Did a Galactic Smashup Kick Out a Supermassive Black Hole?

Near-infrared image of the dwarf galaxy Markarian 177 and what appears to be an ejected SMBH. Credit: W. M. Keck Observatory/M. Koss (ETH Zurich) et al.

Crazy things can happen when galaxies collide, as they sometimes do. Although individual stars rarely impact each other, the gravitational interactions between galaxies can pull enormous amounts of gas and dust into long streamers, spark the formation of new stars, and even kick objects out into intergalactic space altogether. This is what very well may have happened to SDSS1133, a suspected supermassive black hole found thousands of light-years away from its original home.

The two Keck 10-meter domes atop Mauna Kea. (Rick Peterson/WMKO)
The two Keck 10-meter domes atop Mauna Kea. (Rick Peterson/WMKO)

Seen above in a near-infrared image acquired with the Keck II telescope in Hawaii, SDSS1133 is the 40-light-year-wide bright source observed 2,300 light-years out from the dwarf galaxy Markarian 177, located 90 million light-years away in the constellation Ursa Major (or, to use the more familiar asterism, inside the bowl of the Big Dipper.)

The two bright spots at the disturbed core of Markarian 177 are thought to indicate recent star formation, which could have occurred in the wake of a previous collision.

“We suspect we’re seeing the aftermath of a merger of two small galaxies and their central black holes,” said Laura Blecha, an Einstein Fellow in the University of Maryland’s Department of Astronomy and a co-author of an international study of SDSS1133. “Astronomers searching for recoiling black holes have been unable to confirm a detection, so finding even one of these sources would be a major discovery.”

Interactions between supermassive black holes during a galactic collision would also result in gravitational waves, elusive phenomena predicted by Einstein that are high on astronomers’ most-wanted list of confirmed detections.

Read more: “Spotter’s Guide” to Detecting Black Hole Collisions

Watch an animation of how the suspected collision and subsequent eviction may have happened:

But besides how it got to where it is, the true nature of SDSS1133 is a mystery as well.

The persistently bright near-infrared source has been detected in observations going back at least 60 years. Whether or not SDSS1133 is indeed a supermassive black hole has yet to be determined, but if it isn’t then it’s a very unusual type of extremely massive star known as an LBV, or Luminous Blue Variable. If that is the case though, it’s peculiar even for an LBV; SDSS1133 would have had to have been continuously pouring out energy in a for over half a century until it exploded as a supernova in 2001.

To help determine exactly what SDSS1133 is, continued observations with Hubble’s Cosmic Origins Spectrograph instrument are planned for Oct. 2015.

“We found in the Pan-STARRS1 imaging that SDSS1133 has been getting significantly brighter at visible wavelengths over the last six months and that bolstered the black hole interpretation and our case to study SDSS1133 now with HST,” said Yanxia Li, a UH Manoa graduate student involved in the research.

And, based on data from NASA’s Swift mission the UV emission of SDSS1133 hasn’t changed in ten years, “not something typically seen in a young supernova remnant” according to Michael Koss, who led the study and is now an astronomer at ETH Zurich.

Regardless of what SDSS1133 turns out to be, the idea of such a massive and energetic object soaring through intergalactic space is intriguing, to say the least.

The study will be published in the Nov. 21 edition of Monthly Notices of the Royal Astronomical Society.

Source: Keck Observatory

Possible Bright Supernova Lights Up Spiral Galaxy M61

An animation showing a comparison between the confirmation image (at top) and an archive photo. Credit: Ernesto Guido, Martino Nicolini, Nick Howes

I sat straight up in my seat when I learned of the discovery of a possible new supernova in the bright Virgo galaxy M61. Since bright usually means close, this newly exploding star may soon become visible in smaller telescopes. It was discovered at magnitude +13.6 on October 29th by Koichi Itagaki of Japan, a prolific hunter of supernovae with 94 discoveries or co-discoveries to his credit. Itagaki used a CCD camera and 19.6-inch (0.50-m) reflector to spy the new star within one of the galaxy’s prominent spiral arms. Comparison with earlier photos showed no star at the position. Itagaki also nabbed not one but two earlier supernovae in M61 in December 2008 and November 2006.

The possible supernova in the bright galaxy M61 in Virgo is located 40" east and 7" south of the galaxy's core at right ascension (RA) 12 h 22', declination (Dec) +4º 28' It's currently magnitude +13.4 and visible in the morning sky before dawn in 8-inch and larger telescopes. Credit: Ernesto Guido, Martino Nicolini, Nick Howes
The possible supernova in the bright galaxy M61 in Virgo is located 40″ east and 7″ south of the galaxy’s core at right ascension (RA) 12 h 22′, declination (Dec) +4º 28′. It’s currently magnitude +13.4 and visible in the morning sky before dawn in 8-inch and larger telescopes. Credit: Ernesto Guido, Martino Nicolini, Nick Howes

Overnight, Ernesto Guido and crew used a remote telescope in New Mexico to confirm the new object. We’re still waiting for a spectrum to be absolutely sure this is the real deal and also to determine what type of explosion occurred. In the meantime, it may well brighten in the coming mornings.

