Curiosity raises Mast and snaps 1st Self Portrait and 1st 360 Panorama

Image Caption: Rover’s Self Portrait -This Picasso-like self portrait of NASA’s Curiosity rover was taken by its Navigation cameras, located on the now-upright mast. The camera snapped pictures 360-degrees around the rover, while pointing down at the rover deck, up and straight ahead. Those images are shown here in a polar projection. Most of the tiles are thumbnails, or small copies of the full-resolution images that have not been sent back to Earth yet. Two of the tiles are full-resolution. Credit: NASA/JPL-Caltech.
See below the 1st 360 degree panorama from Curiosity and an enhanced Sol 2 mosaic of the full resolution view of the north rim of Gale Crater by this author

The rover Curiosity continues her marathon run of milestone achievements – snapping her 1st self portrait and 1st 360 degree panorama since touchdown inside Gale Crater barely over 2 sols, or Martian days ago.

To take all these new images, Curiosity used a new camera, the just-activated higher resolution navigation cameras (Navcam) positioned on the mast. Several of the new images provide the best taste yet of the stupendous vistas coming soon. See our enhanced Sol 2 mosaic below.

The 3.6 foot-tall (1.1 meter) camera mast on the rover deck was just raised and activated earlier today, Wednesday, Aug. 8.

The mast deployment is absolutely crucial to Curiosity’s science mission. It is also loaded with the high resolution MastCam cameras and the ChemCam instrument with the laser rock zapper.

Most of the images Navcam images beamed back today were lower-resolution thumbnails. But 2 high-resolution Navcams from the panorama and the self portrait were also downlinked and provide the clearest view yet of the breathtaking terrain surrounding Curiosity in every direction.

“The full frame navcams show the north rim of Gale Crater,” said Justin Maki, MSL navcam lead, at a briefing today at JPL. “The Navcam’s are identical to the MER Navcam’s.”

The hi res images also show how the descent thruster excavated the topsoil like Phoenix.

Image Caption: Curiosity Looks Away from the Sun – This is the first 360-degree panoramic view from NASA’s Curiosity rover, taken with the Navigation cameras. Most of the tiles are thumbnails, or small copies of the full-resolution images that have not been sent back to Earth yet. Two of the tiles near the center are full-resolution. Mount Sharp is to the right, and the north Gale Crater rim can be seen at center. The rover’s body is in the foreground, with the shadow of its head, or mast, poking up to the right. These images were acquired at 3:30 pm on Mars, or the night of Aug. 7 PDT (early morning Aug. 8 EDT). Thumbnails are 64 by 64 pixels in size; and full-resolution images are 1024 by 1024 pixels. Credit: NASA/JPL-Caltech

Image Caption: Looking to Martian bedrock and Gale Carter North Rim, Enhanced Mosaic- This mosaic was assembled from the first two full resolution Navcam images returned by Curiosity on Sol 2 (Aug 8) and enhanced to bring out further details. Processing by Ken Kremer and Marco Di Lorenzo. Topsoil in the foreground has been excavated by the descent landing thrusters to expose what the team believes is bedrock. Credit: NASA/JPL-Caltech/Ken Kremer/Marco di Lorenzo

“These Navcam images indicate that our powered descent stage did more than give us a great ride, it gave our science team an amazing freebie,” said John Grotzinger, project scientist for the mission from the California Institute of Technology in Pasadena. “The thrust from the rockets actually dug a one-and-a-half-foot-long [0.5-meter] trench in the surface. It appears we can see Martian bedrock on the bottom. Its depth below the surface is valuable data we can use going forward.”

Gale Crater is unlike anything we’ve seen before on Mars.

It also distinctly reminded Grotzinger of Earth and looked to him like the rover set down in the Mojave desert. “The thing that’s amazing about this is to a certain extent the first impression you get is how earth-like this seems, looking at that landscape.”

Curiosity carries 10 science instruments with a total mass 15 times as large as the science payloads on NASA’s Mars rovers Spirit and Opportunity. Some of the tools, such as a laser-firing instrument for checking rocks’ elemental composition from a distance, are the first of their kind on Mars. Curiosity will use a drill and scoop, which are located at the end of its robotic arm, to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into the rover’s analytical laboratory instruments.

