The Standard Model describes how the Universe has evolved at large scale. There are six numbers that define the model and a team of researchers have used them to build simulations of the Universe. The results of these simulations were then fed to a machine learning algorithm to train it before it was set the task of estimating five of the cosmological constants, a task which it completed with incredible precision.
Continue reading “Estimating the Basic Settings of the Universe”Giant Collision Decouples Dark Matter from Regular Matter
Dark matter is a mysterious and captivating subject. It’s a strange concept and we don’t really have a handle on what it actually is. One of the strongest pieces of evidence that dark matter is a particle comes from cosmic collisions. These collisions chiefly occur when clusters of galaxies interact such as the famous Bullet Cluster. Gravitational lensing reveals how the dark matter component couples from gas and dust in the cluster but now, astronomers have found another galaxy cluster collision but it is different, showing the collision from a new angle.
Continue reading “Giant Collision Decouples Dark Matter from Regular Matter”Japan’s New X-Ray Observatory Sees First Light
XRISM, the X-ray Imaging and Spectroscopy Mission, is a joint NASA/JAXA mission led by JAXA. The X-ray space telescope began its mission in low-Earth orbit on September 6th, 2023. Science operations won’t begin until later this year, but the satellite’s science team has released some of the telescope’s first images.
Continue reading “Japan’s New X-Ray Observatory Sees First Light”Astronomers Have Recorded the Biggest Explosion Ever Seen in the Universe
Hundreds of millions of light years away, a supermassive black hole sits in the center of a galaxy cluster named Ophiuchus. Though black holes are renowned for sucking in surrounding material, they sometimes expel material in jets. This black hole is the site of an almost unimaginably powerful explosion, created when an enormous amount of material was expelled.
Continue reading “Astronomers Have Recorded the Biggest Explosion Ever Seen in the Universe”The Most Distant Star Ever Seen, Only 4.4 Billion Years After the Big Bang
In 1990, the Hubble Space Telescope was placed into Low Earth Orbit. Since then, Hubble has gone on to become the most well-known space observatory and has revealed some never-before-seen things about our Universe. Despite the subsequent deployment of several flagship telescopes – like the Kepler Space Telescope, the Chandra X-ray Observatory and the Spitzer Space Telescope – Hubble is still accomplishing some amazing feats.
For instance, a team of astronomers recently used Hubble to locate the most distant star ever discovered. This hot blue star, which was located in a galaxy cluster, existed just 4.4 billion years after the Big Bang. The discovery of this star is expected to provide new insights into the formation and evolution of stars and galaxy clusters during the early Universe, as well as the nature of dark matter itself.
The discovery was made by an international team of scientists led by Patrick Kelly (of the University of Minnesota), Jose Diego (of the Instituto de Física de Cantabria in Spain) and Steven Rodney (of the University of South Carolina). Together, they observed the distant star in the galaxy cluster MACS J1149-2223 in April 2016 while studying the supernova explosion known as heic1525 (aka. Refsdal).
Using a technique known as gravitational microlensing, team relied on the total mass of the galaxy cluster itself to magnify the light coming from the supernova. However, while looking for this supernova, the team found an unexpected point source of light in the same galaxy. As Patrick Kelly explained in a recent Hubble press release:
“Like the Refsdal supernova explosion the light of this distant star got magnified, making it visible for Hubble. This star is at least 100 times farther away than the next individual star we can study, except for supernova explosions.”
The light observed from this star – named Lensed Star 1 (LS1) – was emitted just 4.4 billion years after the Big Bang (when the Universe was just 30% of its current age). The light was only detectable thanks to the microlensing effect caused by mass of the galaxy cluster and a compact object about three times the mass of our Sun within the galaxy itself. This allowed for the light coming from the star to be magnified by a factor of 2000.
Interestingly enough, the team also realized that this was not the first time this star had been observed. During a previous observation of the galaxy cluster, made in October 2016, the star was also acquired in an image – but went unnoticed at the time. As Diego noted:
“We were actually surprised to not have seen this second image in earlier observations, as also the galaxy the star is located in can be seen twice. We assume that the light from the second image has been deflected by another moving massive object for a long time — basically hiding the image from us. And only when the massive object moved out of the line of sight the second image of the star became visible.”
