Triton’s Arrival was Chaos for the Rest of Neptune’s Moons

Artist's impression of what the surface of Triton may look like. Credit: ESO

The study of the Solar System’s many moons has revealed a wealth of information over the past few decades. These include the moons of Jupiter – 69 of which have been identified and named – Saturn (which has 62) and Uranus (27). In all three cases, the satellites that orbit these gas giants have prograde, low-inclination orbits. However, within the Neptunian system, astronomers noted that the situation was quite different.

Compared to the other gas giants, Neptune has far fewer satellites, and most of the system’s mass is concentrated within a single satellite that is believed to have been captured (i.e. Triton). According to a new study by a team from the Weizmann Institute of Science in Israel and the Southwest Research Institute (SwRI) in Boulder, Colorado, Neptune may have once had a more massive systems of satellites, which the arrival of Triton may have disrupted.

The study, titled “Triton’s Evolution with a Primordial Neptunian Satellite System“, recently appeared in The Astrophysical Journal. The research team consisted of Raluca Rufu, an astrophysicist and geophysicist from the Weizmann Institute, and Robin M. Canup – the Associate VP of the SwRI. Together, they considered models of a primordial Neptunian system, and how it may have changed thanks to the arrival of Triton.

Neptune and its large moon Triton as seen by Voyager 2 on August 28th, 1989. Credit: NASA

For many years, astronomers have been of the opinion that Triton was once a dwarf planet that was kicked out of the Kuiper Belt and captured by Neptune’s gravity. This is based on its retrograde and highly-inclined orbit (156.885° to Neptune’s equator), which contradicts current models of how gas giants and their satellites form. These models suggest that as giant planets accrete gas, their moons form from a surrounding debris disk.

Consistent with the other gas giants, the largest of these satellites would have prograde, regular orbits that are not particularly inclined relative to their planet’s equator (typically less than 1°). In this respect, Triton is believed to have once been part of a binary made up of two Trans-Neptunian Objects (TNOs). When they swung past Neptune, Triton would have been captured by its gravity and gradually fell into its current orbit.

As Dr. Rufu and Dr. Canup state in their study, the arrival of this massive satellite would have likely caused a lot of disruption in the Neptunian system and affected its evolution. This consisted of them exploring how interactions – like scattering or collisions – between Triton and Neptune’s prior satellites would have modified Triton’s orbit and mass, as well as the system at large. As they explain:

“We evaluate whether the collisions among the primordial satellites are disruptive enough to create a debris disk that would accelerate Triton’s circularization, or whether Triton would experience a disrupting impact first. We seek to find the mass of the primordial satellite system that would yield the current architecture of the Neptunian system.”
Montage of Neptune’s largest moon, Triton and the planet Neptune showing the moon’s sublimating south polar cap (bottom) and enigmatic “cantaloupe terrain”. Credit: NASA

To test how the Neptunian system could have evolved, they considered different types of primordial satellite systems. This included one that was consistent with Uranus’ current system, made up of prograde satellites with a similar mass ration as Uranus’ largest moons – Ariel, Umbriel, Titania and Oberon – as well as one that was either more or less massive. They then conducted simulations to determine how Triton’s arrival would have altered these systems.

These simulations were based on disruption scaling laws which considered how non-hit-and-run impacts between Triton and other bodies would have led to a redistribution of matter in the system. What they found, after 200 simulations, was that a system that had a mass ratio that was similar to the current Uranian system (or smaller) would have been most likely to produce the current Neptunian system. As they state:

“We find that a prior satellite system with a mass ratio similar to the Uranian system or smaller has a substantial likelihood of reproducing the current Neptunian system, while a more massive system has a low probability of leading to the current configuration.”

They also found that the interaction of Triton with an earlier satellite system also offers a potential explanation for how its initial orbit could have been decreased fast enough to preserve the orbits of small irregular satellites. These Nereid-like bodies would have otherwise been kicked out of their orbits as tidal forces between Neptune and Triton caused Triton to assume its current orbit.

The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen.

Ultimately, this study not only offers a possible explanation as to why Neptune’s system of satellites differs from those of other gas giants; it also indicates that Neptune’s proximity to the Kuiper Belt is what is responsible. At one time, Neptune may have had a system of moons that were very much like those of Jupiter, Saturn, and Uranus. But since it is well-situated to pick up dwarf planet-sized objects that were kicked out of the Kuiper Belt, this changed.

Looking to the future, Rufu and Canup indicate that additional studies are needed in order to shed light on Triton’s early evolution as a Neptunian satellite. Essentially, there are still unanswered questions concerning the effects the system of pre-existing satellites had on Triton, and how stable its irregular prograde satellites were.

These findings were also presented by Dr, Rufu and Dr. Canup during the 48th Lunar and Planetary Science Conference, which took place in The Woodlands, Texas, this past March.

Further Reading: The Astronomical Journal, USRA

Debris Disks Around Stars Could Point the Way to Giant Exoplanets

This artist's rendering shows a large exoplanet causing small bodies to collide in a disk of dust. Credit: NASA/JPL-Caltech

According to current estimates, there could be as many as 100 billion planets in the Milky Way Galaxy alone. Unfortunately, finding evidence of these planets is tough, time-consuming work. For the most part, astronomers are forced to rely on indirect methods that measure dips in a star’s brightness (the Transit Method) of Doppler measurements of the star’s own motion (the Radial Velocity Method).

Direct imaging is very difficult because of the cancelling effect stars have, where their brightness makes it difficult to spot planets orbiting them. Luckily a new study led by the Infrared Processing and Analysis Center (IPAC) at Caltech has determined that there may be a shortcut to finding exoplanets using direct imaging. The solution, they claim, is to look for systems with a circumstellar debris disk, for they are sure to have at least one giant planet.

The study, titled “A Direct Imaging Survey of Spitzer Detected Debris Disks: Occurrence of Giant Planets in Dusty Systems“, recently appeared in The Astronomical Journal. Tiffany Meshkat, an assistant research scientist at IPAC/Caltech, was the lead author on the study, which she performed while working at NASA’s Jet Propulsion Laboratory as a postdoctoral researcher.

A circumstellar disk of debris around a mature stellar system could indicate the presence of Earth-like planets. Credit: NASA/JPL
Artist’s impression of circumstellar disk of debris around a distant star. Credit: NASA/JPL

For the sake of this study, Dr. Meshkat and her colleagues examined data on 130 different single-star systems with debris disks, which they then compared to 277 stars that do not appear to host disks. These stars were all observed by NASA’s Spitzer Space Telescope and were all relatively young in age (less than 1 billion years). Of these 130 systems, 100 had previously been studied for the sake of finding exoplanets.