M61 is a beautiful barred spiral galaxy located about 55 million light years from Earth in the constellation Virgo. It's one of the few galaxies to show spiral structure in smaller telescopes. Credit: Hunter Wilson
M61 is a beautiful barred spiral galaxy located about 55 million light years from Earth in the constellation Virgo. It’s one of the few galaxies to show spiral structure in smaller telescopes. Credit: Hunter Wilson

Supernovae are divided into two broad categories – Type Ia and Type II. In a Type Ia event,  a planet-sized white dwarf star in close orbit around a normal star siphons off matter from its companion which builds up on the surface of the dwarf until it reaches critical mass at which point the core ignites and consumes itself and the star in one titanic nuclear fusion reaction.  A cataclysmic explosion ensues as the star self-destructs in blaze of glory.

Evolution of a Type Ia supernova. Credit: NASA/ESA/A. Feild
Evolution of a Type Ia supernova. Credit: NASA/ESA/A. Feild

Type Ia explosions can become 5 billion times brighter than the Sun – the reason we can see them across so many light years – and eject matter into space at 5,000 – 20,000 km/second. Type II events mark the end of the life of a massive supergiant star. As these behemoths age, they burn by fusing heavier and heavier elements in their cores from hydrogen to carbon to silicon and finally, iron-nickel. Iron is inert and can’t be cooked or fused to create more energy. The star’s internal heat source, which has been staving back the force of gravity all these millions of years, shuts down.  Gravity takes hold with a vengeance, the star quickly collapses then rebounds in a titanic explosion. Ka-boom! 

Artist's impression of a Type II supernova explosion which involves the destruction of a massive supergiant star. Credit: ESO
Artist’s impression of a Type II supernova explosion which involves the destruction of a massive supergiant star. Credit: ESO

Like the Type Ia event, a Type II supernova grows to fantastic brilliance. Besides a legacy of radiant light, star debris, the creation of heavy elements like gold and lead, a Type II event will sometimes leave behind a tiny, city-sized, rapidly-spinning neutron star – the much compressed core of the original star – or even a black hole. So yes, life can continue for a giant star after a supernova event. But like seeing a former classmate at your 40th high school reunion, you’d hardly recognize it.

The "Y" or cup of Virgo rises into good view shortly before the start of dawn or about 2 hours before sunrise. This map shows the sky facing east around 6 a.m. local time (DST) and 5 a.m. starting Sunday when Daylight Saving Time is done. Source: Stellarium
The “Y” or “cup” of Virgo rises into good view shortly before the start of dawn or about 2 hours before sunrise. This map shows the sky facing east around 6 a.m. local time (DST) tomorrow October 31 and 5 a.m. standard time starting Sunday when Daylight Saving Time ends. Source: Stellarium

Are you itching to see this new supernova for yourself? Here are a couple maps to help you find it. M61 is located in the middle of the “Y” of Virgo not far from the familiar bright double star Gamma Virginis.  From many locations, the galaxy climbs to 15-20° altitude in the east-southeast sky just before the start of dawn, just high enough for a good view. Once you find the galaxy, look for a small “star” superimposed on its eastern spiral arm as shown in the photo at the top of this article.

In this close up view, stars are shown to magnitude +7.5. M61 is right between 16 and 17 Virginis (magnitudes 5 and 6.5 respectively). Source: Stellarium
In this close up view, stars are shown to magnitude +7.5. M61 is right between 16 and 17 Virginis (magnitudes 5 and 6.5 respectively). Click to enlarge.  Source: Stellarium

I’ll be out there with my scope watching and will report back once it’s established what type of supernova happens to be blowing up in our eyepieces. More information about the new object can be found anytime at David Bishop’s Latest Supernovae site. Good luck, clear skies!

** Update Nov. 1 : M61’s supernova now has a name and type! SN 2014dt is a Type Ia (exploding white dwarf) with some peculiarities in its spectrum. It’s also little brighter at magnitude +13.2.

What Part of the Milky Way Can We See?

What Part of the Milky Way Can We See?

When you look up and see the Milky Way, you’re gazing into the heart of our home galaxy. What, exactly, are we looking at?

Anyone who’s ever been in truly dark skies has seen the Milky Way. The bright band across the sky is unmistakable. It’s a view of our home galaxy from within.

As you stare out into the skies and see that splash of stars, have you ever wondered, what are you looking at? Which parts are towards the inside of the galaxy and which parts are looking out? Where’s that supermassive black hole you’ve heard so much about?

In order to see the Milky Way at all, you need seriously dark skies, away from the light polluted city. As the skies darken, the Milky Way will appear as a hazy fog across the sky.

Imagine it as this vast disk of stars, with the Sun embedded right in it, about 27,000 light-years from the core. We’re seeing the galaxy edge on, from the inside, and so we see the galactic disk as a band that forms a complete circle around the sky.

Which parts you can see depend on your location on Earth and the time of year, but you can always see some part of the disk.

The galactic core of the Milky Way is located in the constellation Sagittarius, which is located to the South of me in Canada, and only really visible during the Summer. In really faint skies, the Milky Way is clearly thicker and brighter in that region.