After finding the star in their survey, the team used Hubble again to obtain spectra from LS1 and determined that it is a B-type supergiant star – an extremely bright and blue class of star that has several times the mass of our Sun and is more than twice as hot. Given the star’s age, the discovery of LS1 is find on its own. At the same time, the discovery of this star will allow astronomers to gain new insights into the galaxy cluster itself.
As Steven Rodney indicated, “We know that the microlensing was caused by either a star, a neutron star, or a stellar-mass black hole.” As such, the discovery of LS1 will allow astronomers to study these objects (the latter of which are invisible) and estimate how many of them exist within this galaxy cluster.
Learning more about the constituents of galaxy clusters – the largest and most massive structures in the Universe – will also provide important clues about the composition of the Universe overall and how it evolved over time. This includes the important role played by dark matter in the evolution the Universe. As Kelly explained:
“If dark matter is at least partially made up of comparatively low-mass black holes, as it was recently proposed, we should be able to see this in the light curve of LS1. Our observations do not favour the possibility that a high fraction of dark matter is made of these primordial black holes with about 30 times the mass of the Sun.”
With the deployment of next-generation telescopes – like the James Webb Space Telescope – astronomers hope to learn even more about the earliest stars in the Universe. In so doing, they will be able to learn more about how it evolved over the past 10 billion years or so, and gain vital clues as to how dark matter played a role. In the meantime, Hubble still plays an all-important role in expanding our understanding of the cosmos.
And be sure to enjoy this episode of Hubblecast that explains this impressive find, courtesy of the ESA:
Further Reading: Hubble Space Telescope
Astronomers use a Galaxy Cluster as an Extremely Powerful “Natural Telescope” to Peer Even Farther into the Universe
When it comes to studying some of the most distant and oldest galaxies in the Universe, a number of challenges present themselves. In addition to being billions of light years away, these galaxies are often too faint to see clearly. Luckily, astronomers have come to rely on a technique known as Gravitational Lensing, where the gravitational force of a large object (like a galactic cluster) is used to enhance the light of these fainter galaxies.
Using this technique, an international team of astronomers recently discovered a distant and quiet galaxy that would have otherwise gone unnoticed. Led by researchers from the University of Hawaii at Manoa, the team used the Hubble Space Telescope to conduct the most extreme case of gravitational lensing to date, which allowed them to observe the faint galaxy known as eMACSJ1341-QG-1.
The study that describes their findings recently appeared in The Astrophysical Journal Letters under the title “Thirty-fold: Extreme Gravitational Lensing of a Quiescent Galaxy at z = 1.6″. Led by Harald Ebeling, an astronomer from the University of Hawaii at Manoa, the team included members from the Niels Bohr Institute, the Centre Nationale de Recherche Scientifique (CNRS), the Space Telescope Science Institute, and the European Southern Observatory (ESO).
For the sake of their study, the team relied on the massive galaxy cluster known as eMACSJ1341.9-2441 to magnify the light coming from eMACSJ1341-QG-1, a distant and fainter galaxy. In astronomical terms, this galaxy is an example of a “quiescent galaxy”, which are basically older galaxies that have largely depleted their supplies of dust and gas and therefore do not form new stars.
The team began by taking images of the faint galaxy with the Hubble and then conducting follow-up spectroscopic observations using the ESO/X-Shooter spectrograph – which is part of the Very Large Telescope (VLT) at the Paranal Observatory in Chile. Based on their estimates, the team determined that they were able to amplify the background galaxy by a factor of 30 for the primary image, and a factor of six for the two remaining images.
This makes eMACSJ1341-QG-1 the most strongly amplified quiescent galaxy discovered to date, and by a rather large margin! As Johan Richard – an assistant astronomer at the University of Lyon who performed the lensing calculations, and a co-author on the study – indicated in a University of Hawaii News release:
“The very high magnification of this image provides us with a rare opportunity to investigate the stellar populations of this distant object and, ultimately, to reconstruct its undistorted shape and properties.”