Dr. Meshkat and her team then followed up on the remaining 30 systems using data from the W.M. Keck Observatory in Hawaii and the European Southern Observatory’s (ESO) Very Large Telescope (VLT) in Chile. While they did not detect any new planets in these systems, their examinations helped characterize the abundance of planets in systems that had disks.

What they found was that young stars with debris disks are more likely to also have giant exoplanets with wide orbits than those that do not. These planets were also likely to have five times the mass of Jupiter, thus making them “Super-Jupiters”. As Dr. Meshkat explained in a recent NASA press release, this study will be of assistance when it comes time for exoplanet-hunters to select their targets:

“Our research is important for how future missions will plan which stars to observe. Many planets that have been found through direct imaging have been in systems that had debris disks, and now we know the dust could be indicators of undiscovered worlds.”

This artist’s conception shows how collisions between planetesimals can create additional debris. Credit: NASA/JPL-Caltech

This study, which was the largest examination of stars with dusty debris disks, also provided the best evidence to date that giant planets are responsible for keeping debris disks in check. While the research did not directly resolve why the presence of a giant planet would cause debris disks to form, the authors indicate that their results are consistent with predictions that debris disks are the products of giant planets stirring up and causing dust collisions.

In other words, they believe that the gravity of a giant planet would cause planestimals to collide, thus preventing them from forming additional planets. As study co-author Dimitri Mawet, who is also a JPL senior research scientist, explained:

“It’s possible we don’t find small planets in these systems because, early on, these massive bodies destroyed the building blocks of rocky planets, sending them smashing into each other at high speeds instead of gently combining.”

Within the Solar System, the giant planets create debris belts of sorts. For example, between Mars and Jupiter, you have the Main Asteroid Belt, while beyond Neptune lies the Kuiper Belt. Many of the systems examined in this study also have two belts, though they are significantly younger than the Solar System’s own belts – roughly 1 billion years old compared to 4.5 billion years old.

Artist’s impression of Beta Pictoris b. Credit: ESO L. Calçada/N. Risinger (skysurvey.org)

One of the systems examined in the study was Beta Pictoris, a system that has a debris disk, comets, and one confirmed exoplanet. This planet, designated Beta Pictoris b, which has 7 Jupiter masses and orbits the star at a distance of 9 AUs – i.e. nine times the distance between the Earth and the Sun. This system has been directly imaged by astronomers in the past using ground-based telescopes.

Interestingly enough, astronomers predicted the existence of this exoplanet well before it was confirmed, based on the presence and structure of the system’s debris disk. Another system that was studied was HR8799, a system with a debris disk that has two prominent dust belts. In these sorts of systems, the presence of more giant planets is inferred based on the need for these dust belts to be maintained.

This is believed to be case for our own Solar System, where 4 billion years ago, the giant planets diverted passing comets towards the Sun. This resulted in the Late Heavy Bombardment, where the inner planets were subject to countless impacts that are still visible today. Scientists also believe that it was during this period that the migrations of Jupiter, Saturn, Uranus and Neptune deflected dust and small bodies to form the Kuiper Belt and Asteroid Belt.

Dr. Meshkat and her team also noted that the systems they examined contained much more dust than our Solar System, which could be attributable to their differences in age. In the case of systems that are around 1 billion years old, the increased presence of dust could be the result of small bodies that have not yet formed larger bodies colliding. From this, it can be inferred that our Solar System was once much dustier as well.

Artist’s concept of the multi-planet system around HR 8799, initially discovered with Gemini North adaptive optics images. Credit: Gemini Observatory/Lynette Cook”

However, the authors note is also possible that the systems they observed – which have one giant planet and a debris disk – may contain more planets that simply have not been discovered yet. In the end, they concede that more data is needed before these results can be considered conclusive. But in the meantime, this study could serve as an guide as to where exoplanets might be found.

As Karl Stapelfeldt, the chief scientist of NASA’s Exoplanet Exploration Program Office and a co-author on the study, stated:

“By showing astronomers where future missions such as NASA’s James Webb Space Telescope have their best chance to find giant exoplanets, this research paves the way to future discoveries.”

In addition, this study could help inform our own understanding of how the Solar System evolved over the course of billions of years. For some time, astronomers have been debating whether or not planets like Jupiter migrated to their current positions, and how this affected the Solar System’s evolution. And there continues to be debate about how the Main Belt formed (i.e. empty of full).

Last, but not least, it could inform future surveys, letting astronomers know which star systems are developing along the same lines as our own did, billions of years ago. Wherever star systems have debris disks, they an infer the presence of a particularly massive gas giant. And where they have a disk with two prominent dust belts, they can infer that it too will become a system containing many planets and and two belts.

Further Reading: NASA, The Astrophysical Journal

Three Possible Super-Earths Discovered Around Nearby Sun-Like Star

Artist’s impression of a Super-Earth planet orbiting a Sun-like star. Credit: ESO/M. Kornmesser

Since it was launched in 2009, NASA’s Kepler mission has continued to make important exoplanet discoveries. Even after the failure of two reaction wheels, the space observatory has found new life in the form of its K2 mission. All told, this space observatory has detected 5,017 candidates and confirmed the existence of 2,494 exoplanets using the Transit Method during its past eight years in service.

The most recent discovery was made by an international team of astronomers around Gliese 9827 (GJ 9827), a late K-type dwarf star located about 100 light-years from Earth. Using data provided by the K2 mission, they detected the presence of three Super-Earths. This star system is the closest exoplanet-hosting star discovered by K2 to date, which makes these planets well-suited for follow-up studies.

The study which describes their findings, titled “A System of Three Super Earths Transiting the Late K-Dwarf GJ 9827 at Thirty Parsecs“, was recently published online. Led by Dr. Jospeh E. Rodriguez from the Harvard-Smithsonian Center for Astrophysics (CfA), the team includes researchers from the University of Austin, the Massachusetts Institute of Technology (MIT), and the NASA Exoplanet Science Institute (NExSci) at Caltech.

The Transit Method, which remains one of the most trusted means for exoplanet detection, consists of monitoring stars for periodic dips in brightness. These dips correspond to planets passing (aka. transiting) in front of the star causing a measurable drop in the light coming from it. This method also offers unique opportunities to examine light passing through an exoplanet’s atmosphere. As Dr. Rodriguez told Universe Today via email:

“The success of Kepler combined with ground based radial velocity and transit surveys has now led to the discovery of over 4000 planetary system. Since we now know that planets appear to be quite common, the field has shifted its focus to understand architectures, interior structures, and atmospheres. These key properties of planetary systems help us understand some fundamental questions: how do planets form and evolve? What are the terrestrial planets around other stars like, are they similar to Earth in composition and atmosphere?”