Want to know the exact point of the galactic core? It’s right… there.

During the Winter, we’re looking away from the galactic core to the outer regions of the galaxy. It still has the same band of stars, but it’s thinner and without the darker clouds of dust that obscure our view to the galactic core.

How do astronomers even know that we’re in a spiral galaxy anyway?

There are two major types of galaxies, spiral galaxies and elliptical galaxies.

Elliptical galaxies are made up of so many galactic collisions, they’re nothing more than vast balls of trillions of stars, with no structure. Because we can see a distinct band in the sky, we know we’re in some kind of spiral.

The differences between elliptical and spiral galaxies is easy to see. M87 at left and M74, both photographed with the Hubble Space Telescope. Credit: NASA/ESA
The differences between elliptical and spiral galaxies is easy to see. M87 at left and M74, both photographed with the Hubble Space Telescope. Credit: NASA/ESA

Astronomers map the arms by looking at the distribution of gas, which pulls together in star forming spiral arms. They can tell how far the major arms are from the Sun and in which direction.

The trick is that half the Milky Way is obscured by gas and dust. So we don’t really know what structures are on the other side of the galactic disk. With more powerful infrared telescopes, we’ll eventually be able to see though the gas and dust and map out all the spiral arms.

If you’ve never seen the Milky Way with your own eyes, you need to. Get far enough away from city lights to truly see the galaxy you live in.

The best resource is “The Dark Sky Finder”, we’ll put a link in the show notes.

Have you ever seen the Milky Way? If not, why not? Let’s hear a story of a time you finally saw it.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Are All the Stars Really Dead?

Are All the Stars Really Dead?

Have you ever heard that meme, “When looking at stars, you’re actually looking into the past. Many of the stars we see at night have already died.” Is this true?

While you’re flipping through your Pinterest collection of cat-based inspirational posters, you might come across the saying, “When looking at stars, you’re actually looking into the past. Many of the stars we see at night have already died. Like your dreams.”

Aww, that’s mean and sad. But is it true, Squidward? Are all these beautiful stars in our night sky long gone? Like our dreams?

Light travels at about 300,000 km/s, which is incredibly fast. Stars are so far away, even light from the closest stars will take years to get to us travelling at that speed. Most of the stars we see with the naked eye are actually pretty close. The brightest in the night sky is Sirius in the constellation Canis Major. It’s only about 8.6 light years away.

Which means if you crashed a whole bunch of spaceships into it tomorrow, we here on Earth wouldn’t see it happen for almost a decade. Long after people had stopped wondering where you’d picked up all those spaceships, and why had you decided to crash them into a star instead of trading for gold pressed latinum, the spice Melange, or magical space cheese.

One of the most distant naked eye stars is Deneb in the constellation Cygnus, which is almost 3,000 light years away. The light we’re seeing from Deneb started its journey towards us when ancient Rome was just a few hamlets and not even on the map for real estate speculators.

Cygnus. Credit: Stellarium
Cygnus. Credit: Stellarium

This might seem like a really long time for those of us without immortal robot bodies, but a few thousand years is negligible to the age of a typical star, which is on the order of billions of years. So, Deneb, barring removal for an interstellar bypass, is probably still there.

There are a few stars that could possibly explode in the near future, such as the red giant star Betelgeuse in the constellation of Orion.

It’s about 650 light years away, if it had exploded a couple centuries ago, we still wouldn’t know. There are a few galaxies that can be seen with the naked eye, such as Andromeda, which is about 2.5 million light years away. Given that Andromeda has somewhere between 200 and 400 billion stars, it is almost certain that some of them have exploded in the last 2 and a half million years. But the vast majority of them have are still there, twinkling away.

So it is possible that you could look up in the night sky and see a “dead” star, but almost all of the stars you see are perfectly active main-sequence stars, and will be for quite some time. Telescopes allow us to see much further out into space, billions of light years away. Given that a star like our Sun has a lifetime of about 10 billion years, many stars in most of the distant galaxies we observe died long ago.

This cluster is 27,000 light-years away and lies farther than the center of our galaxy in the constellation Sagittarius. Credit: NASA/ESA/I. King, Univ. of Calif., Berkeley/Wikisky.org
This cluster is 27,000 light-years away and lies farther than the center of our galaxy in the constellation Sagittarius. Credit: NASA/ESA/I. King, Univ. of Calif., Berkeley/Wikisky.org

But don’t be sad, we’re not running out of stars. Because of this huge passage of time, it means many new stars have been born, and we just aren’t able to see them yet. There are some stars even in the most distant galaxies that are still around.

Smaller stars live longer than larger stars, and red dwarf stars can live for trillions of years. So when you look at the Hubble Ultra Deep Field, the most distant galaxies are around 13 billion years old, and the smaller stars in those galaxies are still shining. So don’t worry. Those stars are still there, and so are your dreams.

What do you think? If you go get a closeup look and see which stars were still around, where would you go look first? Tell us in the comments below.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

What Is The Great Attractor?

