Astronomers Find a Strange Lopsided Planet

Artist's illustration of the exoplanet WASP-107 b based on transit observations from NASA's James Webb Space Telescope as well as other space- and ground-based telescopes, led by Matthew Murphy of the University of Arizona and a team of researchers around the world.

I’ve often stated that planets come in a wide range of sizes but rarely do I find myself stating they come in a wide range of shapes too! The discovery of WASP-107b is a case  in point since this planet is the size of Jupiter but only a tenth of its mass. But there’s more… Using the James Webb Space Telescope a team of astronomers have accurately identified that the planet has an east-west asymmetry in its atmosphere, in other words, it’s lopsided. It is tidally locked to the star and on one side, the atmosphere seems to be inflated compared to the other. 

Continue reading “Astronomers Find a Strange Lopsided Planet”

A New Model Explains How Gas and Ice Giant Planets Can Form Rapidly

Artist's impression of a young star surrounded by a protoplanetary disc made of gas and dust. According to new research, ring-shaped, turbulent disturbances (substructures) in the disk lead to the rapid formation of several gas and ice giants. Credit: LMU / Thomas Zankl, crushed eyes media

The most widely recognized explanation for planet formation is the accretion theory. It states that small particles in a protoplanetary disk accumulate gravitationally and, over time, form larger and larger bodies called planetesimals. Eventually, many planetesimals collide and combine to form even larger bodies. For gas giants, these become the cores that then attract massive amounts of gas over millions of years.

But the accretion theory struggles to explain gas giants that form far from their stars, or the existence of ice giants like Uranus and Neptune.

Continue reading “A New Model Explains How Gas and Ice Giant Planets Can Form Rapidly”

Webb Joins the Hunt for Protoplanets

This artist’s impression shows the formation of a gas giant planet embedded in the disk of dust and gas in the ring of dust around a young star. A University of Michigan study aimed the James Webb Space Telescope at a protoplanetary disk surrounding a protostar called SAO 206462, hoping to find a gas giant planet in the act of forming. Image credit: ESO/L. Calçada

We can’t understand what we can’t clearly see. That fact plagues scientists who study how planets form. Planet formation happens inside a thick, obscuring disk of gas and dust. But when it comes to seeing through that dust to where nascent planets begin to take shape, astronomers have a powerful new tool: the James Webb Space Telescope.

Continue reading “Webb Joins the Hunt for Protoplanets”

Improving a 1960s Plan to Explore the Giant Planets

John Bodylski holds a balsa wood model of his proposed aircraft that could be an atmospheric probe. Directly in front of him is a fully assembled version of the aircraft and a large section of a second prototype at NASA’s Armstrong Flight Research Center in Edwards, California. Credit: NASA/Steve Freeman

In the 1960s, NASA engineers developed a series of small lifting-body aircraft that could be dropped into the atmosphere of a giant planet, measuring the environment as they glided down. Although it would be a one-way trip to destruction, the form factor would allow a probe to glide around in different atmospheric layers, gathering data and transmitting it back to a parent satellite. An updated version of the 1960s design is being tested at NASA now, and a drop-test flight from a helicopter is scheduled for this month.

Continue reading “Improving a 1960s Plan to Explore the Giant Planets”

Whether Saturn's Rings are Young or Old, its Moons are as Ancient as the Planet Itself

The moons of Saturn, from left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and irregularly shaped Hyperion (bottom). Some small moons are also shown. All to scale. Credit: NASA/JPL/Space Science Institute

Saturn is best known for two things: its iconic ring structures and its large system of natural satellites. Currently, 146 moons and moonlets have been discovered orbiting the ringed giant, 24 of which are regular satellites. These include the seven largest moons, Titan, Rhea, Iapetus, Dione, Tethys, Enceladus, and Mimas, which are icy bodies believed to have interior oceans. In addition, there are unresolved questions about the age of these satellites, with some suspecting that they formed more recently (like Saturn’s rings, which are a few hundred million years old).

To address these questions, an international team of astronomers created a series of high-resolution simulations coupled with improved estimates of Trans-Neptunian Object (TNO) populations. This allowed them to construct a chronology of impacts for Saturn’s most heavily cratered regular satellites – Mimas, Enceladus, Tethys, Dione, and Rhea. This established age limits of 4.1 and 4.4 billion years for all five, with the two innermost moons appearing more youthful than the outer three. These results could have significant implications for our understanding of the formation and tidal evolution of moons in the outer Solar System.