These questions were central to the team’s study, which relied on data obtained during Campaign 12 of the K2 mission – from December 2016 to March 2017. After consulting this data, the team noted the presence of three super-Earth sized planets orbiting in a very compact configuration. This system, as they note in their study, was independently and simultaneously discovered by another team from Wesleyan University.

These three planetary objects, designated as GJ 9827 b, c, and d, are located at a distance of about 0.02, 0.04 and 0.06 AU from their host star (respectively). Owing to their sizes and radii, these planets are classified as “Super-Earths”, and have radii of 1.6, 1.2, and 2.1 times the radius of Earth. They are also located very close to their host star, completing orbits within 6.2 days.

The light curve obtained during Campaign 12 of the K2 mission of the GJ 9827 system. Credit: Rodriguez et al., 2017

Specifically, GJ 9827 b measures 1.64 Earth radii, has a mass of up to 4.25 Earth masses, a 1.2 day orbital period, and a temperature of 1,119 K (846 °C; 1555 °F). Meanwhile, GJ 9827 c measures 1.29 Earth radii, has a mass of 2.62 Earth masses, an orbital period of 3.6 days, and a temperature of 774 K (500 °C; 934°F). Lastly, GJ 9827 d measures 2.08 Earth radii, has a mass of 5.3 Earth masses, a 6.2 day period, and a temperature of 648 K (375 °C; 707 °F).

In short, all three planets are very hot, with temperatures that are hot as Venus and Mercury or (in the case of GJ 9827b) is even hotter! Interestingly, these radii and mass estimates place these planets within the transition boundary between terrestrial (i.e. rocky) planets and gas giants. In fact, the team found that GJ 9827 b and c fall in or close to the known gap in radius distribution for planets that are in between these two populations.

In other words, these planets could be rocky or gaseous, and the team won’t know for sure until they can place more accurate constraints on their masses. What’s more, none of these planets are likely to be capable of supporting life, certainly not as we know it! So if you were hoping that this latest find would produce an Earth-analog or potentially habitable planet, you’re sadly mistaken.

Nevertheless, the fact that these planets straddle the radius and mass boundary between terrestrial and gaseous planets – and the fact that this system is the closest planetary system to be identified by the K2 mission – makes the system well-situated for studies designed to probe the interior structure and atmosphere of exoplanets.

Artistic design of the super-Earth orbiting a Sun-like star. Credit: Gabriel Pérez/SMM (IAC)

The reason for this has much to do with the brightness of the host star. In addition to being relatively close to our Sun (~100 light-years), this K-type star is very bright and also relatively small – about 60% the size of our Sun. As a result, any planet passing in front of it would be able to block out more light than if the star were larger. But as noted, there’s also the curious nature of the planets themselves. As Dr. Rodriguez indicated:

Recently, we have found planets around other stars that have no analogue to a planet in our own system. These are known as “super Earths” and they have radii of 1-3 times the radius of the Earth. To add to the complexity of these planets, their is a clear dichotomy in their composition within this radius range. The larger super Earths (>1.6 x radius of the Earth) appear to be less dense, consistent with a puffy Hydrogen/Helium atmosphere. However, the smaller super Earths are more dense, consistent with an Earth-like composition (rock).

“As mentioned above, the GJ 9827 system hosts three super Earth sized planets. Interestingly, planet c has a radius consistent with it being rocky, planet d is consistent with being puffy, and planet b has a radius that is right on what we believe to be the transition boundary between rock and gas. Therefore, by studying the atmospheres of super-Earths, we may better understand the transition from dense rocky planets to puffier planets with very thick atmospheres (like Neptune).”

Artist’s impression of the super-Earth orbiting closely to its parent star. Credit: ESA/NASA

Looking ahead, the team hopes to conduct further studies to determine the masses of these planets more precisely. From this, they will be able to place better constraints on their compositions and determine if they are Super-Earths, mini gas giants, or some of each. Beyond that, they are to conduct more detailed studies of this system with next-generation instruments like the James Webb Space Telescope (JWST), which is scheduled to launch in 2018.

“I am really interested in studying the atmosphere of GJ 9827 b, whether it is rocky or puffy,” said Dr. Rodriguez. “This planet has a radius at the rock/gas transition but it is very close to its host star. Therefore, by studying the chemical composition of its atmosphere we may better understand the impact of the host star’s proximity has on the evolution of its atmosphere.  To do this we would use JWST to take spectroscopic observations during the transit of GJ 9827b (known as “Transmission Spectroscopy”). From this observations we will gather information on the chemical composition and extent of the planet’s atmosphere.

Now that we have thousands of extra-solar planet discoveries under our belt, its only natural that research would be shifting towards trying to understand these planets better. In the coming years and decades, we are likely to learn volumes about the respective structures, compositions, atmospheres, and surface features of many distant worlds. One can only imagine what kind of things these studies will turn up!

Further Reading: arXiv

Juno Mission Makes Mysterious Finds about Auroras on Jupiter

Reconstructed view of Jupiter's northern lights through the filters of the Juno Ultraviolet Imaging Spectrograph instrument on Dec. 11, 2016, as the Juno spacecraft approached Jupiter, passed over its poles, and plunged towards the equator. Credit: NASA/JPL-Caltech/Bertrand Bonfond

Even after decades of study, Jupiter’s atmosphere continues to be something of a mystery to scientists. Consistent with the planet’s size, its atmosphere is the largest in the Solar System, spanning over 5,000 km (3,000 mi) in altitude and boasting extremes in temperature and pressure. On top of that, the planet’s atmosphere experiences the most powerful auroras in the Solar System.

Studying this phenomena has been one of the main goals of the Juno probe, which reached Jupiter on July 5th, 2016. However, after analyzing data collected by the probe’s instruments, scientists at Johns Hopkins University Applied Physics Laboratory (JHUAPL) were surprised to find that Jupiter’s powerful magnetic storms do not have the same source as they do on Earth.

The study which details these findings, “Discrete and Broadband Electron Acceleration in Jupiter’s Powerful Aurora“, recently appeared in the scientific journal Nature. Led by Barry Mauk, a scientist with the JHUAPL, the team analyzed data collected by Juno’s Ultraviolet Spectrograph (UVS) and Jovian Energetic Particle Detector Instrument (JEDI) to study Jupiter’s polar regions.