What is at the Center of the Milky Way
Examining the Center of the Milky Way

There’s a strange place in the sky where everything is attracted. And unfortunately, it’s on the other side of the Milky Way, so we can’t see it. What could be doing all this attracting?

Just where the heck are we going? We’re snuggled in our little Solar System, hurtling through the cosmos at a blindingly fast of 2.2 million kilometers per hour. We’re always orbiting this, and drifting through that, and it’s somewhere out in the region that’s not as horrifically terrifying as what some of our celestial neighbors go through. But where are we going? Just around in a great big circle? Or an ellipse? Which is going around in another circle… and it’s great big circles all the way up?

Not exactly… Our galaxy and other nearby galaxies are being pulled toward a specific region of space. It’s about 150 million light years away, and here is the best part. We’re not exactly sure what it is. We call it the Great Attractor.

Part of the reason the Great Attractor is so mysterious is that it happens to lie in a direction of the sky known as the “Zone of Avoidance”. This is in the general direction of the center of our galaxy, where there is so much gas and dust that we can’t see very far in the visible spectrum. We can see how our galaxy and other nearby galaxies are moving toward the great attractor, so something must be causing things to go in that direction. That means either there must be something massive over there, or it’s due to something even more strange and fantastic.

When evidence of the Great Attractor was first discovered in the 1970s, we had no way to see through the Zone of Avoidance. But while that region blocks much of the visible light from beyond, the gas and dust doesn’t block as much infrared and x-ray light. As x-ray astronomy became more powerful, we could start to see objects within that region. What we found was a large supercluster of galaxies in the area of the Great Attractor, known as the Norma Cluster. It has a mass of about 1,000 trillion Suns. That’s thousands of galaxies.

A March 2013 picture of the Shapley Supercluster from the European Space Agency's Planck observatory. ESA describes it as "the largest cosmic structure in the local Universe." Credit: ESA & Planck Collaboration / Rosat/ Digitised Sky Survey
A March 2013 picture of the Shapley Supercluster from the European Space Agency’s Planck observatory. ESA describes it as “the largest cosmic structure in the local Universe.” Credit: ESA & Planck Collaboration / Rosat/ Digitised Sky Survey

While the Norma Cluster is massive, and local galaxies are moving toward it, it doesn’t explain the full motion of local galaxies. The mass of the Great Attractor isn’t large enough to account for the pull. When we look at an even larger region of galaxies, we find that the local galaxies and the Great Attractor are moving toward something even larger. It’s known as the Shapley Supercluster. It contains more than 8000 galaxies and has a mass of more than ten million billion Suns. The Shapley Supercluster is, in fact, the most massive galaxy cluster within a billion light years, and we and every galaxy in our corner of the Universe are moving toward it.

So as we hurtle through the cosmos, gravity shapes the path we travel. We’re pulled towards the Great Attractor, and despite its glorious title, it appears, in fact to be a perfectly normal collection of galaxies, which just happens to be hidden.

What do you think? What are you hoping we’ll discover over in the region of space we’re drifting towards?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Merging Giant Galaxies Sport ‘Blue Bling’ in New Hubble Pic

In this new Hubble image shows two galaxies (yellow, center) from the cluster SDSS J1531+3414 have been found to be merging into one and a "chain" of young stellar super-clusters are seen winding around the galaxies'?? nuclei. The galaxies are surrounded by an egg-shaped blue ring caused by the immense gravity of the cluster bending light from other galaxies beyond it. Credit: NASA/ESA/Grant Tremblay

On a summer night, high above our heads, where the Northern Crown and Herdsman meet, a titanic new galaxy is being born 4.5 billion light years away. You and I can’t see it, but astronomers using the Hubble Space Telescope released photographs today showing the merger of two enormous elliptical galaxies into a future  heavyweight adorned with a dazzling string of super-sized star clusters. 

The two giants, each about 330,000 light years across or more than three times the size of the Milky Way, are members of a large cluster of galaxies called SDSS J1531+3414. They’ve strayed into each other’s paths and are now helpless against the attractive force of gravity which pulls them ever closer.

A few examples of merging galaxies. NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)
A few examples of merging galaxies. NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)

Galactic mergers are violent events that strip gas, dust and stars away from the galaxies involved and can alter their appearances dramatically, forming large gaseous tails, glowing rings, and warped galactic disks. Stars on the other hand, like so many pinpoints in relatively empty space, pass by one another and rarely collide.

Elliptical galaxies get their name from their oval and spheroidal shapes. They lack the spiral arms, rich reserves of dust and gas and pizza-like flatness that give spiral galaxies like Andromeda and the Milky Way their multi-faceted character. Ellipticals, although incredibly rich in stars and globular clusters, generally appear featureless.

The differences between elliptical and spiral galaxies is easy to see. M87 at left and M74, both photographed with the Hubble Space Telescope. Credit: NASA/ESA
The differences between elliptical and spiral galaxies is easy to see. M87 at left and M74, both photographed with the Hubble Space Telescope. What look like stars around M87 are really globular star clusters. Credit: NASA/ESA

But these two monster ellipticals appear to be different. Unlike their gas-starved brothers and sisters, they’re rich enough in the stuff needed to induce star formation. Take a look at that string of blue blobs stretching across the center – astronomers call it a great example of ‘beads on a string’ star formation. The knotted rope of gaseous filaments with bright patches of new star clusters stems from the same physics which causes rain or water from a faucet to fall in droplets instead of streams. In the case of water, surface tension makes water ‘snap’ into individual droplets; with clouds of galactic gas, gravity is the great congealer.