So far everything is going very well with Curiosity’s mechanical and instrument checkout. And there is even more power than expected from the RTG nuclear power source.

“We have more power than we expected and that’s going to be fantastic for being able to keep the rover awake longer,” said Mission manager Jennifer Trosper of JPL.

Ken Kremer

Looking to Martian bedrock and Gale Carter North Rim, Enhanced Mosaic with False Color- This mosaic was assembled from the first two full resolution Navcam images returned by Curiosity on Sol 2 (Aug 8) and enhanced and colorized to bring out further details. Processing by Ken Kremer and Marco Di Lorenzo. Topsoil in the foreground has been excavated by the descent landing thrusters to expose what the team believes is bedrock. Credit: NASA/JPL-Caltech/Ken Kremer/Marco di Lorenzo

A Panorama of Curiosity’s Surroundings

Taken this morning (mission Sol 2) with the rover’s left Navcam, here’s a high-res panorama of Curiosity’s view at its landing site within Gale crater. The wide-angle view was assembled from two separate raw images, so while the mountainous rim of the crater is lined up horizontally there’s some distortion in alignment of objects closer to the rover due to the angle of the Navcam lens. Still, it’s a very cool view of Curiosity’s surroundings!

See the latest images from the MSL mission here, and check out 3D anaglyph images from Curiosity here.

Image: NASA/JPL-Caltech. Edited by J. Major.

(Image updated to link to full-size version.)

Mount Sharp on Mars: 1st 2-D and 3-D Views of Curiosity’s Ultimate Mountain Goal

Image Caption: Clear View on Mars – This image comparison shows a view through a Hazard-Avoidance camera on NASA’s Curiosity rover before and after the clear dust cover was removed. Both images were taken by a camera at the front of the rover. Mount Sharp, the mission’s ultimate destination, looms ahead. See the first 3 D and 2 D full res images with no dust cover, below. Image credit: NASA/JPL-Caltech

Curiosity, NASA’s new car sized rover on Mars has sent back her first breathtaking views of Mount Sharp, the huge nearby mountain that enticed scientists to set Gale Crater as her touchdown goal.

And already within the first 2 Sols, or martian days, the rover has beamed back magnificent 2D and 3 D vistas of the landscape surrounding her.

The unprecedented rocket powered “Sky Crane” descent maneuver that lowered Curiosity by cables upon the Red Planet’s surface rover with pinpoint accuracy, set her down in a position inside Gale Crater that fortuitously pointed her front Hazard Avoidance (Hazcam) cameras towards a stupendous panoramic view of Mount Sharp.

The terrain is strewn with small pebbles that may stem from a nearby alluvial fan through which liquid water flowed long ago, scientist think.

The top image set shows the spectacular side by side views of Mount Sharp before and after the protective dust covers were popped off.

Mount Sharp is taller than Mount Ranier, the tallest mountain in the US in the lower 48 states. It’s about 3.5 miles (5.5 km) high.

Curiosity is roughly 6 km distant from Mount Sharp, as the martian crow flies.

The image below is the first full resolution Hazcam version of Mount Sharp.

Curiosity’s Early Views of Mars. This full-resolution image shows one of the first views from NASA’s Curiosity rover, which landed on Mars the evening of Aug. 5 PDT (early morning hours Aug. 6 EDT). It was taken through a “fisheye” wide-angle lens on one of the rover’s front Hazard-Avoidance cameras. These engineering cameras are located at the rover’s base. Image credit: NASA/JPL-Caltech

Here’s the first 3D version of Mount Sharp assembled from both front cameras.