Ultraviolet auroral images of Jupiter from the Juno Ultraviolet Spectrograph instrument. Credit: NASA/SwRI/Randy Gladstone

As with Earth, on Jupiter, auroras are the result of intense radiation and Jupiter’s magnetic field. When this magnetosphere aligns with charged particles, it has the effect of accelerating electrons towards the atmosphere at high energy levels. In the course of examining Juno’s data, the JHUAPL team observed signatures of electrons being accelerated toward the Jovian atmosphere at energy levels of up to 400,000 electron volts.

This is roughly 10 to 30 times higher than what is experienced here on Earth, where only several thousand volts are typically needed to generate the most intense aurora. Given that Jupiter has the most powerful auroras in the Solar System, the team was not surprised to see such powerful forces at work within the planet’s atmosphere. What was surprising, however, was that this was not the source of the most intense auroras.

As Dr. Mauk, who leads the investigation team for the APL-built JEDI instrument and was the lead author on the study , explained in a JHUAPL press release:

“At Jupiter, the brightest auroras are caused by some kind of turbulent acceleration process that we do not understand very well. There are hints in our latest data indicating that as the power density of the auroral generation becomes stronger and stronger, the process becomes unstable and a new acceleration process takes over. But we’ll have to keep looking at the data.”

Image compiled using data from Juno’s Ultraviolet Spectrograph, which marks the path of Juno’s readings of Jupiter’s auroras. Credit: NASA/SwRI/Randy Gladstone

These findings could have significant implications for the study of Jupiter, who’s composition and atmospheric dynamics continue to be a source of mystery. It also has implications or the study of extra-solar gas giants and planetary systems. In recent decades, the study of these systems has revealed hundreds of gas giants that have ranged in size from being Neptune-like to many times the size of Jupiter (aka. “Super-Jupiters”).

These gas giants have also shown significant variations in orbit, ranging from being very close to their respective suns to very far (i.e. “Hot Jupiters” to “Cold Gas Giants”). By studying Jupiter’s ability to accelerate charged particles, astronomers will be able to make more educated guesses about space weather, radiation environments, and the risks they pose to space missions.

This will come in handy when it comes time to mount future missions to Jupiter, as well as deep-space and maybe even interstellar space. As Mauk explained:

“The highest energies that we are observing within Jupiter’s auroral regions are formidable. These energetic particles that create the auroras are part of the story in understanding Jupiter’s radiation belts, which pose such a challenge to Juno and to upcoming spacecraft missions to Jupiter under development. Engineering around the debilitating effects of radiation has always been a challenge to spacecraft engineers for missions at Earth and elsewhere in the solar system. What we learn here, and from spacecraft like NASA’s Van Allen Probes and MMS that are exploring Earth’s magnetosphere, will teach us a lot about space weather and protecting spacecraft and astronauts in harsh space environments. Comparing the processes at Jupiter and Earth is incredibly valuable in testing our ideas of how planetary physics works.”

Before the Juno mission is scheduled to wrap up (in February of 2018), the probe is likely to reveal a great many things about the planet’s composition, gravity field, magnetic field and polar magnetosphere. In so doing, it will address long-standing mysteries about how the planet formed and evolved, which will also shed light on the history of the Solar System and extra-solar systems.

Further Reading: JHUAPL, Nature

New Study Claims that TRAPPIST-1 Could Also Have Gas Giants

Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech
Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

In February of 2017, NASA scientists announced the existence of seven terrestrial (i.e. rocky) planets within the TRAPPIST-1 star system. Since that time, the system has been the focal point of intense research to determine whether or not any of these planets could be habitable. At the same time, astronomers have been wondering if all of the system’s planets are actually accounted for.

For instance, could this system have gas giants lurking in its outer reaches, as many other systems with rocky planets (for instance, ours) do? That was the question that a team of scientists, led by researchers from the Carnegie Institute of Science, sought to address in a recent study. According to their findings, TRAPPIST-1 may be orbited by gas giants at a much-greater distance than its seven rocky planets.

Continue reading “New Study Claims that TRAPPIST-1 Could Also Have Gas Giants”

Exoplanet-Hunters Detect Two New “Warm Jupiters”

Artist's concept of Jupiter-sized exoplanet that orbits relatively close to its star (aka. a "hot Jupiter"). Credit: NASA/JPL-Caltech)
Artist's concept of Jupiter-sized exoplanet that orbits relatively close to its star (aka. a "hot Jupiter"). Credit: NASA/JPL-Caltech)

The study of extra-solar planets has turned up some rather interesting candidates in the past few years. As of August 1st, 2017, a total of 3,639 exoplanets have been discovered in 2,729 planetary systems and 612 multiple planetary systems. Many of these discoveries have challenged conventional thinking about planets, especially where their sizes and distances from their suns are concerned.

According to a study by an international team of astronomers, the latest exoplanet discoveries are in keeping with this trend. Known as EPIC 211418729b and EPIC 211442297b, these two gas giants orbit stars that are located about 1569 and 1360 light-years from Earth (respectively) and are similar in size to Jupiter. Combined with their relatively close orbit to their stars, the team has designated them as “Warm Jupiters”.

The study, titled “EPIC 211418729b and EPIC 211442297b: Two Transiting Warm Jupiters“, recently appeared online. Led by Avi Shporer – a postdoctoral scholar with the Geological and Planetary Sciences (GPS) division at the California Institute of Technology (Caltech) – the team relied on data from the Kepler and K2 missions, and follow-up observations with multiple ground-based telescopes, to determine the sizes, masses and orbits of these planets.

Simulation of the turbulent atmosphere of a hot, gaseous planet, based on data from NASA’s Spitzer Space Telescope. Credits: NASA/JPL-Caltech/MIT/Principia College

As they indicate in their study, the two planets were initially identified as transiting planet candidates by the K2 mission. In other words, they were initially detected through the transit method, where astronomers measure dips in a star brightness to confirm that a planet is passing between the observer and the star. These observations took place during K2‘s Campaign 5 observations, which took place between April 27th and July 10th, 2015.

The team then conducted follow-up observations using the Keck II telescope (located at the W.M. Keck Observatory in Hawaii) and the Gemini North Telescope (at the Gemini Observatory, also in Hawaii). These observations, conducted from January 2016 to May 2017, were then combined with spectral data and radial velocity measurements from the High Resolution Echelle Spectrometer (HIRES) the on the Keck I telescope.

Finally, they added photometric data from the Cerro Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO), and the Siding Spring Observatory (SSO) in Australia. These follow-up observations confirmed the presence of these two exoplanets. As they wrote in the study:

“We have discovered two transiting warm Jupiter exoplanets initially identified as transiting candidates in K2 photometryBoth planets are among the longest period transiting gas giant planets with a measured mass, and they are orbiting relatively old host stars. Both planets are not inflated as their radii are consistent with theoretical expectations.”