Close up of the two elliptical galaxies undergoing a merger. The blue blobs are giant star clusters forming from gas colliding and collapsing into stars during the merger. Click for the scientific paper on the topic. Credit: NASA/ESA/Grant Tremblay
Close up of the two elliptical galaxies undergoing a merger. The blue blobs are giant star clusters forming from gas colliding and collapsing into stars during the merger. Click to read the scientific paper on the topic. Credit: NASA/ESA/Grant Tremblay

Nineteen compact clumps of young stars make up the length of this ‘string’, woven together with narrow filaments of hydrogen gas. The star formation spans 100,000 light years, about the size of our galaxy, the Milky Way. Astronomers still aren’t sure if the gas comes directly from the galaxies or has condensed like rain from X-ray-hot halos of gas surrounding both giants.

The blue arcs framing the merger have to do with the galaxy cluster’s enormous gravity, which warps the fabric of space like a lens, bending and focusing the light of more distant background galaxies into curvy strands of blue light. Each represents a highly distorted image of a real object.


Simulation of the Milky Way-Andromeda collision 4 billion years from now

Four billion years from now, Milky Way residents will experience a merger of our own when the Andromeda Galaxy, which has been heading our direction at 300,000 mph for millions of years, arrives on our doorstep. After a few do-si-dos the two galaxies will swallow one another up to form a much larger whirling dervish that some have already dubbed ‘Milkomeda’. Come that day, perhaps our combined galaxies will don a string a blue pearls too.

How to Find Your Way Around the Milky Way This Summer

The band of the Milky Way stretches from Cygnus (left) to the Sagittarius in this wide-angle, guided photo. Credit: Bob King

Look east on a dark June night and you’ll get a face full of stars. Billions of them. With the moon now out of the sky for a couple weeks, the summer Milky Way is putting on a grand show. Some of its members are brilliant like Vega, Deneb and Altair in the Summer Triangle, but most are so far away their weak light blends into a hazy, luminous band that stretches the sky from northeast to southwest. Ever wonder just where in the galaxy you’re looking on a summer night? Down which spiral arm your gaze takes you? 

Artist's conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt
Artist’s conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt
Two different perspectives on our galaxy to help us better understand its shape. A face-on artist's view at left reveals the core and arms. At right, we see a  photo of the Milky Way in infrared light by the Cosmic Background Explorer probe showing us an edge-on perspective, the view we're 'stuck with' but dint of orbiting inside the galaxy's flat plane. Credit: NASA/JPL et. all (left) and NASA
Two different perspectives on our galaxy help us better understand its shape. A face-on artist’s view at left reveals the core, spiral arms and the sun’s position. At right, we see an edge-on perspective photographed by the Cosmic Background Explorer probe. Because the sun and planets orbit in the galaxy’s plane, we’re ‘stuck’ with an edge-on view until we build a fast-enough rocket to take us above our galactic home. Credit: NASA/JPL et. all (left) and NASA

Because all stars are too far away for us to perceive depth, they appear pasted on the sky in two dimensions. We know this is only an illusion. Stars shine from every corner of the galaxy,  congregating in its bar-shaped core, outer halo and along its shapely spiral arms. The trick is using your mind’s eye to see them that way.

Employing optical, infrared and radio telescopes, astronomers have mapped the broad outlines of the home galaxy, placing the sun in a minor spiral arm called the Orion or Local Arm some 26,000 light years from the galactic center. Spiral arms are named for the constellation(s) in which they appear. The grand Perseus Arm unfurls beyond our local whorl and beyond it, the Outer Arm. Peering in the direction of the galaxy’s core we first encounter the Sagittarius Arm, home to sumptuous star clusters and nebulae that make Sagittarius a favorite hunting ground for amateur astronomers.

Further in lies the massive Scutum-Centaurus Arm and finally the inner Norma Arm. Astronomers still disagree on the number of major arms and even their names, but the basic outline of the galaxy will serve as our foundation. With it, we can look out on a dark summer night at the Milky Way band and get a sense where we are in this magnificent celestial pinwheel.

The Milky Way band arches across the east and south as seen about 11:30 p.m. in mid-late June. The center of the galaxy is located in the direction of the constellation Sagittarius.  Stellarium
The Milky Way band arches across the east and south as seen about 11:30 p.m. in mid-late June. The center of the galaxy is in the direction of the constellation Sagittarius. The dark ‘rift’  that appears to cleave the Milky Way in two is formed of clouds of interstellar dust that blocks the light of stars beyond it. Stellarium

We’ll start with the band of the Milky Way  itself. Its ribbon-like form reflects the galaxy’s flattened, lens-like profile shown in the edge-on illustration above. The sun and planets are located within the galaxy’s plane (near the equator) where the stars are concentrated in a flattened disk some 100,000 light years across. When we look into the galaxy’s plane, billions of stars pile up across thousands of light years to create a narrow band of light we call the Milky Way. The same term is applied to the galaxy as a whole.