Although other extreme magnifications have been conducted before, this discovery has set a new record for the magnification of a rare quiescent background galaxy. These older galaxies are not only very difficult to detect because of their lower luminosity; the study of them can reveal some very interesting things about the formation and evolution of galaxies in our Universe.
As Ebeling, an astronomer with the UH’s Institute of Astronomy and the lead author on the study, explained:
“We specialize in finding extremely massive clusters that act as natural telescopes and have already discovered many exciting cases of gravitational lensing. This discovery stands out, though, as the huge magnification provided by eMACSJ1341 allows us to study in detail a very rare type of galaxy.”
Quiescent galaxies are common in the local Universe, representing the end-point of galactic evolution. As such, this record-breaking find could provide some unique opportunities for studying these older galaxies and determining why star-formation ended in them. As Mikkel Stockmann, a team member from the University of Copenhagen and an expert in galaxy evolution, explained:
“[A]s we look at more distant galaxies, we are also looking back in time, so we are seeing objects that are younger and should not yet have used up their gas supply. Understanding why this galaxy has already stopped forming stars may give us critical clues about the processes that govern how galaxies evolve.”
In a similar vein, recent studies have been conducted that suggest that the presence of a Supermassive Black Hole (SMBH) could be what is responsible for galaxies becoming quiescent. As the powerful jets these black holes create begin to drain the core of galaxies of their dust and gas, potential stars find themselves starved of the material they would need to undergo gravitational collapse.
In the meantime, follow-up observations of eMACSJ1341-QG1 are being conducted using telescopes at the Paranal Observatory in Chile and the Maunakea Observatories in Hawaii. What these observations reveal is sure to tell us much about what will become of our own Milky Way Galaxy someday, when the last of the dust and gas is depleted and all its stars become red giants and long-lived red dwarfs.
Further Reading: University of Hawa’ii News, The Astrophysical Journal Letters
Astronomers Discover First Mulitiple-image Gravitationally-lensed Supernova
How about four supernovae for the price of one? Using the Hubble Space Telescope, Dr. Patrick Kelly of the University of California-Berkeley along with the GLASS (Grism Lens Amplified Survey from Space) and Hubble Frontier Fields teams, discovered a remote supernova lensed into four copies of itself by the powerful gravity of a foreground galaxy cluster. Dubbed SN Refsdal, the object was discovered in the rich galaxy cluster MACS J1149.6+2223 five billion light years from Earth in the constellation Leo. It’s the first multiply-lensed supernova every discovered and one of nature’s most exotic mirages.
Gravitational lensing grew out of Einstein’s Theory of Relativity wherein he predicted massive objects would bend and warp the fabric of spacetime. The more massive the object, the more severe the bending. We can picture this by imagining a child standing on a trampoline, her weight pressing a dimple into the fabric. Replace the child with a 200-pound adult and the surface of the trampoline sags even more.
Similarly, the massive Sun creates a deep, but invisible dimple in the fabric of spacetime. The planets feel this ‘curvature of space’ and literally roll toward the Sun. Only their sideways motion or angular momentum keeps them from falling straight into the solar inferno.
Curved space created by massive objects also bends light rays. Einstein predicted that light from a star passing near the Sun or other massive object would follow this invisible curved spacescape and be deflected from an otherwise straight path. In effect, the object acts as a lens, bending and refocusing the light from the distant source into either a brighter image or multiple and distorted images. Also known as the deflection of starlight, nowadays we call it gravitational lensing.
Simulation of distorted spacetime around a massive galaxy cluster over time
Turns out there are lots of these gravitational lenses out there in the form of massive clusters of galaxies. They contain regular matter as well as vast quantities of the still-mysterious dark matter that makes up 96% of the material stuff in the universe. Rich galaxy clusters act like telescopes – their enormous mass and powerful gravity magnify and intensify the light of galaxies billions of light years beyond, making visible what would otherwise never be seen.