The transit light curve of EPIC 211418729b. Credit: Shporer (et al.)

From their observations, the team was also able to produce estimates on the planets respective sizes, masses and orbital periods. Whereas EPIC 211418729 b measures 0.942 Jupiter radii, has approximately 1.85 Jupiter masses and orbital period of 11.4 days, EPIC 211442297 b measures 1.115 Jupiter radii, has approximately 0.84 Jupiter masses and an orbital period of 20.3 days.

Based on their estimates, these planets experience surface temperatures of up to 719 K (445.85 °C; 834.5 °F) and 682 K (408.85°C; 768 °F), respectively. As such, they classified these planets as “Warm Jupiters”, since they fall short of what is considered typical for “Hot Jupiters” – which have exotic atmosphere’s that experience temperatures as high as several thousand kelvin.

The researchers noted that based on their orbital periods, these two planets have some of the longest orbital periods of any transiting gas giant (i.e. those that have been detected using the transit method) detected to date. Or as they state in their study:

“Both EPIC 211418729b and EPIC 211442297b are among the longest period transiting gas giant planets with a measured mass. In fact, according to the NASA Exoplanet Archive (Akeson et al. 2013) EPIC 211442297b is currently the longest period K2 transiting exoplanet with a well constrained mass.”

Artist’s conception of a “Hot Jupiter” orbiting close to its star. Credit: NASA/JPL-Caltech/T. Pyle (SSC)

Another interesting observation was the fact that neither of these exoplanets were inflated, which is something they did not anticipate. In the case of Hot Jupiters, the atmospheres undergo expansion as a result of the amount of solar irradiation they receive, resulting in what the team refers to as a “radius-irradiation correlation” in their paper. In other words, Hot Jupiters are massive, but are also known to have low densities compared to cooler gas giants.

Instead, the team found that both EPIC 211418729b and EPIC 211442297b had radii that were consistent with what theoretical models predict for gas giants of their mass. Their results also led them to make some tentative conclusions about the planets’ structures and compositions. As they wrote:

“Both planets are not inflated compared to theoretical expectations, unlike many other planets in the diagram. Their positions are close to or consistent with theoretical expectations for a planet with little to no rocky core, for EPIC 211442297b, and a planet with a significant rocky core for EPIC 211418729b.”

These results suggest that solar irradiation does not play a significant role in determining the radius of Warm Jupiters. It also raises some interesting questions about the correlation between radii and irradiation with other gas giants. In the future, EPIC 211418729b and EPIC 211442297b will be targets of future K2 observations during the mission’s Campaign 18 – which will run from May to August 2018.

These observations are sure to offer some additional insight into these planets and the mysteries this study has raised. Future surveys of transiting exoplanets – conducting by next-generation instruments like the Transiting Exoplanet Survey Satellites (TESS) – and direct-imaging surveys conducted by the James Webb Space Telescope (JWST) are sure to reveal even more about distant, exotic exoplanets.

Further Reading: arXiv

What are Gas Giants?

The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute

Between the planets of the inner and outer Solar System, there are some stark differences. The planets that resides closer to the Sun are terrestrial (i.e. rocky) in nature, meaning that they are composed of silicate minerals and metals. Beyond the Asteroid Belt, however, the planets are predominantly composed of gases, and are much larger than their terrestrial peers.

This is why astronomers use the term “gas giants” when referring to the planets of the outer Solar System. The more we’ve come to know about these four planets, the more we’ve come to understand that no two gas giants are exactly alike. In addition, ongoing studies of planets beyond our Solar System (aka. “extra-solar planets“) has shown that there are many types of gas giants that do not conform to Solar examples. So what exactly is a “gas giant”?

Definition and Classification:

By definition, a gas giant is a planet that is primarily composed of hydrogen and helium. The name was originally coined in 1952 by James Blish, a science fiction writer who used the term to refer to all giant planets. In truth, the term is something of a misnomer, since these elements largely take a liquid and solid form within a gas giant, as a result of the extreme pressure conditions that exist within the interior.

The four gas giants of the Solar System (from right to left): Jupiter, Saturn, Uranus and Neptune. Credit: NASA/JPL

What’s more, gas giants are also thought to have large concentrations of metal and silicate material in their cores. Nevertheless, the term has remained in popular usage for decades and refers to all planets  – be they Solar or extra-solar in nature – that are composed mainly of gases. It is also in keeping with the practice of planetary scientists, who use a shorthand – i.e. “rock”, “gas”, and “ice” – to classify planets based on the most common element within them.

Hence the difference between Jupiter and Saturn on the one and, and Uranus and Neptune on the other. Due to the high concentrations of volatiles (such as water, methane and ammonia) within the latter two – which planetary scientists classify as “ices” – these two giant planets are often called “ice giants”. But since they are composed mainly of hydrogen and helium, they are still considered gas giants alongside Jupiter and Saturn.

Classification:

Today, Gas giants are divided into five classes, based on the classification scheme proposed by David Sudarki (et al.) in a 2000 study. Titled “Albedo and Reflection Spectra of Extrasolar Giant Planets“, Sudarsky and his colleagues designated five different types of gas giant based on their appearances and albedo, and how this is affected by their respective distances from their star.

Class I: Ammonia Clouds – this class applies to gas giants whose appearances are dominated by ammonia clouds, and which are found in the outer regions of a planetary system. In other words, it applies only to planets that are beyond the “Frost Line”, the distance in a solar nebula from the central protostar where volatile compounds – i.e. water, ammonia, methane, carbon dioxide, carbon monoxide – condense into solid ice grains.

These cutaways illustrate interior models of the giant planets. Jupiter is shown with a rocky core overlaid by a deep layer of metallic hydrogen. Credit: NASA/JPL

Class II: Water Clouds – this applies to planets that have average temperatures typically below 250 K (-23 °C; -9 °F), and are therefore too warm to form ammonia clouds. Instead, these gas giants have clouds that are formed from condensed water vapor. Since water is more reflective than ammonia, Class II gas giants have higher albedos.

Class III: Cloudless – this class applies to gas giants that are generally warmer – 350 K (80 °C; 170 °F) to 800 K ( 530 °C; 980 °F) – and do not form cloud cover because they lack the necessary chemicals. These planets have low albedos since they do not reflect as much light into space. These bodies would also appear like clear blue globes because of the way methane in their atmospheres absorbs light (like Uranus and Neptune).