Since the average thickness of the galaxy is only about 1,000 light years, if you look above or below the band, your gaze penetrates a relatively short distance – and fewer stars – until entering intergalactic (starless) space. That why the rest of the sky outside of the Milky Way band has so few stars compared to the hordes we see within the band.

Here’s the galactic big picture showing the outline of the galaxy with constellations added. In this edge-on view, we see that the summertime Milky Way from Cassiopeia to Sagittarius includes the central bulge (in the direction of Sagittarius) and a hefty portion of  one side of the flattened disk:

The outline of the Milky Way viewed edge-on is shown in gray. The yellow box includes the summer portion of the Milky Way from Cassiopeia to Scorpius with a red dot marking the galaxy's center. This is the section we see crossing the eastern sky in June and includes the galactic center. Click to enlarge. Credit: Richard Powell with additions by the author
The outline of the Milky Way viewed edge-on is shown in gray. The yellow box includes the summer portion of the Milky Way from Cassiopeia to Scorpius with a red dot marking the galaxy’s center. This is the section we see crossing the eastern sky in June. Click to enlarge. Credit: Richard Powell with additions by the author

If you enlarge the map, you’ll see lines of galactic latitude and longitude much like those used on Earth but applied to the entire galaxy.  Latitude ranges from +90 degrees at the North Galactic Pole to -90 at the South Galactic Pole. Likewise for longitude. 0 degrees latitude, o degrees longitude marks the galactic center. The summer Milky Way band extends from about longitude 340 degrees in Scorpius to 110 in Cassiopeia.

Now that we know what section of the Milky Way we peer into this time of year, let’s take an imaginary rocket journey and see it all from above:

Viewed from above, we can now see that our gaze takes across the Perseus Arm (toward the constellation Cygnus), parts of the Sagittarius and Scutum-Centaurus arms (toward the constellations  Scutum, Sagittarius and Ophiuchus) and across the central bar. Interstellar dust obscures much of the center of the galaxy. Credit: NASA et. all with additions by the author.
Viewed from above, we can now see that our gaze (red arrows) reaches down the Perseus Arm (toward the constellation Cygnus) and across the Sagittarius and Scutum-Centaurus arms (toward the constellations Scutum, Sagittarius and Ophiuchus) and directly into the central bar. Interstellar dust obscures much of the center of the galaxy. Blue arrows show the direction we face during the winter months. Credit: NASA et. all with additions by the author.

Wow! The hazy arch of June’s Milky Way takes in a lot of galactic real estate. A casual look on a dark night takes us from Cassiopeia in the outer Perseus Arm across Cygnus in our Local Arm clear over to Sagittarius, the next arm in. Interstellar dust deposited by supernovae and other evolved stars obscures much of the center of the galaxy. If we could vacuum it all up, the galaxy’s center  – where so many stars are concentrated – would be bright enough to cast shadows.

A view showing the summer Milky Way from mid-northern latitudes with three constellations and the spiral arms to which they belong. Stellarium
A view showing the summer Milky Way from mid-northern latitudes with three prominent constellations and the spiral arms we peer into when we face them.  Stellarium

Here and there, there are windows or clearings in the dust cover that allow us to see star clouds in the Scutum-Centaurus and Norma Arms. In the map, I’ve also shown the section of Milky Way we face in winter. If you’ve ever compared the winter Milky Way band to the summer’s you’ve noticed it’s much fainter. I think you can see the reason why. In winter, we face away from the galaxy’s core and out into the fringes where the stars are sparser.

Look up the next dark night and contemplate the grand architecture of our home galaxy. If you close your eyes,  you might almost feel it spinning.

Carnival of Space #357

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

Welcome, come in to the 357th Carnival of Space! The carnival is a community of space science and astronomy writers and bloggers, who submit their best work each week for your benefit. I’m Susie Murph, part of the team at Universe Today and now, on to this week’s stories!

We’re going to start off with a double blast from the past, courtesy of CosmoQuest! This week, they’re featuring Stuart Robbins’s blog post from January 13, 2012, titled “Perspective on the Apollo 15 Landing Site.” He explores the region of the Moon that is the current home of the MoonMappers images that YOU are still mapping and exploring today – the Apollo 15 landing site area. It’s a neat place and we can study a lot of things there. Due to a quirk of optics and angles, you can even imagine you’re flying towards it.

Next, we stay with Cosmoquest’s Moon Mappers as they highlight the interesting discovery that the groundbreaking Soviet Lunakhod 2 lunar rover traveled farther than earlier estimated on it’s mission in 1972. Visit MoonMappers at Cosmoquest for more great stories!

Moving through history, we travel over to io9’s Space blog for a history of the American Space Shuttle disasters is a grim reminder of the danger of space travel. Just released is Major Malfunction, a documentary on the two Shuttle catastrophes. Major malfunction is an understatement for the destruction of Space Shuttle Challenger moments after launch in 1986, and the loss of Space Shuttle Columbia during re-entry in 2003.