Let’s return to SN Refsdal, named for Sjur Refsdal, a Norwegian astrophysicist who did early work in the field of gravitational lensing. A massive elliptical galaxy in the MACS J1149 cluster “lenses” the 9.4 billion light year distant supernova and its host spiral galaxy from background obscurity into the limelight. The elliptical’s powerful gravity’s having done a fine job of distorting spacetime to bring the supernova into view also distorts the shape of the host galaxy and splits the supernova into four separate, similarly bright images. To create such neat symmetry, SN Refsdal must be precisely aligned behind the galaxy’s center.
The scenario here bears a striking resemblance to Einstein’s Cross, a gravitationally lensed quasar, where the light of a remote quasar has been broken into four images arranged about the foreground lensing galaxy. The quasar images flicker or change in brightness over time as they’re microlensed by the passage of individual stars within the galaxy. Each star acts as a smaller lens within the main lens.
Detailed color images taken by the GLASS and Hubble Frontier Fields groups show the supernova’s host galaxy is also multiply-imaged by the galaxy cluster’s gravity. According to their recent paper, Kelly and team are still working to obtain spectra of the supernova to determine if it resulted from the uncontrolled burning and explosion of a white dwarf star (Type Ia) or the cataclysmic collapse and rebound of a supergiant star that ran out of fuel (Type II).
The time light takes to travel to the Earth from each of the lensed images is different because each follows a slightly different path around the center of the lensing galaxy. Some paths are shorter, some longer. By timing the brightness variations between the individual images the team hopes to provide constraints not only on the distribution of bright matter vs. dark matter in the lensing galaxy and in the cluster but use that information to determine the expansion rate of the universe.
You can squeeze a lot from a cosmic mirage!
Mapping Dark Matter 4.5 Billion Light-years Away
The Milky Way measures 100 to 120 thousand light-years across, a distance that defies imagination. But clusters of galaxies, which comprise hundreds to thousands of galaxies swarming under a collective gravitational pull, can span tens of millions of light-years.
These massive clusters are a complex interplay between colliding galaxies and dark matter. They seem impossible to map precisely. But now an international team of astronomers using the NASA/ESA Hubble Space Telescope has done exactly this — precisely mapping a galaxy cluster, dubbed MCS J0416.1–2403, 4.5 billion light-years away.
“Although we’ve known how to map the mass of a cluster using strong lensing for more than twenty years, it’s taken a long time to get telescopes that can make sufficiently deep and sharp observations, and for our models to become sophisticated enough for us to map, in such unprecedented detail, a system as complicated as MCS J0416.1–2403,” said coauthor Jean-Paul Kneib in a press release.
Measuring the amount and distribution of mass within distant objects can be extremely difficult. Especially when three quarters of all matter in the Universe is dark matter, which cannot be seen directly as it does not emit or reflect any light. It interacts only by gravity.
But luckily large clumps of matter warp and distort the fabric of space-time around them. Acting like lenses, they appear to magnify and bend light that travels past them from more distant objects.
This effect, known as gravitational lensing, is only visible in rare cases and can only be spotted by the largest telescopes. Even galaxy clusters, despite their massive size, produce minimal gravitational effects on their surroundings. For the most part they cause weak lensing, making even more distant sources appear as only slightly more elliptical across the sky.
However, when the alignment of the cluster and distant object is just right, the effects can be substantial. The background galaxies can be both brightened and transformed into rings and arcs of light, appearing several times in the same image. It is this effect, known as strong lensing, which helped astronomers map the mass distribution in MCS J0416.1–2403.
“The depth of the data lets us see very faint objects and has allowed us to identify more strongly lensed galaxies than ever before,” said lead author Dr Jauzac. “Even though strong lensing magnifies the background galaxies they are still very far away and very faint. The depth of these data means that we can identify incredibly distant background galaxies. We now know of more than four times as many strongly lensed galaxies in the cluster than we did before.”
