The Case of the Missing Bulges

The Hubble sequence is astronomer’s main tool for classifying galaxies. On one side, you have elliptical galaxies with defined structure. As you progress, the galaxies become more stretched out, but still lack definition until suddenly, there’s a bulge in the center and spiral arms! Oh yeah, and then there’s the cousins that no one really likes to hang out with, the “irregular” galaxies, hanging out in the corner.

But there’s another class of galaxies that seems to have fallen off the Hubble wagon. Some spiral galaxies seem to lack defined bulges. These oddities pose a challenge to our understanding of galactic formation.

The current understanding of galactic formation is one of hierarchical merging. Small dwarf galaxies form first, and then form bigger galaxies which merge and continue to eat more dwarf galaxies until a fully fledged galaxy is formed. However, the collisional nature of this formation tends to scatter stars, favoring random orbits towards the center of flattened galaxies, which should create a classical bulge. Galaxies that do not have a bulge, or have a “pseudobulge” (small bulges created by gravitational sorting of stars within an already formed galaxy) don’t seem to fit this picture.

A recent review suggests that galaxies without true bulges are in fact common and include many well-known galaxies such as M101 (the Pinwheel Galaxy) and M33. The team, led by John Kormendy of the University of Texas, Austin, conducted a survey of spiral galaxies in the Local Group to determine just how common they were. To determine the status of the bulge, the team analyzed the physical size of the bulge, its luminosity as a fraction of the overall light output, and the color/age of the stars therein. Bulges that were small, indistinct, and contained stars similar to the color/age of the stars found in the disk were considered examples of the psuedobulges. Ones with significant, bright, and distinctly redder/older bulges were indicative of what would be expected in the classical merger bulge.

The team determined that as much as 58-74% of their sample did not contain a classical bulge. Furthermore, they state, “Almost all of the classical bulges that we do identify – some with substantial uncertainty – are smaller than those normally made in simulations of galaxy formation.” Indeed, included among these galaxies is our own Milky Way which has a very odd, box shaped bulge. The team notes that the velocity distribution of the apparent bulge merges seamlessly into the disk portion of the galaxy as opposed to a discontinuous fit in classical bulges.

Kormendy’s team finds that one way to form such “pure-disk” galaxies is to allow for the possibility of early star formation. According to the paper, this would “give the halo time to grow without forming a classical bulge.”

These findings stand in strong contrast with a study published by the same group in 2009, analyzing the Virgo cluster of galaxies. In that study they found that classical bulge galaxies (including in this study, elliptical galaxies) seemed to dominate. As such, they suggest that the formation of bulges is somehow related to the local environment. Although the question cannot yet be answered, it begs the question for future study: What about our environment is so special that we can form galaxies in a non-merger process? The answer to this question will require further study.

Death in the Sky: M31 Shreds its Satellites

False-color map of the density of red giants in M31 (Star count map credit: Mikito Tanaka, Tohoku University)

[/caption]
An international team of astronomers has identified two new tidal streams in M31, the Andromeda galaxy. They are more-or-less intact remnants of dwarf galaxies that M31 has otherwise ripped to shreds.

One team – using the Suprime-Cam camera on Subaru – discovered two new dwarf galaxy shards by mapping the sky density of red giants in M31’s outskirts; the other – using the DEIMOS spectrograph on Keck II – separated the M31 red giant wheat from the Milky Way chaff.

In a project led by collaborators Mikito Tanaka and Masashi Chiba of Tohoku University, Japan, the astronomers used the Subaru 8-meter telescope and Suprime-Cam camera to map the density of red giants in large portions of M31, including the hitherto uncharted north side. This led to the discovery of two tidal streams to the northwest (streams E and F) at projected distances of 60 and 100 kiloparsecs (200,000 and 300,000 light-years) from M31’s nucleus. The study also confirmed a few previously known streams, including the little-studied diffuse stream to the southwest (stream SW), which lies at a projected distance of 60 to 100 kiloparsecs (200,000 to 300,000 light years) from M31’s nucleus.

The Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo (SPLASH) collaboration, a large survey of red giants in M31 lead by Puragra Guhathakurta, professor of astronomy and astrophysics at the University of California, Santa Cruz, has followed up with a spectroscopic survey of several hundred red giants in Streams E, F, and SW, using the Keck II 10-meter telescope and DEIMOS spectrograph at the W. M. Keck Observatory in Hawaii. Analysis of the spectra from this survey yields estimates of the line-of-sight velocity of the stars, which in turn allows M31 red giants to be distinguished from foreground stars (in the Milky Way). The spectral data confirmed the presence of coherent groups of M31 red giants moving with a common velocity.

Distribution of line-of-sight velocities in the Stream SW field (Raja Guhathakurta)

Stars spread over the vast reaches of a halo in a big galaxy like the Milky Way or M31 are characterized by old age, few elements other than helium and hydrogen (i.e. low metallicities; astronomers call all elements other than hydrogen and helium “metals”), and high velocities. The exceptional nature of these halo stars, when compared to stars in a galaxy’s disk, reflects the early dynamics and element formation of the galaxy when its appearance differed significantly from what we see today. Consequently, the halo provides important insights into the processes involved in the formation and evolution of a massive galaxy. In the best Big Bang model we have today – ΛCDM (Lambda Cold Dark Matter) – the outer halos are built up through the merger and dissolution of smaller, dwarf, satellite galaxies. “This process of galactic cannibalism is an integral part of the growth of galaxies,” said Guhathakurta.