Next at io9, we visit Mars to view the magnificent Draa, which are ancient landforms created from waves of sand. Check out the article and it’s images here.

We also have another article from io9, which new astronaut Reid Wiseman recounts his first adventurous days in space.

Now we’ll jump over for some gorgeous views from the Chandra X-Ray Observatory! One of their new images is a glorious view of the Whirlpool spiral galaxy which radiates with fantastic points of x-ray light. These image is breath-taking!

Want more gorgeous images? Visit Brownspaceman.com to see his discussion of the Tulip Nebula, which is a composite image which also maps the emissions from this incredible nebula.

Next, we head over to the Meridani Journalfor coverage of a major find in the search for exoplanets. A new world which is more than twice as large as Earth and about 17 times heavier has been discovered, a sort of “mega-Earth” as some have referred to it.

The NextBigFuture Blog lives up to it’s name by bringing us two interesting stories from Elon Musk and his company SpaceX. First, he points out that the key is reusability. Musk said the crewed Dragon is designed to land softly back on Earth and be rapidly turned around for another flight — possibly on the same day. Spacex is aiming for 10 flights without any significant refurbishment for the Dragon v2. The thing that will have to be refurbished is the main heat shield. Further improved heat shield materials [later versions of PICA-X] would mean Spacex could aim for 100 reusable flights.

We then head over to the Urban Astronomer, where recent observations of a very near pair of brown dwarf objects has led to something new: We’re watching the weather on stars themselves!

Finally, we return to Universe Today for some interesting potential missions. First, the B612 Foundation’s privately-funded Sentinel mission, once launched and placed in orbit around the Sun in 2018, will hunt for near-Earth asteroids down to about 140 meters in size using the most advanced infrared imaging technology, without government red tape to hamper the mission. Next, the NASA Innovative Advanced Concepts office announced a dozen far-flung drawing-board proposals that have received $100,000 in Phase 1 funding for the next 9-12 months, one of which is a balloon for exploring Titan. We’re looking forward to hearing about these projects and many others in the coming years.

That’s it for this week’s Carnival! See you all next time!

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

New Supernova Pops in Bright Galaxy M106 in the ‘Hunting Dogs’

The new Type II supernova is nestled up to the nucleus of the galaxy in this photo taken May 21 with a 17-inch telescope. Credit: Gianluca Masi, Francesca Nocentini and Patrick Schmeer

A supergiant star exploded 23.5 million years ago in one of the largest and brightest nearby galaxies. This spring we finally got the news. In April, the Katzman Automatic Imaging Telescope (KAIT) as part of the Lick Observatory Supernova Search, photographed a faint “new star” very close to the bright core of M106, a 9th magnitude galaxy in Canes Venatici the Hunting Dogs. 

The core of a red or blue supergiant moments before exploding as a supernova looks like an onion with multiple elements "burning" through the fusion process to create the heat to stay the force of gravity. Fusion stops at iron. With no energy pouring from the central core to keep the other elements cooking, the star collapses and the rebounding shock wave tears it apart.
The inner core of a red or blue supergiant moments before exploding as a supernova looks like an onion with multiple elements “burning” through the fusion process to create the heat and pressure that stays the force of gravity. Fusion stops at iron. With no energy pouring from the central core to keep the other elements cooking, the star collapses and the rebounding shock wave tears it apart.

A study of its light curve indicated a Type II supernova – the signature of a rare supergiant star ending its life in the most violent way imaginable. A typical supergiant star is 8 to 12 times more massive than the sun and burns at a much hotter temperature, rapidly using up its available fuel supply as it cooks lighter elements like hydrogen and helium into heavier elements within its core. Supergiant lifetimes are measured in the millions of years (10-100 million) compared to the frugal sun’s 11 billion years. When silicon fuses to create iron, a supergiant reaches the end of the line – iron can’t be fused or cooked into another heavier element – and its internal “furnace” shuts down. Gravity takes over and the whole works collapses in upon itself at speeds up to 45,000 miles per second.

When the outer layers reached the core, they crushed it into a dense ball of subatomic particles and send a powerful shock wave back towards the surface that rips the star to shreds. A supernova is born!  Newly-minted radioactive forms of elements like nickel and cobalt are created by the tremendous pressure and heat of the explosion. Their rapid decay into stable forms releases energy that contributes to the supernova’s light.

This Hubble Space Telescope image shows how spectacular M106 truly is. Its spiral arms are dotted with dark lanes of dust, young star clusters rich with hot, blue stars and tufts of pink nebulosity swaddling newborn stars. The galaxy is the 106th entry in the 18th century French astronomer Charles Messier's famous catalog. Credit: NASA / ESA
This Hubble Space Telescope image shows how spectacular M106 truly is. Dark filaments of dust are silhouetted against billions of unresolved suns. Young star clusters rich with hot, blue stars and tufts of pink nebulosity swaddling newborn stars ornament the galaxy’s spiral arms. A supermassive black hole rumbles at the heart of the galaxy. M106 is the 106th entry in Charles Messier’s famous catalog created in the 18th century. It’s located 23.5 million light years away. Credit: NASA / ESA

For two weeks, the supernova in M106 remained pinned at around magnitude +15, too faint to tease out from the galaxy’s bright, compact nucleus for most amateur telescopes. But a photograph taken by Gianluca Masi and team on May 21 indicate it may have brightened somewhat. They estimated its red magnitude – how bright it appears when photographed through a red filter – at +13.5. A spectrum made of the object reveals the ruby emission of hydrogen light, the telltale signature of a Type II supernova event.