Continue reading “Whether Saturn's Rings are Young or Old, its Moons are as Ancient as the Planet Itself”

The Rings of Uranus Shine Bright in Stunning New JWST Image

This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) Feb. 6, 2023, reveals stunning views of the planet’s rings. Credit: NASA, ESA, CSA, STScI IMAGE PROCESSING: Joseph DePasquale (STScI).

The James Webb Space Telescope has taken a stunning new image of the ice giant world Uranus. But what stands out most is the dramatic new view of the planet’s rings, which show up as never before with JWST’s infrared eyes.

Instead of being faint and wispy, the rings show up brilliantly. Additionally, bright, luminous features in the planet’s atmosphere show how an extensive storm system at the north pole of this planet getting larger and brighter.

But you’ll also want to see the full-frame image view, which also shows the six largest of Uranus’ 27 known moons. And, as we’ve become accustomed to seeing in JWST images, several distant background galaxies. Yes, every JWST image is a Deep Field!

Continue reading “The Rings of Uranus Shine Bright in Stunning New JWST Image”

It's Time For Your Annual Weather Update for the Outer Solar System

Jupiter, as seen by the Hubble Space Telescope in November 2022 and January 2023. Credits: NASA, ESA, STScI, Amy Simon (NASA-GSFC), and Michael H. Wong (UC Berkeley); Image Processing: Joseph DePasquale (STScI).

A couple times a year, the Hubble Space Telescope turns its powerful gaze on the giant planets in the outer Solar System, studying their cloudtops and weather systems. With the Outer Planet Atmospheres Legacy (OPAL) Program, Hubble provides us with these views and also delivers weather reports on what’s happening. Here’s an updated report and some new images of the stormy surfaces of Jupiter and Uranus.  

Continue reading “It's Time For Your Annual Weather Update for the Outer Solar System”

Jupiter's Giant Moons Prevent it From Having Rings Like Saturn

Saturn and its system of rings, acquired by the Cassini probe. Credit: NASA/JPL-Caltech

When the name Saturn is uttered, what comes to mind? For most people, the answer would probably be, “its fabulous system of rings.” There’s no doubt they are iconic, but what is perhaps lesser-known is that Jupiter, Uranus, and Neptune all have ring systems of their own. However, whereas Saturn’s rings are composed mainly of ice particles (making them highly reflective), Jupiter’s rings are composed mainly of dust grains. Meanwhile, Uranus and Neptune have rings of extremely dark particles known as tholins that are very hard to see. For this reason, none of the other gas giants get much recognition for their rings.

However, the question of why Jupiter doesn’t have larger, more spectacular rings than Saturn has been bothering astronomers for quite some time. As the larger and more massive of the two bodies, Jupiter should have rings that would dwarf Saturn’s by comparison. This mystery may have finally been resolved thanks to new research by a team from UC Riverside. According to their study, Jupiter’s massive moons (aka. Jupiter’s Galilean Moons) prevented it from developing a big, bright, beautiful ring system that would put Saturn’s to shame.

Continue reading “Jupiter's Giant Moons Prevent it From Having Rings Like Saturn”

Hubble Has Been Watching This Planet Form for 13 Years

Researchers were able to directly image newly forming exoplanet AB Aurigae b over a 13-year span using Hubble’s Space Telescope Imaging Spectrograph (STIS) and its Near Infrared Camera and Multi-Object Spectrograph (NICMOS). In the top right, Hubble’s NICMOS image captured in 2007 shows AB Aurigae b in a due south position compared to its host star, which is covered by the instrument’s coronagraph. The image captured in 2021 by STIS shows the protoplanet has moved in a counterclockwise motion over time. Credits: Science: NASA, ESA, Thayne Currie (Subaru Telescope, Eureka Scientific Inc.); Image Processing: Thayne Currie (Subaru Telescope, Eureka Scientific Inc.), Alyssa Pagan (STScI)

Hubble’s most remarkable feature might be its longevity. The Hubble has been operating for almost 32 years and has fed us a consistent diet of science—and eye candy—during that time. For 13 of its 32 years, it’s been checking in on a protoplanet forming in a young solar system about 530 light-years away.

Planet formation is always a messy process. But in this case, the planet’s formation is an “intense and violent process,” according to the authors of a new study.

Continue reading “Hubble Has Been Watching This Planet Form for 13 Years”