Image Caption: 3-D View from the Front of Curiosity. This image is a 3-D view in front of NASA’s Curiosity rover, which landed on Mars on Aug. 5 PDT (Aug. 6 EDT). The anaglyph was made from a stereo pair of Hazard-Avoidance Cameras on the front of the rover. Mount Sharp, a peak that is about 5.5 kilometers (3.4 miles) high, is visible rising above the terrain, though in one “eye” a box on the rover holding the drill bits obscures the view. This image was captured by Hazard-Avoidance cameras on the front of the rover at full resolution shortly after the rover landed. It has been linearized to remove the distorted appearance that results from its fisheye lens. Credit: NASA/JPL-Caltech

Ken Kremer

Curiosity Beams 1st Color Image from Mars

Image caption: This murky view from Curiosity shows the martian landscape looking north to the rim from inside the Gale Crater landing site and is her first color image beamed back to Earth. It’s murky because the dust cover is still attached. See full MAHLI image below. Also see below full res Hazcam image of crater rim. Credit: NASA/JPL-Caltech/Malin Space Science Systems

NASA’s Curiosity Mars rover has beamed back her first color view since touchdown, showing a view of the alien landscape pointing northward towards the eroded rim of Gale crater.

The picture was snapped by the rovers Mars Hand Lens Imager (MAHLI) camera on the afternoon of the first day after the pinpoint landing – signified as Sol 1 on Aug. 6, 2012.

The MAHLI image looks murky because the protective dust cover is still in place and is coated with a film of martian dust sprayed up by the descent retrorockets during the terminal phase of the hair-raising landing on Aug 5/6.

The camera’s dust cover is intentionally transparent so that initial images can still be snapped through the cover before it’s popped off in about a week.

MAHLI is located on the turret at the end of the rover’s 8 foot long robot arm which has been stowed in place on the front left side of Curiosity since long before the Nov. 26 liftoff from Cape Canaveral, Florida.

In the stowed position, MAHLI is rotated about 30 degrees as seen in the image below. The top image has been rotated to correct for the tilt and shows the sky “up” as Curiosity is actually sitting on the Martian surface.


Image caption: This full frame view from Curiosity shows the martian landscape looking north to the rim from inside the Gale Crater landing site and is her first color image beamed back to Earth. It’s murky because the dust cover is still attached. The image is from the MAHLI camera on the robot arm and currently in the stowed position. It has been rotated 30 degress. Credit: NASA/JPL-Caltech/Malin Space Science Systems

During her 2 year prime mission, Curiosity’s goal is to determine if Mars was ever capable of supporting microbial life, past or present and to search for the signs of life in the form of organic molecules with a payload of 10 science instruments weighing 15 times more than any prior roving vehicle.

Curiosity is the 3rd generation of NASA rover’s delivered to the Red Planet

Ken Kremer

Image Caption: Looking Back at the Crater Rim – This is the full-resolution version of one of the first images taken by a rear Hazard-Avoidance camera on NASA’s Curiosity rover, which landed on Mars the evening of Aug. 5 PDT (morning of Aug. 6 EDT). The image was originally taken through the “fisheye” wide-angle lens, but has been “linearized” so that the horizon looks flat rather than curved. The image has also been cropped. A Hazard-avoidance camera on the rear-left side of Curiosity obtained this image. Part of the rim of Gale Crater, which is a feature the size of Connecticut and Rhode Island combined, stretches from the top middle to the top right of the image. One of the rover’s 20 inch wide wheels can be seen at bottom right. Image credit: NASA/JPL-Caltech

Curiosity’s Dramatic MARDI Descent Movie

Image Caption: Curiosity Heat shield falls away from the bottom of Curiosity and the Sky Crane descent stage in this image from the MARDI camera.
Watch the video below. Credit: NASA/JPL/MSSS

As NASA’s Curiosity Mars Science Lab (MSL) was in the final stages of her flawless but harrowing decent to Gale Crater on Mars overnight (Aug. 5/6) employing the never-before-used rocket powered sky crane descent stage, dramatic movie-like imagery of the plunge was being recorded by MARDI, the Mars Descent Imager camera positioned on the belly of the rover and pointed downwards.

The first low resolution MARDI images and video (above and below) were beamed back to Earth just hours after landing and clearly show the jettisoning of the heat shield moments after it sprung loose to expose Curiosity and MARDI for landing.