Class IV: Alkali Metals – this class of planets experience temperatures in excess of 900 K (627 °C; 1160 °F), at which point Carbon Monoxide becomes the dominant carbon-carrying molecule in their atmospheres (rather than methane). The abundance of alkali metals also increases substantially, and cloud decks of silicates and metals form deep in their atmospheres. Planets belonging to Class IV and V are referred to as “Hot Jupiters”.

Class V: Silicate Clouds – this applies to the hottest of gas giants, with temperatures above 1400 K (1100 °C; 2100 °F), or cooler planets with lower gravity than Jupiter. For these gas giants, the silicate and iron cloud decks are believed to be high up in the atmosphere. In the case of the former, such gas giants are likely to glow red from thermal radiation and reflected light.

Artist’s concept of “hot Jupiter” exoplanet, a gas giant that orbits very close to its star. Credit: NASA/JPL-Caltech)

Exoplanets:

The study of exoplanets has also revealed a wealth of other types of gas giants that are more massive than the Solar counterparts (aka. Super-Jupiters) as well as many that are comparable in size. Other discoveries have been a fraction of the size of their solar counterparts, while some have been so massive that they are just shy of becoming a star. However, given their distance from Earth, their spectra and albedo have cannot always be accurately measured.

As such, exoplanet-hunters tend to designate extra-solar gas giants based on their apparent sizes and distances from their stars. In the case of the former, they are often referred to as “Super-Jupiters”, Jupiter-sized, and Neptune-sized. To date, these types of exoplanet account for the majority of discoveries made by Kepler and other missions, since their larger sizes and greater distances from their stars makes them the easiest to detect.

In terms of their respective distances from their sun, exoplanet-hunters divide extra-solar gas giants into two categories: “cold gas giants” and “hot Jupiters”. Typically, cold hydrogen-rich gas giants are more massive than Jupiter but less than about 1.6 Jupiter masses, and will only be slightly larger in volume than Jupiter. For masses above this, gravity will cause the planets to shrink.

Exoplanet surveys have also turned up a class of planet known as “gas dwarfs”, which applies to hydrogen planets that are not as large as the gas giants of the Solar System. These stars have been observed to orbit close to their respective stars, causing them to lose atmospheric mass faster than planets that orbit at greater distances.

For gas giants that occupy the mass range between 13 to 75-80 Jupiter masses, the term “brown dwarf” is used. This designation is reserved for the largest of planetary/substellar objects; in other words, objects that are incredibly large, but not quite massive enough to undergo nuclear fusion in their core and become a star. Below this range are sub-brown dwarfs, while anything above are known as the lightest red dwarf (M9 V) stars.

An artist’s conception of a T-type brown dwarf. Credit: Tyrogthekreeper/Wikimedia Commons

Like all things astronomical in nature, gas giants are diverse, complex, and immensely fascinating. Between missions that seek to examine the gas giants of our Solar System directly to increasingly sophisticated surveys of distant planets, our knowledge of these mysterious objects continues to grow. And with that, so is our understanding of how star systems form and evolve.

We have written many interesting articles about gas giants here at Universe Today. Here’s The Planet Jupiter, The Planet Saturn, The Planet Uranus, The Planet Neptune, What are the Jovian Planets?, What are the Outer Planets of the Solar System?, What’s Inside a Gas Giant?, and Which Planets Have Rings?

For more information, check out NASA’s Solar System Exploration.

Astronomy Cast also has some great episodes on the subject. Here’s Episode 56: Jupiter to get you started!

Sources:

Does Jupiter Have a Solid Core?

Damian Peach reprocessed one of the latest images taken by Juno's JunoCam during its 3rd close flyby of the planet on Dec. 11. The photo highlights two large 'pearls' or storms in Jupiter's atmosphere. Credit: NASA/JPL-Caltech/SwRI/MSSS

The gas giants have always been a mystery to us. Due to their dense and swirling clouds, it is impossible to get a good look inside them and determine their true structure. Given their distance from Earth, it is time-consuming and expensive to send spacecraft to them, making survey missions few and far between. And due to their intense radiation and strong gravity, any mission that attempts to study them has to do so carefully.

And yet, scientists have been of the opinion for decades that this massive gas giant has a solid core. This is consistent with our current theories of how the Solar System and its planets formed and migrated to their current positions. Whereas the outer layers of Jupiter are composed primarily of hydrogen and helium, increases in pressure and density suggest that closer to the core, things become solid.

Structure and Composition:

Jupiter is composed primarily of gaseous and liquid matter, with denser matter beneath. It’s upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume of gas molecules, and approx. 75% hydrogen and 24% helium by mass, with the remaining one percent consisting of other elements.

upiter's structure and composition. (Image Credit: Kelvinsong CC by S.A. 3.0)
Jupiter’s structure and composition. Credit: Kelvinsong CC by S.A. 3.0

The atmosphere contains trace amounts of methane, water vapor, ammonia, and silicon-based compounds, as well as trace amounts of benzene and other hydrocarbons. There are also traces of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. Crystals of frozen ammonia have also been observed in the outermost layer of the atmosphere.

The interior contains denser materials, such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. It is believed that Jupiter’s core is a dense mix of elements – a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. The core has also been described as rocky, but this remains unknown as well.

In 1997, the existence of the core was suggested by gravitational measurements, indicating a mass of 12 to 45 times the mass of Earth, or roughly 4%–14% of the total mass of Jupiter. The presence of a core is also supported by models of planetary formation that indicate how a rocky or icy core would have been necessary at some point in the planet’s history. Otherwise, it would not have been able to collect all of its hydrogen and helium from the protosolar nebula – at least in theory.

However, it is possible that this core has since shrunk due to convection currents of hot, liquid, metallic hydrogen mixing with the molten core. This core may even be absent now, but a detailed analysis is needed before this can be confirmed. The Juno mission, which launched in August 2011 (see below), is expected to provide some insight into these questions, and thereby make progress on the problem of the core.

Formation and Migration:

Our current theories regarding the formation of the Solar System claim that the planets formed about 4.5 billion years ago from a Solar Nebula (i.e. Nebular Hypothesis). Consistent with this theory, Jupiter is believed to have formed as a result of gravity pulling swirling clouds of gas and dust together.

Jupiter acquired most of its mass from material left over from the formation of the Sun, and ended up with more than twice the combined mass of the other planets. In fact, it has been conjectured that it Jupiter had accumulated more mass, it would have become a second star. This is based on the fact that its composition is similar to that of the Sun – being made predominantly of hydrogen.