Using Hubble’s Advanced Camera for Surveys, the astronomers identified 51 new multiply imaged galaxies around the cluster, quadrupling the number found in previous surveys. This effect has allowed Jauzac and her colleagues to calculate the distribution of visible and dark matter in the cluster and produce a highly constrained map of its mass.
The total mass within the cluster is 160 trillion times the mass of the Sun, with an uncertainty of 0.5%. It’s the most precise map ever produced.
But Jauzac and colleagues don’t plan on stopping here. An even more accurate picture of the galaxy cluster will have to include measurements from weak lensing as well. So the team will continue to study the cluster using ultra-deep Hubble imaging.
They will also use ground-based observatories to measure any shifts in galaxies’ spectra and therefore note the velocities of the contents of the cluster. Combining all measurements will not only further enhance the detail, but also provide a 3D model of the galaxies within the cluster, shedding light on its history and evolution.
This work has been accepted for publication in the Monthly Notices of the Royal Astronomy and is available online.
Teamwork! Two Telescopes Combine Forces To Spot Distant Galaxy Clusters
Doing something extraordinary often requires teamwork for humans, and the same can be said for telescopes. Witness the success of the Herschel and Planck observatories, whose data was combined in such a way to spot four galaxy clusters 10 billion years away — an era when the universe was just getting started.
Now that they have the technique down, astronomers believe they’ll be able to find about 2,000 other distant clusters that could show us more about how these collections of galaxies first came together.
Although very far away, the huge clumps of gas and dust coming together into stars is still visible, allowing telescopes to see the process in action.
“What we believe we are seeing in these distant clusters are giant elliptical galaxies in the process of being formed,” stated David Clements, a physicist at Imperial College London who led the research, referring to one of the two kinds of galaxies the universe has today. Elliptical galaxies are dominated by stars that are already formed, while spiral galaxies (like the Milky Way) include much more gas and dust.
This finding is yet another example of how the data from telescopes lives on, and can be used, long after the telescope missions have finished. Both Planck and Herschel finished their operations last year.
“The researchers used Planck data to find sources of far-infrared emission in areas covered by the Herschel satellite, then cross-referenced with Herschel data to look at these sources more closely,” the Royal Astronomical Society stated.
The two telescopes had complementary views, with Planck looking at the entire sky while Herschel surveyed smaller sections in higher resolution. By combining the data, researchers found 16 sources in total. A dozen of them were already discovered single galaxies, but four were the newly discovered galaxy clusters. Fresh observations were then used to figure out the distance.
You can read more details in the Monthly Notices of the Royal Astronomical Society or in preprint version on Arxiv.
Source: Royal Astronomical Society
Found! Distant Galaxy Spotted Just 650 Million Years After Big Bang
Peering deep into the universe with the Hubble Space Telescope, a team of researchers have found an extremely distant galaxy. It was discovered in Abell 2744, a galaxy cluster. The galaxy (called Abell2744_Y1) was spotted at a time when it was just 650 million years after the universe-forming Big Bang (which makes it more than 13 billion years old).
This demonstrates the potential of a relatively new project, researchers said, called “Hubble Frontier Fields.” It’s part of an effort where Hubble and fellow NASA space telescopes Spitzer and the Chandra X-ray Observatory will examine six galaxy clusters that bend the light from more distant objects in the background. By doing this, researchers hope to learn more about galaxies formed in the universe’s first billion years.
“We expected to find very distant galaxies close to the cluster core, where the light amplification is maximum. However, this galaxy is very close to the edge of the Hubble image where the light is not strongly amplified,” stated Nicolas Laporte, a post-doctoral researcher at the Institute of Astrophysics of the Canary Islands (Instituto de Astrofisica de Canarias) who led the study.
“We are really lucky that we could find it in the small field of view of Hubble. In a related study led by Hakim Atek … more galaxies are analyzed but none is more distant than Abell2744_Y1.”
You can read the study in the journal Astronomy and Astrophysics Letters or in preprint version on Arxiv.
Source: Space Telescope Science Institute and Institute of Astrophysics of the Canary Islands