The smooth, well-mixed population of halo stars in these large galaxies represents the aggregate of the dwarf galaxy victims of this cannibalism process, while the dwarf galaxies that are still intact as they orbit their large parent galaxy are the survivors of this process.

“The merging and dissolution of a dwarf galaxy typically lasts for a couple billion years, so one occasionally catches a large galaxy in the act of cannibalizing one of its dwarf galaxy satellites,” Guhathakurta said. “The characteristic signature of such an event is a tidal stream: an enhancement in the density of stars, localized in space and moving as a coherent group through the parent galaxy.”

Tidal streams are important because they represent a link between the victims and survivors of galactic cannibalism – an intermediate stage between the population of intact dwarf galaxies and the well-mixed stars dissolved in the halo.

The Andromeda galaxy is a unique test bed for studying the formation and evolution of a large galaxy, said Guhathakurta, “Our external vantage point gives us a global perspective of the galaxy, and yet the galaxy is close enough for us to obtain detailed measurements of individual red giant stars within it.”

One of the next steps will be to measure the detailed elemental compositions (“chemical properties”, in astronomer-speak) of red giants in these newly discovered tidal streams in M31. Comparing the chemical properties of tidal streams, intact dwarf satellites, and the smooth halo will be of particular significance, Guhathakurta said. Mikito Tanaka put it this way: “Further observational surveys of an entire halo region in Andromeda will provide very useful information on galaxy formation, including how many and how massive individual dwarf galaxies as building blocks are and how star formation and chemical evolution proceeded in each dwarf galaxy.”

At the present time, detailed studies of the chemical properties of tidal streams, intact dwarf satellites, and smooth stellar halos are possible only in the Milky Way and M31 galaxies and their immediate surroundings. Existing telescopes and instruments are simply not powerful enough for astronomers to carry out such studies in more distant galaxies. This situation will improve greatly with the advent of the planned Thirty Meter Telescope later in this decade, Guhathakurta said.

Tanaka’s team published their survey results in a recent Astrophysics Journal (ApJ) paper (the preprint is arXiv:0908.0245), and Guhathakurta’s team presented their results on the newly discovered tidal streams earlier this month at the 215th meeting of the American Astronomical Society in Washington, D.C.; they hope to have an ApJ paper on these results published later this year. You can read an earlier SPLASH paper, “The SPLASH Survey: A Spectroscopic Portrait of Andromeda’s Giant Southern Stream”, published in ApJ (the preprint is arxiv:0909.4540).

Sources: University of California, Santa Cruz, National Astronomical Observatory of Japan.

Quasar Caught Building Future Home Galaxy

An artist's impression of how quasars may be able to construct their own galaxies. Image Credit: ESO/L. Calcada

The birth of galaxies is quite a complicated affair, and little is known about whether the supermassive black holes at the center of most galaxies formed first, or if the matter in the galaxy accreted first, and formed the black hole later. Observations of the quasar HE0450-2958, which is situated outside of a galaxy, show the quasar aiding a nearby galaxy in the formation of stars. This provides evidence for the idea that supermassive black holes can ‘build’ their own galaxies.

The quasar HE0450-2958 is an odd entity: normally, supermassive black holes – also known as quasars – form at the center of galaxies. But HE0450-2958 doesn’t appear to have any host galaxy out of which it formed. This was a novel discovery in its own right when it was made back in 2005. Here’s our original story on the quasar, Rogue Supermassive Black Hole Has No Galaxy.

The formation of the quasar still remains a mystery, but current theories suggest that it formed out of cold interstellar gas filaments that accreted over time, or was somehow ejected from its host galaxy by a strong gravitational interaction with another galaxy.

The other oddity about the object is its proximity to a companion galaxy, which it may be aiding to form stars. The companion galaxy lies directly in the sights of one of the quasar’s jets, and is forming stars at a frantic rate. A team of astronomers from France, Germany and Belgium studied the quasar and companion galaxy using the Very Large Telescope at the European Southern Observatory. The astronomers were initially looking to find an elusive host galaxy for the quasar.

The phenomenon of ‘naked quasars’ has been reported before, but each time further observations are made, a host galaxy is found for the object. Energy streaming from the quasars can obscure a faint galaxy that is hidden behind dust, so the astronomers used the VLT spectrometer and imager for the mid-infrared (VISIR). Mid-infrared observations readily detect dust clouds. They combined these observations with new images obtained from the Hubble Space Telescope in the near-infrared.A color composite image of the quasar in HE0450-2958 obtained using the VISIR instrument on the Very Large Telescope and the Hubble Space Telescope. Image Credit: ESO

Observations of HE0450-2958, which lies 5 billion light years from Earth, confirmed that the quasar is indeed without a host galaxy, and that the energy and matter streaming out of the jets is pointed right at the companion galaxy. This scenario is ramping up star formation in that galaxy: 340 solar masses of stars a year are formed in the galaxy, one-hundred times more than for a typical galaxy in the Universe. The quasar and the galaxy are close enough that they will eventually merge, finally giving the quasar a home.

David Elbaz of the Service d’Astrophysique, who is the lead author of the paper which appeared in Astronomy & Astrophysics, said “The ‘chicken and egg’ question of whether a galaxy or its black hole comes first is one of the most debated subjects in astrophysics today. Our study suggests that supermassive black holes can trigger the formation of stars, thus ‘building’ their own host galaxies. This link could also explain why galaxies hosting larger black holes have more stars.”

‘Quasar feedback’ could be a potential explanation for how some galaxies form, and naturally the study of other systems is needed to confirm whether this scenario is unique, or a common feature in the Universe.

Source: ESO, Astronomy & Astrophysics