Artist’s concept of a young star surrounded by a disk of gas and dust – called a protoplanetary disk. Credit: NASA/JPL-Caltech

In addition, current models of Solar System formation also indicate that Jupiter formed farther out from its current position. In what is known as the Grand Tack Hypothesis, Jupiter migrated towards the Sun and settled into its current position by roughly 4 billion years ago. This migration, it has been argued, could have resulted in the destruction of the earlier planets in our Solar System – which may have included Super-Earths closer to the Sun.

Exploration:

While it was not the first robotic spacecraft to visit Jupiter, or the first to study it from orbit (this was done by the Galileo probe between 1995 and 2003), the Juno mission was designed to investigate the deeper mysteries of the Jovian giant. These include Jupiter’s interior, atmosphere, magnetosphere, gravitational field, and the history of the planet’s formation.

The mission launched in August 2011 and achieved orbit around Jupiter on July 4th, 2016. The probe entered its polar elliptical orbit after completing a 35-minute-long firing of the main engine, known as Jupiter Orbital Insertion (or JOI). As the probe approached Jupiter from above its north pole, it was afforded a view of the Jovian system, which it took a final picture of before commencing JOI.

Since that time, the Juno spacecraft has been conducting perijove maneuvers – where it passes between the northern polar region and the southern polar region – with a period of about 53 days. It has completed 5 perijoves since it arrived in June of 2016, and it is scheduled to conduct a total of 12 before February of 2018. At this point, barring any mission extensions, the probe will de-orbit and burn up in Jupiter’s outer atmosphere.

As it makes its remaining passes, Juno will gather more information on Jupiter’s gravity, magnetic fields, atmosphere, and composition. It is hoped that this information will teach us much about how the interaction between Jupiter’s interior, its atmosphere and its magnetosphere drives the planet’s evolution. And of course, it is hoped to provide conclusive data on the interior structure of the planet.

Does Jupiter have a solid core? The short answer is, we don’t know… yet. In truth, it could very well have a solid core composed of iron and quartz, which is surrounded by a thick layer of metallic hydrogen. It is also possible that interaction between this metallic hydrogen and the solid core caused the the planet to lose it some time ago.

The South Pole of Jupiter, taken during the Juno mission’s third orbit (Perijove 3). Credits: NASA/JPL-Caltech/SwRI/MSSS/ Luca Fornaciari © cc nc sa

At this point, all we can do is hope that ongoing surveys and missions will yield more evidence. These are not only likely to help us refine our understanding of Jupiter’s internal structure and its formation, but also refine our understanding of the history of the Solar System and how it came to be.

We have written many articles about Jupiter for Universe Today. Here Ten Interesting Facts About Jupiter, How Big is Jupiter?, How Long Does it Take to get to Jupiter?, What is the Weather Like on Jupiter?, How Far is Jupiter from the Sun?, and The Orbit of Jupiter. How Long is a Year on Jupiter?

If you’d like more information on Jupiter, check out Hubblesite’s News Releases about Jupiter, and here’s a link to NASA’s Solar System Exploration Guide to Jupiter.

We’ve also recorded an episode of Astronomy Cast just about Jupiter. Listen here, Episode 56: Jupiter.

Sources:

Hubble Takes Advantage Of Opposition To Snap Jupiter

Image of Jupiter, taken by the Hubble Space Telescope when the planet was at a distance of 670 million kilometers from Earth. Credit: NASA/ESA/A. Simon (GSFC)

On April, 7th, 2017, Jupiter will come into opposition with Earth. This means that Earth and Jupiter will be at points in their orbit where the Sun, Earth and Jupiter will all line up. Not only will this mean that Jupiter will be making its closest approach to Earth – reaching a distance of about 670 million km (416 million mi) – but the hemisphere that faces towards us will be fully illuminated by the Sun.

Because of its proximity and its position, Jupiter will be brighter in the night sky than at any other time during the year. Little wonder then why NASA and the ESA are taking advantage of this favorable alignment to capture images of the planet with the Hubble Space Telescope. Already, on April 3rd, Hubble took the wonderful color image (shown above) of Jupiter, which has now been released.

Using its Wide Field Camera 3 (WFC3), Hubble was able to observe Jupiter in the visible, ultraviolet and infrared spectrum. From these observations, members of the Hubble science team produced a final composite image that allowed features in its atmosphere – some as small as 130 km across – to be discernible. These included Jupiter’s colorful bands, as well as its massive anticyclonic storms.

Image of Jupiter’s Great Red Spot, taken by the Voyager 1 space probe during its flyby on March 5, 1979, and re-processed on November 6, 1998. Credit: NASA/JPL

The largest of these – the Great Red Spot – is believed to have been raging on the surface ever since it was first observed in the 1600s. In addition, it is estimated that the wind speeds can reach up to 120 m/s (430 km/h; 267 mph) at its outer edges. And given its dimensions – between 24-40,000 km from west to east and 12-14,000 km from south to north – it is large enough to swallow the Earth whole.

Astronomers have noticed how the storm appears to have been shrinking and expanding throughout its recorded history. And as the latest images taken by Hubble (and by ground-based telescopes) have confirmed, the storm continues to shrink. Back in 2012, it was even suggested that the Giant Red Spot might eventually disappear, and this latest evidence seems to confirm that.

No one is entirely sure why the storm is slowly collapsing; but thanks to images like these, researchers are gaining a better understanding of what mechanisms power Jupiter’s atmosphere. Aside from the Great Red Spot, the similar but smaller anticyclonic storm in the farther southern latitudes – aka. Oval BA or “Red Spot Junior” – was also captured in this latest image.

Located in the region known as the South Temperate Belt, this storm was first noticed in 2000 after three small white storms collided. Since then, the storm has increased in size, intensity and changed color (becoming red like its “big brother”). It is currently estimated that wind speeds have reached 618 km/h (384 mph), and that it has become as large as Earth itself (over 12,000 km, 7450 mi in diameter).

Image of Jupiter, made during the Outer Planet Atmospheres Legacy (OPAL) programme on January 19th, 2015. Credit: NASA/ESA/A. Simon (GSFC)/M. Wong (UC Berkeley)/G. Orton (JPL-Caltech)

And then there are the color bands that make up Jupiter’s surface and give it its distinct appearance. These bands are essentially different types of clouds that run parallel to the equator and differ in color based on their chemical compositions. Whereas the whiter bands have higher concentrations of ammonia crystals, the darker (red, orange and yellow) have lower concentrations.

Similarly, these color patterns are also affected by the upwelling of compounds that change color when they are exposed to ultraviolet light from the Sun. Known as chromophores, these colorful compounds are likely made up of sulfur, phosphorous and hydrocarbons. The planet’s intense wind speeds of up to 650 km/h (~400 mph) also ensure that the bands are kept separate.

These and other observations of Jupiter are part of the Outer Planet Atmospheres Legacy (OPAL) progamme. Dedicated to ensuring that Hubble gets as much information as it can before it is retired – sometime in the 2030s or 2040s – this program ensures that time is dedicated each year to observing Jupiter and the other gas giants. From the images obtained, OPAL hopes to create maps that planetary scientists can study long after Hubble is decommissioned.

The project will ultimately observe all of the giant planets in the Solar System in a wide range of filters. The research that this enables will not only help scientists to study the atmospheres of the giant planets, but also to gain a better understanding of Earth’s atmosphere and those of extrasolar planets. The programme began in 2014 with the study of Uranus and has been studying Jupiter and Neptune since 2015. In 2018, it will begin viewing Saturn.

Further Reading: Hubble Space Telescope

The Orbit of Uranus. How Long is a Year on Uranus?

Uranus as seen by NASA's Voyager 2. Credit: NASA/JPL

Uranus is a most unusual planet. Aside from being the seventh planet of our Solar System and the third gas giant, it is also classified sometimes as an “ice giant” (along with Neptune). This is because of its peculiar chemical composition, where water and other volatiles (i.e. ammonia, methane, and other hydrocarbons) in its atmosphere are compressed to the point where they become solid.

In addition to that, it also has a very long orbital period. Basically, it takes Uranus a little over 84 Earth years to complete a single orbit of the Sun. What this means is that a single year on Uranus lasts almost as long as a century here on Earth. On top of that, because of it axial tilt, the planet also experiences extremes of night and day during the course of a year, and some pretty interesting seasonal changes.

Orbital Period:

Uranus orbits the Sun at an average distance (semi-major axis) of 2.875 billion km (1.786 billion mi), ranging from 2.742 billion km (1.7 mi) at perihelion to 3 billion km (1.86 billion mi) at aphelion. Another way to look at it would be to say that it orbits the Sun at an average distance of 19.2184 AU (over 19 times the distance between the Earth and the Sun), and ranges from 18.33 AU to 20.11 AU.

Images of Uranus taken over a four year period using the Hubble Space Telescope. Credit: NASA/ESA/HST

The difference between its minimum and maximum distance from the Sun is 269.3 million km (167.335 mi) or 1.8 AU, which is the most pronounced of any of the Solar Planets (with the possible exception of Pluto). And with an average orbital speed of 6.8 km/s (4.225 mi/s), Uranus has an orbital period equivalent to 84.0205 Earth years. This means that a single year on Uranus lasts as long as 30,688.5 Earth days.

However, since it takes 17 hours 14 minutes 24 seconds for Uranus to rotate once on its axis (a sidereal day). And because of its immense distance from the Sun, a single solar day on Uranus is about the same. This means that a single year on Uranus lasts 42,718 Uranian solar days. And like Venus, Uranus’ rotates in the direction opposite of its orbit around the Sun (a phenomena known as retrograde rotation).

Axial Tilt:

Another interesting thing about Uranus is the extreme inclination of its axis (97.7°). Whereas all of the Solar Planets are tilted on their axes to some degree, Uranus’s extreme tilt means that the planet’s axis of rotation is approximately parallel with the plane of the Solar System. The reason for this is unknown, but it has been theorized that during the formation of the Solar System, an Earth-sized protoplanet collided with Uranus and tilted it onto its side.

A consequence of this is that when Uranus is nearing its solstice, one pole faces the Sun continuously while the other faces away – leading to a very unusual day-night cycle across the planet. At the poles, one will experience 42 Earth years of day followed by 42 years of night.

This is similar to what is experienced in the Arctic Circle and Antarctica. During the winter season near the poles, a single night will last for more than 24 hours (aka. a “Polar Night”) while during the summer, a single day will last longer than 24 hours (a “Polar Day”, or “Midnight Sun”).

Meanwhile, near the time of the equinoxes, the Sun faces Uranus’ equator and gives it a period of day-night cycles that are similar to those seen on most of the other planets. Uranus reached its most recent equinox on December 7th, 2007. During the Voyager 2 probe’s historic flyby in 1986, Uranus’s south pole was pointed almost directly at the Sun.

Seasonal Change:

Uranus’ long orbital period and extreme axial tilt also lead to some extreme seasonal variations in terms of its weather. Determining the full extent of these changes is difficult because astronomers have yet to observe Uranus for a full Uranian year. However, data obtained from the mid-20th century onward has showed regular changes in terms of brightness, temperature and microwave radiation between the solstices and equinoxes.

These changes are believed to be related to visibility in the atmosphere, where the sunlit hemisphere is thought to experience a local thickening of methane clouds which produce strong hazes. Increases in cloud formation have also been observed, with very bright cloud features being spotted in 1999, 2004, and 2005. Changes in wind speed have also been noted that appeared to be related to seasonal increases in temperature.

Uranus Dark Spot
Close up of Uranus Dark Spot, taken by the Hubble Telescope. Credit: NASA/ESA/HST

Uranus’ “Great Dark Spot” and its smaller dark spot are also thought to be related to seasonal changes. Much like Jupiter’s Great Red Spot, this feature is a giant cloud vortex that is created by winds – which in this case are estimated to reach speeds of up to 900 km/h (560 mph). In 2006, researchers at the Space Science Institute and the University of Wisconsin observed a storm that measured 1,700 by 3,000 kilometers (1,100 miles by 1,900 miles).

Interestingly enough, while Uranus’ polar regions receive more energy on average over the course of a year than the equatorial regions, the equatorial regions have been found to be hotter than the poles. The exact cause of this remains unknown, but is certainly believed to be due to something endogenic.

Yep, Uranus is a pretty weird place! On this planet, a single year lasts almost a century, and the seasons are characterized by extreme versions of Polar Nights and Midnight Suns. And of course, an average year brings all kinds of seasonal changes, complete with extreme winds, massive storms, and thickening methane clouds.

We have written many articles about the length of a year on other planets here at Universe Today. Here’s How Long is a Year on the Other Planets?, How Long is a Year on Mercury?, How Long is a Year on Venus?, How Long is a Year on Earth?, How Long is a Year on Mars?, How Long is a Year on Jupiter?, How Long is a Year on Saturn?, How Long is a Year on Neptune? and How Long is a Year on Pluto?

If you’d like more info on Uranus, check out Hubblesite’s News Releases about Uranus. And here’s a link to the NASA’s Solar System Exploration Guide to Uranus.

We have recorded an episode of Astronomy Cast just about Uranus. You can access it here: Episode 62: Uranus.

Sources: