Six and a half decades after he passed away, famed theoretical physicist Albert Einstein is still being proven right! In addition to General Relativity (GR) being tested under the most extreme conditions, lesser-known aspects of his theories are still being validated as well. For example, GR predicts that gravity and inertia are often indistinguishable, in what is known as the gravitational Strong Equivalence Principle (SEP).
Thanks to an international team of researchers, it has been proven under the strongest conditions to date. By precisely tracking the motion of a pulsar, the team demonstrated that gravity causes neutron stars and white dwarf stars to fall with equal accelerations. This confirms Einstein’s prediction that freefall accurately simulates zero-gravity conditions in all inertial reference frames.
Black holes are famous for being inescapable. Within the event horizon of these celestial objects, matter and even light enter and then disappear forever. However, beyond the event horizon, black holes are known to form accretion disks from which light can escape. In fact, this is how astronomers are able to confirm the presence of black holes and determine their properties (i.e. mass, spin rate, etc.)
However, according to a recent NASA-funded study led by researchers from the California Institute of Technology (Caltech), there is evidence that not all light emanating from a black hole’s disk simply escapes. According to their observations, some of the light escaping from the disk is pulled back in by the black hole’s gravity and reflected off the disk again. These observations confirm something astronomers have theorized for about forty years.
In April of 2019, the Event Horizon Telescope collaboration history made history when it released the first image of a black hole ever taken. This accomplishment was decades in the making and triggered an international media circus. The picture was the result of a technique known as interferometry, where observatories across the world combined light from their telescopes to create a composite image.
This image showed what astrophysicists have predicted for a long time, that extreme gravitational bending causes photons to fall in around the event horizon, contributing to the bright rings that surround them. Last week, on March 18th, a team of researchers from the Harvard-Smithsonian Center for Astrophysics (CfA) announced new research that shows how black hole images could reveal an intricate substructure within them.
Since the 1960s, astronomers have theorized that all the visible matter in the Universe (aka. baryonic or “luminous matter) constitutes just a small fraction of what’s actually there. In order for the predominant and time-tested theory of gravity to work (as defined by General Relativity), scientists have had to postulate that roughly 85% of the mass in the Universe consists of “Dark Matter”.
Despite many decades of study, scientists have yet to find any direct evidence of Dark Matter and the constituent particle and its origins remain a mystery. However, a team of physicists from the University of York in the UK has proposed a new candidate particle that was just recently discovered. Known as the d-star hexaquark, this particle could have formed the “Dark Matter” in the Universe during the Big Bang.
Einstein’s Theory of General Relativity predicted that black holes would form and eventually collide. It also predicted the creation of gravitational waves from the collision. But how often does this happen, and can we calculate how many stars this will happen to?
A new study from a physicist at Vanderbilt University sought to answer these questions.
The theory of general relativity is packed with strange predictions about how space and time are affected by massive bodies. Everything from gravitational waves to the lensing of light by dark matter. But one of the oddest predictions is an effect known as frame-dragging. The effect is so subtle it was first measured just a decade ago. Now astronomers have measured the effect around a white dwarf, and it tells us how some supernovae occur.
At the center of our galaxy lies a region where roughly 10 million stars are packed into just 1 parsec (3.25 light-years) of space. At the center of this lies the supermassive black hole (SMBH) known as Sagittarius A*, which has a mass of over 4 million Suns. For decades, astronomers have been trying to get a better look at this region in the hopes of understanding the incredible forces at work and how they have affected the evolution of our galaxy.
What they’ve found includes a series of stars that orbit very closely to Sagittarius A* (like S1 and S2), which have been used to test Einstein’s Theory of General Relativity. And recently, a team from UCLA’s Galactic Center Orbits Initiative detected a series of compact objects that also orbit the SMBH. These objects look like clouds of gas but behave like stars, depending on how close they are in their orbits to Sagittarius A*.
Black holes are one of the most awesome and mysterious forces in the Universe. Originally predicted by Einstein’s Theory of General Relativity, these points in spacetime are formed when massive stars undergo gravitational collapse at the end of their lives. Despite decades of study and observation, there is still much we don’t know about this phenomenon.
For example, scientists are still largely in the dark about how the matter that falls into orbit around a black hole and is gradually fed onto it (accretion disks) behave. Thanks to a recent study, where an international team of researchers conducted the most detailed simulations of a black hole to date, a number of theoretical predictions regarding accretion disks have finally been validated.