“We see the heat shield falling away about 2 minutes and 30 seconds from touchdown,” said Mike Malin, MARDI Principal Investigator from Malin Space Systems at a post-landing news briefing today (Aug. 6). “The heat shield is about 16 meters (50 ft) away in the image and 4.5 m (15 ft) across.”

“I’m very excited to be at Gale Crater”.

“So far we have received about 297 thumbnail images (192 x 144 pixels) so far and created a stop motion video. MADRI was collecting images at 4 frames per second. In the final frames you can see dust being kicked up the rocket engines.”
Curiosity landed at 1:32 on Aug. 6, EDT (11:32 p.m. Aug. 5, PDT), near the foot of a mountain three miles(5 km) tall inside Gale Crater, 96 miles (154 km) in diameter.

Video Caption: The Curiosity Mars Descent Imager (MARDI) captured the rover’s descent to the surface of the Red Planet. The instrument shot 4 fps video from heatshield separation to the ground. Credit: NASA/JPL/MSSS

“The image sequence received so far indicates Curiosity had, as expected, a very exciting ride to the surface,” said Mike Malin, imaging scientist for the Mars Science Lab mission from Malin Space Systems in San Diego. “But as dramatic as they are, there is real other-world importance to obtaining them. These images will help the mission scientists interpret the rover’s surroundings, the rover drivers in planning for future drives across the surface, as well as assist engineers in their design of forthcoming landing systems for Mars or other worlds.”

“A good comparison is to that grainy onboard film from Apollo 11 when they were about to land on the moon,” said Malin.

Over 1500 hundred more low and high resolution MARDI images (1600 x 1200 pixels) will be sent back over the next few weeks to make a full frame animation and will provide the most complete and dramatic imagery of a planetary landing in the history of exploration.

The team has been able to determine Curiosity’s location to “within” about 1 meter says Malin, by matching the MARDI and MRO HiRISE images as well as the Hazcam images.

“So far the rover is healthy and we are ecstatic with its performance,” said Jennifer Trospher, MSL mission manager

The next steps are to deploy the high gain antenna (HGA), raise the mast with the higher resolution cameras and continue to check out the mechanical and electrical systems as well the science instruments as the rover is transitioned to surface operations mode.

Ken Kremer

Super Bowl of Planetary Exploration – Great Convergence of Spacecraft for Curiosity Mars Landing

Image caption: This artist’s still shows how NASA’s Curiosity rover will communicate with Earth during landing. As the rover descends to the surface of Mars, it will send out two different types of data: basic radio-frequency tones that go directly to Earth (pink dashes) and more complex UHF radio data (blue circles) that require relaying by orbiters. NASA’s Odyssey orbiter will pick up the UHF signal and relay it immediately back to Earth, while NASA’s Mars Reconnaissance Orbiter will record the UHF data and play it back to Earth at a later time. Image credit: NASA/JPL-Caltech

Curiosity is just hours away from ‘do or die’ time and the high stakes and harrowing “7 Minutes of Terror” after an 8 month journey to touchdown on the Red Planet and potentially make historic discoveries that could ultimately answer the question ‘Are We Alone?’

An armada of spacecraft are converging at Mars for the historic landing of NASA’s Curiosity Mars Science Lab rover, the most daring, daunting and complex robotic mission that NASA has ever attempted. See the Video below

“Tonight is the Super Bowl of Planetary Exploration,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters, at a NASA JPL news briefing on Sunday (Aug. 5). “One yard line, one play left. We score and win, or we don’t score and we don’t win.”

“We are about to land a rover that is 10 times heavier and with 15 times the payload [compared to earlier rovers]. No matter what happens, I just want the team to know I am incredible proud and privileged to have worked with these guys and gals.”

“This is the most challenging landing we have ever attempted.”

“Mars Odyssey and Mars Reconnaissance Orbiter (MRO) are in good shape to relay the entry, descent and landing data.”

The trajectory to the atmospheric aim point is so precise that engineers decided to cancel the last course correction maneuver firing planned for today.