At magnitude +9, M106 visible in almost any telescope and easy to find. Start just above the Bowl of the Big Dipper which stands high in the northwestern sky at nightfall in late May. The 5th magnitude stars 5 CVn (5 Canes Venatici) and 3 CVn lie near the galaxy. Star hop from the Bowl to these stars and then over to M106. Stars plotted to mag. +8. Click to enlarge. Stellarium
At magnitude +9, M106 visible in almost any telescope and easy to find. Start just above the Bowl of the Big Dipper which stands high in the northwestern sky at nightfall in late May. The 5th magnitude stars 5 CVn (5 Canes Venatici) and 3 CVn lie near the galaxy. Star hop from the Bowl to these stars and then over to M106. Stars plotted to mag. +8. Click to enlarge. Stellarium

Visually the supernova will appear fainter because our eyes are more sensitive to light in the middle of the rainbow spectrum (green-yellow) than the reds and purple that bracket either side. I made a tentative observation of the object last night using a 15-inch (37-cm) telescope and hope to see it more clearly tonight from a darker sky. We’ll keep you updated on our new visitor’s brightness as more observations and photographs come in. You can also check Dave Bishop’s Latest Supernovae site for more information and current images.

Even if the supernova never gets bright enough to see in your telescope, stop by M106 anyway. It’s big, easy to find and shows lots of interesting structure. Spanning 80,000 light years in diameter, M106 would be faintly visible with the naked eye were it as close as the Andromeda Galaxy. In smaller scopes the galaxy’s bright nucleus stands out in a mottled haze of pearly light; 8-inch(20-cm) and larger instrument reveal the two most prominent spiral arms. M106 is often passed up for the nearby more famous Whirlpool Galaxy (M51). Next time, take the detour. You won’t be disappointed.

 

How Far Can You See in the Universe?

How Far Can You See in the Universe?

When you look into the night sky, you’re seeing tremendous distances away, even with your bare eyeball. But what’s the most distant object you can see with the unaided eye? And what if you get help with a pair of binoculars, a telescope, or even with the Hubble Space Telescope.

Standing at sea level, your head is at an altitude of 2 meters, and the horizon appears to be about 3 miles, or 5 km away. We’re able to see more distant objects if they’re taller, like buildings or mountains, or when we’re higher up in the air. If you get to an altitude of 20 meters, the horizon stretches out to about 11 km. But we can see objects in space which are even more distant with the naked eye. The Moon is 385,000 km away and the Sun is a whopping 150 million km. Visible all the way down here on Earth, the most distant object in the solar system we can see, without a telescope, is Saturn at 1.5 billion km away.

In the very darkest conditions, the human eye can see stars at magnitude 6.5 or greater. Which works about to about 9,000 individual stars. Sirius, the brightest star in the sky, is 8.6 light years. The most distant bright star, Deneb, is about 1500 light years away from Earth. If someone was looking back at us, right now, they could be seeing the election of the 52nd pope, St. Hormidas, in the 6th Century.
There are even a couple of really bright stars in the 8000 light year range, that we might just barely be able to see without a telescope. If a star detonates, we can see it much further away. The famous 1006 supernova was the brightest in history, recorded in China, Japan and the Middle East.

It was a total of 7,200 light years away and was visible in the daytime. There’s even large structures we can see. Outside the galaxy, the Large Magellanic Cloud is 160,000 light years and the Small Magellanic Cloud is almost 200,000 light years away. Unfortunately for us up North, these are only visible from Southern Hemisphere.The most distant thing we can see with our bare eyeballs is Andromeda at 2.6 million light years, which in dark skies looks like a fuzzy blob.

If we cheat and get a little help, say with binoculars – you can see magnitude 10 – fainter stars and galaxies at more than 10 million light-years away. With a telescope you can see much, much further. A regular 8-inch telescope would let you see the brightest quasars, more than 2 billion light years away. Using gravitational lensing the amazing Hubble space telescope can see galaxies, incredibly far out, where the light had left them just hundreds of millions of years after the Big Bang.

If you could see in other wavelengths, you could see different distances. Fortunately for our precious radiation sensitive organs, Gamma and X rays are blocked by our atmosphere. But if you could see in that spectrum, you could see objects exploding billions of light years away. And if you could see in the radio spectrum, you’d be able to see the cosmic microwave background radiation, surrounding us in all directions and marking the edge of the observable universe.

Wouldn’t that be cool? Well, maybe we can… just a little. Turn on your television, some of the static on the screen is this very background radiation, the afterglow of the Big Bang.

What do you think? If you could see far out in the Universe what would you like a close up view of? Tell us in the comments below.