Special Relativity. It’s been the bane of space explorers, futurists and science fiction authors since Albert Einstein first proposed it in 1905. For those of us who dream of humans one-day becoming an interstellar species, this scientific fact is like a wet blanket. Luckily, there are a few theoretical concepts that have been proposed that indicate that Faster-Than-Light (FTL) travel might still be possible someday.
A popular example is the idea of a wormhole: a speculative structure that links two distant points in space time that would enable interstellar space travel. Recently, a team of Ivy League scientists conducted a study that indicated how “traversable wormholes” could actually be a reality. The bad news is that their results indicate that these wormholes aren’t exactly shortcuts, and could be the cosmic equivalent of “taking the long way”!
At the center of our galaxy resides a Supermassive Black Hole (SMBH) known as Sagittarius A. Based on ongoing observations, astronomers have determined that this SMBH measures 44 million km (27.34 million mi) in diameter and has an estimated mass of 4.31 million Solar Masses. On occasion, a star will wander too close to Sag A and be torn apart in a violent process known as a tidal disruption event (TDE).
These events cause the release of bright flares of radiation, which let astronomers know that a star has been consumed. Unfortunately, for decades, astronomers have been unable to distinguish these events from other galactic phenomena. But thanks to a new study from by an international team of astrophysicists, astronomers now have a unified model that explains recent observations of these extreme events.
As Enrico Ramirez-Ruiz – the professor and chair of astronomy and astrophysics at UC Santa Cruz, the Niels Bohr Professor at the University of Copenhagen, and a co-author on the paper – explained in a UCSC press release:
“Only in the last decade or so have we been able to distinguish TDEs from other galactic phenomena, and the new model will provide us with the basic framework for understanding these rare events.”
In most galaxies, SMBHs do not actively consume any material and therefore do not emit any light, which distinguishes them from galaxies that have Active Galactic Nuclei (AGNs). Tidal disruption events are therefore rare, occurring only once about every 10,000 years in a typical galaxy. However, when a star does get torn apart, it results in the release of an intense amount of radiation. As Dr. Dai explained:
“It is interesting to see how materials get their way into the black hole under such extreme conditions. As the black hole is eating the stellar gas, a vast amount of radiation is emitted. The radiation is what we can observe, and using it we can understand the physics and calculate the black hole properties. This makes it extremely interesting to go hunting for tidal disruption events.”
In the past few years, a few dozen candidates for tidal disruption events (TDEs) have been detected using wide-field optical and UV transient surveys as well as X-ray telescopes. While the physics are expected to be the same for all TDEs, astronomers have noted that a few distinct classes of TDEs appear to exist. While some emit mostly x-rays, others emit mostly visible and ultraviolet light.
As a result, theorists have struggled to understand the diverse properties observed and create a coherent model that can explain them all. For the sake of their model, Dr. Dai and her colleagues combined elements from general relativity, magnetic fields, radiation, and gas hydrodynamics. The team also relied on state-of-the-art computational tools and some recently-acquired large computer clusters funded by the Villum Foundation for Jens Hjorth (head of DARK Cosmology Center), the U.S. National Science Foundation and NASA.
Using the model that resulted, the team concluded that it is the viewing angle of the observer that accounts for the differences in observation. Essentially, different galaxies are oriented randomly with respect to observers on Earth, who see different aspects of TDEs depending on their orientation. As Ramirez-Ruiz explained:
“It is like there is a veil that covers part of a beast. From some angles we see an exposed beast, but from other angles we see a covered beast. The beast is the same, but our perceptions are different.”
In the coming years, a number of planned survey projects are expected to provide much more data on TDEs, which will help expand the field of research into this phenomena. These include the Young Supernova Experiment (YSE) transient survey, which will be led by the DARK Cosmology Center at the Niels Bohr Institute and UC Santa Cruz, and the Large Synoptic Survey Telescopes (LSST) being built in Chile.
According to Dr. Dai, this new model shows what astronomers can expect to see when viewing TDEs from different angles and will allow them to fit different events into a coherent framework. “We will observe hundreds to thousands of tidal disruption events in a few years,” she said. “This will give us a lot of ‘laboratories’ to test our model and use it to understand more about black holes.”
This improved understanding of how black holes occasionally consume stars will also provide additional tests for general relativity, gravitational wave research, and help astronomers to learn more about the evolution of galaxies.