Tonight at around 1 AM EDT, Curiosity smashes into the Martian atmosphere at over 13,200 MPH (5,900 m/s) leading to an unprecedented entry, descent and landing sequence culminating in the never before tried “skycrane maneuver” and touchdown at 0 MPH just 7 minutes later astride a 3 mile (5 km ) mountain inside Gale Crater. Mount Sharp represents perhaps millions to perhaps billions of years of Mars geologic history stretching from the ancient wetter time to the more recent desiccated era.

“The team and the spacecraft are ready,” said Adam Steltzner, MSL Entry, Descent and Landing Lead engineer JPL. “We did everything possible to deserve success tonight, although as we all know we can never guarantee success. I am rationally confident and emotionally terrified and ready for EDL.”

Video Caption:This artist’s animation shows how orbiters over Mars will monitor the landing of NASA’s Curiosity rover.The animation starts with the path of NASA’s Mars Science Laboratory spacecraft capsule — which has the Curiosity rover tucked inside — speeding towards its Martian landing site in Gale Crater. Then, the paths of NASA’s Mars Odyssey orbiter and Mars Reconnaissance Orbiter become visible. Curiosity will be sending some basic radio-frequency tones straight back to Earth during its entry, descent and landing, on Aug. 5 PDT (Aug. 6 EDT). But sending more detailed engineering data about the landing is more complicated. Those kinds of data will be sent by Curiosity to the orbiters Odyssey and MRO, which will then relay them back to NASA’s Deep Space Network antennas on Earth. Curiosity can only send the data to Odyssey and MRO when it can see the orbiters — as soon as they rise above and before they set below the Martian horizon. Image Credit: NASA/JPL-Caltech

The 6 wheeled SUV sized rover Curiosity is scheduled to touchdown inside Gale Crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

Under the best circumstance, the first signals from the surface could be transmitted via Odyssey within a few minutes of touchdown.

Curiosity is a robotic geologist and a roving chemistry lab with 10 state-of-the-art science instruments that will collect and analyze soil and rock samples and zap rocks from a distance with a laser to search for carbon in the form of organic molecules – the building blocks of life.

“We will attempt to have the MRO HiRISE camera point at MSL and get an image of it the final phases of its descent going down to Mars,” said McCuistion. “This will be difficult because of all the gyrations by the spacecraft. It’s pretty challenging. It will be very tough. We were lucky to get one of Phoenix. I am hopeful”

“We have the opportunity for untold discoveries. We couldn’t even imagine going to this place on Mars a few years ago.”

“If we are successful, it will be one of the greatest feats in exploration ever!”

Watch NASA TV online for live coverage of the Curiosity landing on Aug. 5/6 starting at 11:30 pm EDT:

www.mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

Curiosity Precisely on Course at T Minus 48 Hours till a ‘Priceless Asset’ Lands on Mars

At this moment the mega rover Curiosity is barely 48 hours from Mars and transformation into a “priceless asset” on the Red Planet’s surface where she’ll initiate the search for evidence for habitats of Martian microbial life – past or present.

NASA JPL engineers have guided the Curiosity Mars Science Lab (MSL) so precisely on her 352-million-mile (567-million-kilometer) interplanetary journey through space that they decided to cancel today’s planned course adjusting thruster firing, known as Trajectory Correction Maneuver 5 (TCM-5). If needed, they have one last chance for a course correction burn (TCM-6) this weekend on Sunday.

“We are now about 1000 yards from the entry target that will bring us to the touchdown point on the North side of Gale Crater,” said Tomas Martin-Mur, MSL Navigation team chief of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., at an Aug. 2 MSL news briefing.

Curiosity is now less than 450,000 miles away from Mars, careening through space at over 8000 MPH (3576 m/s) and accelerating moment by moment due to the ever increasing pull of Mars gravity.

To put that in perspective, that’s less than twice the distance from the Earth to the Moon.

By the time Curiosity hits the Martian atmosphere on Sunday night/Monday early morning (Aug 5/6) she’ll be blazing through space at more than 13,200 MPH (5,900 m/s).

“I’m less than 500,000 miles from Mars & the Red Planet looks about the size as a full moon seen from Earth. 2 days to landing!” Curiosity tweeted a short while ago.

She remains healthy, with all systems operating nominally. And she is brave!

Curiosity will not flinch knowing she must endure the “7 Minutes of Terror” and the fiery entry,descent and landing to touchdown inside the 96 mile wide Gale Crater just 2 days from now.

Watch the harrowing landing animation – here.


Image Caption: Gale Crater Landing site for Curiosity. Credit: NASA

Absolutely staggering photos and science discoveries are expected from Curiosity – the boldest, most daring and by far the most scientifically complex and capable robotic emissary ever dispatched by humans to another world.

But after landing, the team needs to first test the rover’s components and unfurl the robots camera mast and instruments.

“We must recognize that on Sunday night at 10:32 PM PST(1:32 AM EST, 532 GMT) we will have a ‘priceless asset’ that we placed on the surface of another planet that could last for a long time IF we operate it correctly,” said Pete Theisinger, MSL project manager, JPL, at the Aug. 2 news briefing.

“So we will be cautious as hell about what we do with it !”

“This is a very complicated beast, so we all need to exercise caution. It’s much, much more complicated than Spirit and Opportunity in terms of the interactions amongst the various pieces and the things we need to keep track of in order to operate it successfully.”

A few hours after touchdown, Curiosity will send back the first images from the Gale crater landing site beside a towering 3 mile (5 km) high layered Martian mountain, named Mount Sharp.

“We will start doing science right away. Very roughly, the contact science will begin in 2 to 4 weeks. Sampling science will begin 1 to 2 months after we land,” explained Theisinger.

The car-sized Curiosity is 10 feet (3 meters) long and packed with 10 state-of-the-art science experiments that will search for organic molecules – the building blocks of life – and clay minerals, potential markers for signs of Martian microbial life and habitable zones.


Image Caption:Curiosity Mars Science Laboratory Rover – inside the Cleanroom at KSC, with robotic arm extended prior to encapsulation and Nov. 26, 2011 liftoff. Credit: Ken Kremer/kenkremer.com

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6 starting at 11:30 pm EDT:

www.mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer


Image Caption: MSL entry track to Gale Crater. Credit: NASA

Read continuing recent features about Curiosity by Ken Kremer starting here:

3 Days to Red Planet Touchdown – Watch the Harrowing Video of Car-Sized Curiosity Careening to Crater Floor

4 Days to Mars: Curiosity activates Entry, Descent and Landing Timeline – EDL Infographic

Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet

Curiosity Completes Crucial Course Correction – 1 Week from Mars !

T Minus 9 Days – Mars Orbiters Now in Place to Relay Critical Curiosity Landing Signals

3 Days to Red Planet Touchdown – Watch the Harrowing Video of Car-Sized Curiosity Careening to Crater Floor


Video Caption: This 11-minute animation depicts key events of how NASA’s Mars Science Laboratory mission will land the huge rover Curiosity on Mars on August 5/6, 2012. Credit: NASA

Well, here we are 3 days from the thrilling ‘touchdown’ of Curiosity on Mars on the boldest mission yet by humans to the Red Planet – Seeking Signs of Life beyond Earth!

The Curiosity Mars Science Lab rover is by far the hardest and most complex robotic mission that NASA has ever attempted. She marks a quantum leap beyond anything tried before in terms of the technology required to land this 2000 pound beast and the science she’ll carry out for a minimum 2 year prime mission.

So watch this harrowing video (above) – Outlining how Curiosity slams into the Martian atmosphere at 13200 MPH and comes to rest at 0 MPH after surviving the “7 Minutes of Terror” with an unprecedented guided entry, rocket powered descent, neck snapping supersonic parachute deployment and never before used Sky Crane maneuver – and be sure you’re safely seated !

The car-sized Curiosity has entered the final 72 hours of careening towards a crater floor on Mars.

After the nail biting entry, descent and landing (EDL), the 6 wheeled rover Curiosity is scheduled to touchdown inside Gale Crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

“It looks a little crazy !” said Adam Steltzner, MSL Entry, Descent and Landing Lead engineer JPL , at today’s (Aug. 2) pre-landing briefing for reporters at NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif. “But it’s the least crazy compared to other methods we evaluated.”

“Everything looks good for Sunday night. Over 300 Years of human individual contributions went into the MSL EDL system. We pull 10 Earth G’s or more of acceleration during first contact with the Martian atmosphere.”

See the detailed EDL graphic below –
Image caption: Entry, Descent and Landing (EDL) Timeline – click to enlarge for full image. Credit: NASA

Curiosity is the first mobile soil and rock sampling and chemistry lab dispatched to Mars. It’s also the first astrobiology mission to Mars since the twin Viking missions of the 1970’s.

“We are about to land a small compact car on Mars with a trunk load of instruments. It’s an amazing feat, exciting and daring. It’s fantastic,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the JPL briefing.

“It’s an extreme pleasure to be here. MSL has a huge reach, to the past, the future and around the world. Since the heatshield is nearly the size of the Orion heat shield, we’ll also learn an enormous amount about how we’ll land humans on Mars.”

“MSL is a workhorse for the future,” McCuistion emphasized.

Curiosity will search for the ingredients of life in the form of organic molecules – the carbon based molecules which are the building blocks of life as we know it. The one-ton behemoth is packed to the gills with 10 state-of-the-art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

4 Days to Mars: Curiosity activates Entry, Descent and Landing Timeline – EDL Infographic

It’s 4 Days to Mars – and NASA’s Curiosity Mars Science Lab (MSL) spacecraft is now flying under the control of the crafts autonomous entry, descent and landing timeline and picking up speed as she plunges ever faster to the Red Planet and her Rendezvous with Destiny.

“Timeline activated. Bleep-bop. I’m running entry, descent & landing flight software all on my own. Countdown to Mars: 5 days,” Curiosity tweeted Tuesday night.

See below an EDL explanatory infographic timeline outlining the critical sequence of events which must unfold perfectly for Curiosity to safely survive the “7 Minutes of Terror” set to begin on the evening of August 5/6.

Aug. 1 TV Viewing Alert – 11:30 PM EDT – see NASA Science Chief John Grunsfeld tonight (Wed, Aug. 1) on the Colbert Report


Image Caption: Curiosity EDL infographic – – click to enlarge

And the excitement is building rapidly for NASA’s biggest, boldest mission ever to the Red Planet as the flight team continues to monitor Curiosity’s onboard systems and flight trajectory. Yesterday, the flight team successfully carried out a memory test on the software for the mechanical assembly that controls MSL’s descent motor, configured the spacecraft for its transition to entry, descent and landing approach mode, and they enabled the spacecraft’s hardware pyrotechnic devices.

Curiosity remains healthy and on course. If fine tuning for the targeted landing ellipse is needed, the next chance to fire on board thrusters to adjust the trajectory is Friday, Aug. 3.

The 4th of 6 possible Trajectory Correction Maneuver (TCM) firings was just accomplished on Sunday, July 29 – details here.

The car sized Curiosity rover is scheduled to touchdown on Mars at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5) inside Gale Crater and next to a 3 mile (5 km) mountain taller that the tallest in the US.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of past or present Martian life.

Curiosity is packed with 10 state-of-the-art science experiments that will search for organic molecules and clay minerals, potential markers for signs of Martian microbial life and habitable zones.

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet

Video Caption: Star Trek’s Captain Kirk, actor William Shatner, guides viewers through the video titled, “Grand Entrance,” showing NASA’s Curiosity Mars Science Lab mission from atmospheroic entry through descent, and after landing on the Red Planet on August 6 2012.

As NASA engineers and scientists make final preparations for the Red Planet landing of NASA’s most difficult planetary science mission to date – the Curiosity Mars Science Lab – inside Gale Crater on the night of August 5/6, Star Trek actors William Shatner and Wil Wheaton lend their voices to a pair of new mission videos titled “Grand Entrance”

The video duet describes the thrilling story of how Curiosity will touch down on Mars and guides viewers through the nail biting “7 Minutes of Terror” – from entry into the Martian atmosphere at over 13,000 MPH and then how the rover must slow down through descent, set down for a soft and safe landing and ultimately how Curiosity will search for signs of life. Continue reading “Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet”