huge data archives are some truly breathtaking images that have never been seen. They’re called Hubble’s Hidden Treasures, and between now and May 31, 2012, ESA invites you to help bring them to light. Just explore the Hubble Legacy Archive (HLA), and dig out a great dataset, adjust the contrast and colors using the simple online tools, and submit to the Hubble’s Hidden Treasures Contest Flickr group. For more information about the competition, visit the Hubble’s Hidden Treasures webpage.

The European Southern Observatory (ESO) also conducted a similar ‘treasure hunt’ with great results

This image was found by contestant Nick Rose.

Newly Discovered Satellite Galaxies: Another Blow Against Dark Matter?

Arp 302 consists of a pair of very gas-rich spiral galaxies in their early stages of interaction. Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

[/caption]

A group of astronomers have discovered a vast structure of satellite galaxies and clusters of stars surrounding our Milky Way galaxy, stretching out across a million light years. The team says their findings may signal a “catastrophic failure of the standard cosmological model,” challenging the existence of dark matter. This joins another study released last week, where scientists said they found no evidence for dark matter.

PhD student Marcel Pawlowski and astronomy professor Pavel Kroupa from the University of Bonn in Germany are no strangers to the study – and skepticism — of dark matter. Together the two have a blog called The Dark Matter Crisis, and in a 2009 paper that also studied satellite galaxies, Kroupa declared that perhaps Isaac Newton was wrong. “Although his theory does, in fact, describe the everyday effects of gravity on Earth, things we can see and measure, it is conceivable that we have completely failed to comprehend the actual physics underlying the force of gravity,” he said.

While conventional cosmology models for the origin and evolution of the universe are based on the presence of dark matter, invisible material thought to make up about 23% of the content of the cosmos, this model is backed up by recent observations of the Cosmic Microwave Background that estimate the Universe is made of 4% regular baryonic matter, 73% dark energy and the remaining is dark matter.

But dark matter has never been detected directly, and in the currently accepted model – the Lambda-Cold Dark Matter model – the Milky Way is predicted to have far more satellite galaxies than are actually seen.

Pawlowski, Kroupa and their team say they have found a huge structure of galaxies and star clusters that extends as close as 33,000 light years to as far away as one million light years from the center of the galaxy, existing in right angles to the Millky Way, or in a polar structure both ‘north’ and ‘south’ of the plane of our galaxy.

This could be the ‘lost’ matter everyone has been searching for.

They used a range of sources to try and compile this new view of exactly what surrounds our galaxy, employing twentieth century photographic plates and images from the robotic telescope of the Sloan Deep Sky Survey. Using all these data they assembled a picture that includes bright ‘classical’ satellite galaxies, more recently detected fainter satellites and the younger globular clusters.

Altogether, it forms a huge structure.

“Once we had completed our analysis, a new picture of our cosmic neighbourhood emerged,” said Pawlowski.

The team said that various dark matter models struggle to explain what they have discovered. “In the standard theories, the satellite galaxies would have formed as individual objects before being captured by the Milky Way,” said Kroupa. “As they would have come from many directions, it is next to impossible for them to end up distributed in such a thin plane structure.”

Many astronomers, including astrophysicist Ethan Siegel in his Starts With a Bang blog, say the big picture of dark matter does a good job of explaining the structure of the Universe.

Siegel asks if any studies refuting dark matter “allow us to get away with a Universe without dark matter in explaining large-scale structure, the Lyman-alpha forest, the fluctuations in the cosmic microwave background, or the matter power spectrum of the Universe? The answers, at this point, are no, no, no, and no. Definitively. Which doesn’t mean that dark matter is a definite yes, and that modifying gravity is a definite no. It just means that I know exactly what the relative successes and remaining challenges are for each of these options.”

However, via Twitter today Pawlowski said, “Unfortunately the big picture of dark matter being reportedly fine only helps if looking from far away or with broken glasses.”

One explanation for how this structure formed is that the Milky Way collided with another galaxy in the distant past.

“The other galaxy lost part of its material, material that then formed our Galaxy’s satellite galaxies and the younger globular clusters and the bulge at the galactic centre.” said Pawlowski. “The companions we see today are the debris of this 11 billion year old collision.”

The team wrote in their paper: “If all the satellite galaxies and young halo clusters have been formed in an encounter between the young Milky Way and another gas-rich galaxy about 10-11 Gyr ago, then the Milky Way does not have any luminous dark-matter substructures and the missing satellites problem becomes a catastrophic failure of the standard cosmological model.”

“We were baffled by how well the distributions of the different types of objects agreed with each other,” said Kroupa. “Our model appears to rule out the presence of dark matter in the universe, threatening a central pillar of current cosmological theory. We see this as the beginning of a paradigm shift, one that will ultimately lead us to a new understanding of the universe we inhabit.”

Read the team’s paper.

Source: Royal Astronomical Society

Supernova Explosions, Black Hole Jets Might Cause Galaxies to ‘Age’ Faster

Time is running out for the galaxy NGC 3801, seen in this composite image combining light from across the spectrum, ranging from ultraviolet to radio. NASA's Galaxy Evolution Explorer and other instruments have helped catch the galaxy NGC 3801 in the act of destroying its cold, gaseous fuel for new stars. Astronomers believe this marks the beginning of its transition from a vigorous spiral galaxy to a quiescent elliptical galaxy whose star-forming days are long past. Image credit: NASA/JPL-Caltech/SDSS/NRAO/ASIAA

[/caption]

Supernova explosions and the jets of a monstrous black hole are scattering one galaxy’s star-making gas, driving a dramatic transformation from spiral galactic youth to elderly elliptical, according to a new study of a recently merged galaxy. Cool gas, the fuel from which new stars form, is essential to the youth and vigor of a galaxy. But supernova explosions can start the decline in star formation, and then shock waves from the supermassive black hole finish the job, turning spiral galaxies to “red and dead” ellipticals.

Astronomers think they have identified a recently merged galaxy, NGC 3801, where this gas loss has just gotten underway. Using ultraviolet observations from NASA’s Galaxy Evolution Explorer (GALEX) and a host of other instruments, the new findings fill an important gap in the current understanding of galactic evolution.

“We have caught a galaxy in the act of destroying its gaseous fuel for new stars and marching toward being a red-and-dead type of galaxy,” said Ananda Hota, lead author of a new paper in the Monthly Notices of the Royal Astronomical Society. “We have found a crucial missing piece to connect and solve the puzzle of this phase of galaxy evolution.”

It has long been known that gas-rich spiral galaxies like our Milky Way smash together to create elliptical galaxies such as the one observed in the study. These big, round galaxies have very little star formation.

The supermassive black holes that reside in the centers of galaxies can flare up when engorged by gas during galactic mergers. As a giant black hole feeds, colossal jets of matter shoot out from it, giving rise to what is known as an active galactic nucleus. According to theory, shock waves from these jets heat up and disperse the reservoirs of cold gas in elliptical galaxies, thus preventing new stars from taking shape.

NGC 3801 shows signs of such a process. This galaxy is unique in that evidence of a past merger is clearly seen, and the shock waves from the central black hole’s jets have started to spread out very recently. The researchers used the Galaxy Evolution Explorer to determine the age of the galaxy’s stars and decipher its evolutionary history. The ultraviolet observations show that NGC 3801’s star formation has petered out over the last 100 to 500 million years, demonstrating that the galaxy has indeed begun to leave behind its youthful years. The lack of many big, new, blue stars makes NGC 3801 look yellowish and reddish in visible light, and thus middle-aged.

What’s causing the galaxy to age and make fewer stars? The short-lived blue stars that formed right after it merged with another galaxy have already blown up as supernovae. Data from NASA’s Hubble Space Telescope revealed that those stellar explosions have triggered a fast outflow of heated gas from NGC 3801’s central regions. That outflow has begun to banish the reserves of cold gas, and thus cut into NGC 3801’s overall star making.

Some star formation is still happening in NGC 3801, as shown in ultraviolet wavelengths observed by the Galaxy Evolution Explorer, and in infrared wavelengths detected by NASA’s Spitzer Space Telescope. But that last flicker of youth will soon be extinguished by colossal shock waves from the black hole’s jets, seen in X-ray light by NASA’s Chandra X-ray Observatory. These blast waves are rushing outward from the galactic center at a velocity of nearly two million miles per hour (nearly 900 kilometers per second). The waves will reach the outer portions of NGC 3801 in about 10 million years, scattering any remaining cool hydrogen gas and rendering the galaxy truly red and dead.

Astronomers think the transition captured early-on in the case of NGC 3801 — from the merger of gas-rich galaxies to the rise of an old-looking elliptical — happens very quickly on cosmic time scales.

“The quenching of star formation by feedback from the active galactic nucleus probably occurs in just a billion years. That’s not very long compared to the 10-billion-year age of a typical big galaxy,” said Hota. “The explosive shock wave event caused by the central black hole is so powerful that it can dramatically change the future course of the evolution of an entire galaxy.”

Additional observations for the study in optical light come from the Sloan Digital Sky Survey and in radio using the Very Large Array in New Mexico.

Hota is an astronomer in Pune, India, conducted the study as a post-doctoral research fellow at the Institute of Astronomy & Astrophysics at Academia Sinica in Taipei, Taiwan.

From a JPL Press Release.

Finding Out What Dark Matter Is – And Isn’t

This dwarf spheroidal galaxy is a satellite of our Milky Way and is one of 10 used in Fermi's dark matter search. (Credit: ESO/Digital Sky Survey 2)


Astronomers using NASA’s Fermi Gamma-Ray Space Telescope have been looking for evidence of suspected types of dark matter particles within faint dwarf galaxies near the Milky Way — relatively “boring” galaxies that have little activity but are known to contain large amounts of dark matter. The results?

These aren’t the particles we’re looking for.

80% of the material in the physical Universe is thought to be made of dark matter — matter that has mass and gravity but does not emit electromagnetic energy (and is thus invisible). Its gravitational effects can be seen, particularly in clouds surrounding galaxies where it is suspected to reside in large amounts. Dark matter can affect the motions of stars, galaxies and even entire clusters of galaxies… but when it all comes down to it, scientists still don’t really know exactly what dark matter is.

Possible candidates for dark matter are subatomic particles called WIMPs (Weakly Interacting Massive Particles). WIMPs don’t absorb or emit light and don’t interact with other particles, but whenever they interact with each other they annihilate and emit gamma rays.

If dark matter is composed of WIMPs, and the dwarf galaxies orbiting the Milky Way do contain large amounts of dark matter, then any gamma rays the WIMPs might emit could be detected by NASA’s Fermi Gamma-Ray Space Telescope.

After all, that’s what Fermi does.

Ten such galaxies — called dwarf spheroids — were observed by Fermi’s Large-Area Telescope (LAT) over a two-year period. The international team saw no gamma rays within the range expected from annihilating WIMPs were discovered, thus narrowing down the possibilities of what dark matter is.

“In effect, the Fermi LAT analysis compresses the theoretical box where these particles can hide,” said Jennifer Siegal-Gaskins, a physicist at the California Institute of Technology in Pasadena and a member of the Fermi LAT Collaboration.

[/caption]

So rather than a “failed experiment”, such non-detection means that for the first time researchers can be scientifically sure that WIMP candidates within a specific range of masses and interaction rates cannot be dark matter.

(Sometimes science is about knowing what not to look for.)

A paper detailing the team’s results appeared in the Dec. 9, 2011, issue of Physical Review Letters. Read more on the Fermi mission page here.

VISTA View Is Chock Full Of Galaxies

Mosaic of infrared survey images from ESO's VISTA reveal over 200,000 distant galaxies. (ESO/UltraVISTA team. Acknowledgement: TERAPIX/CNRS/INSU/CASU.)

[/caption]

See all those tiny points of light in this image? Most of them aren’t stars; they’re entire galaxies, seen by the European Southern Observatory’s VISTA survey telescope located at the Paranal Observatory in Chile.

This is a combination of over 6000 images taken with a total exposure time of 55 hours, and is the widest deep view of the sky ever taken in infrared light.

The galaxies in this VISTA image are only visible in infrared light because they are very far away. The ever-increasing expansion rate of the Universe shifts the light coming from the most distant objects (like early galaxies) out of visible wavelengths and into the infrared spectrum.

(See a full-size version — large 253 mb file.)

ESO’s VISTA (Visual and Infrared Survey Telescope for Astronomy) telescope is the world’s largest and most powerful infrared observatory, and has the ability to peer deep into the Universe to reveal these incredibly distant, incredibly ancient structures.

By studying such faraway objects astronomers can better understand how the structures of galaxies and galactic clusters evolved throughout time.

The region seen in this deep view is an otherwise “unremarkable” and apparently empty section of sky located in the constellation Sextans.

Read more on the ESO website here.

The VISTA telescope in its dome at sunset. Its primary mirror is 4.1 meters wide. G. Hüdepohl/ESO.