Juno Isn’t Exactly Where it’s Supposed To Be. The Flyby Anomaly is Back, But Why Does it Happen?

Jupiter’s south pole. captured by the JunoCam on Feb. 2, 2017, from an altitude of about 62,800 miles (101,000 kilometers) above the cloud tops. Credits: NASA/JPL-Caltech/SwRI/MSSS/John Landino

In the early 1960s, scientists developed the gravity-assist method, where a spacecraft would conduct a flyby of a major body in order to increase its speed. Many notable missions have used this technique, including the Pioneer, Voyager, Galileo, Cassini, and New Horizons missions. In the course of many of these flybys, scientists have noted an anomaly where the increase in the spacecraft’s speed did not accord with orbital models.

This has come to be known as the “flyby anomaly”, which has endured despite decades of study and resisted all previous attempts at explanation. To address this, a team of researchers from the University Institute of Multidisciplinary Mathematics at the Universitat Politecnica de Valencia have developed a new orbital model based on the maneuvers conducted by the Juno probe.

The study, which recently appeared online under the title “A Possible Flyby Anomaly for Juno at Jupiter“, was conducted by Luis Acedo, Pedro Piqueras and Jose A. Morano. Together, they examined the possible causes of the so-called “flyby anomaly” using the perijove orbit of the Juno probe. Based on Juno’s many pole-to-pole orbits, they not only determined that it too experienced an anomaly, but offered a possible explanation for this.

Artist’s impression of the Pioneer 10 probe, launched in 1972 and now making its way out towards the star Aldebaran. Credit: NASA

To break it down, the speed of a spacecraft is determined by measuring the Doppler shift of radio signals from the spacecraft to the antennas on the Deep Space Network (DSN). During the 1970s when the Pioneer 10 and 11 probes were launched, visiting Jupiter and Saturn before heading off towards the edge of the Solar System, these probes both experienced something strange as they passed between 20 to 70 AU (Uranus to the Kuiper Belt) from the Sun.

Basically, the probes were both 386,000 km (240,000 mi) farther from where existing models predicted they would be. This came to be known as the “Pioneer anomaly“, which became common lore within the space physics community. While the Pioneer anomaly was resolved, the same phenomena has occurred many times since then with subsequent missions. As Dr. Acebo told Universe Today via email:

“The “flyby anomaly” is a problem in astrodynamics discovered by a JPL’s team of researchers lead by John Anderson in the early 90s. When they tried to fit the whole trajectory of the Galileo spacecraft as it approached the Earth on December, 8th, 1990, they found that this only can be done by considering that the ingoing and outgoing pieces of the trajectory correspond to asymptotic velocities that differ in 3.92 mm/s from what is expected in theory.

“The effect appears both in the Doppler data and in the ranging data, so it is not a consequence of the measurement technique. Later on, it has also been found in several flybys performed by Galileo again in 1992, the NEAR [Near Earth Asteroid Rendezvous mission] in 1998, Cassini in 1999 or Rosetta and Messenger in 2005. The largest discrepancy was found for the NEAR (around 13 mm/s) and this is attributed to the very close distance of 532 Km to the surface of the Earth at the perigee.”

NASA’s Juno spacecraft launched on August 6, 2011 and should arrive at Jupiter on July 4, 2016. Credit: NASA / JPL

Another mystery is that while in some cases the anomaly was clear, in others it was on the threshold of detectability or simply absent – as was the case with Juno‘s flyby of Earth in October of 2013. The absence of any convincing explanation has led to a number of explanations, ranging from the influence or dark matter and tidal effects to extensions of General Relativity and the existence of new physics.

However, none of these have produced a substantive explanation that could account for flyby anomalies. To address this, Acedo and his colleagues sought to create a model that was optimized for the Juno mission while at perijove – i.e. the point in the probe’s orbit where it is closest to Jupiter’s center. As Acedo explained:

After the arrival of Juno at Jupiter on July, 4th, 2016, we had the idea of developing our independent orbital model to compare with the fitted trajectories that were being calculated by the JPL team at NASA. After all, Juno is performing very close flybys of Jupiter because the altitude over the top clouds (around 4000 km) is a small fraction of the planet’s radius. So, we expected to find the anomaly here.  This would be an interesting addition to our knowledge of this effect because it would prove that it is not only a particular problem with Earth flybys but that it is universal.”

Their model took into account the tidal forces exerted by the Sun and by Jupiter’s larger satellites – Io, Europa, Ganymede and Callisto – and also the contributions of the known zonal harmonics. They also accounted for Jupiter’s multipolar fields, which are the result of the planet oblate shape, since these play a far more important role than tidal forces as Juno reaches perijove.

Illustration of NASA’s Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA’s Jet Propulsion Laboratory. Credit: NASA/Lockheed Martin

In the end, they determined that an anomaly could also be present during the Juno flybys of Jupiter. They also noted a significant radial component in this anomaly, one which decayed the farther the probe got from the center of Jupiter. As Acebo explained:

“Our conclusion is that an anomalous acceleration is also acting upon the Juno spacecraft in the vicinity of the perijove (in this case, the asymptotic velocity is not a useful concept because the trajectory is closed). This acceleration is almost one hundred times larger than the typical anomalous accelerations responsible for the anomaly in the case of the Earth flybys. This was already expected in connection with Anderson et al.’s initial intuition that the effect increases with the angular rotational velocity of the planet (a period of 9.8 hours for Jupiter vs the 24 hours of the Earth), the radius of the planet and probably its mass.”

They also determined that this anomaly appears to be dependent on the ratio between the spacecraft’s radial velocity and the speed of light, and that this decreases very fast as the craft’s altitude over Jupiter’s clouds changes. These issues were not predicted by General Relativity, so there is a chance that flyby anomalies are the result of novel gravitational phenomena – or perhaps, a more conventional effect that has been overlooked.

In the end, the model that resulted from their calculations accorded closely with telemetry data provided by the Juno mission, though questions remain. Further research is necessary because the pattern of the anomaly seems very complex and a single orbit (or a sequence of similar orbits as in the case of Juno) cannot map the whole field,” said Acebo. “A dedicated mission is required but financial cuts and limited interest in experimental gravity may prevent us to see this mission in the near future.”

It is a testament to the complexities of physics that even after sixty years of space exploration – and one hundred years since General Relativity was first proposed – that we are still refining our models. Perhaps someday we will find there are no mysteries left to solve, and the Universe will make perfect sense to us. What a terrible day that will be!

Further Reading: Earth and Planetary Astrophysics

New Explanation for Dark Energy? Tiny Fluctuations of Time and Space

A new study from researchers from the University of British Columbia offers a new explanation of Dark Energy. Credit: NASA

Since the late 1920s, astronomers have been aware of the fact that the Universe is in a state of expansion. Initially predicted by Einstein’s Theory of General Relativity, this realization has gone on to inform the most widely-accepted cosmological model – the Big Bang Theory. However, things became somewhat confusing during the 1990s, when improved observations showed that the Universe’s rate of expansion has been accelerating for billions of years.

This led to the theory of Dark Energy, a mysterious invisible force that is driving the expansion of the cosmos. Much like Dark Matter which explained the “missing mass”, it then became necessary to find this elusive energy, or at least provide a coherent theoretical framework for it. A new study from the University of British Columbia (UBC) seeks to do just that by postulating the Universe is expanding due to fluctuations in space and time.

The study – which was recently published in the journal Physical Review D – was led by Qingdi Wang, a PhD student with the Department of Physics and Astronomy at UBC. Under the supervisions of UBC Professor William Unruh (the man who proposed the Unruh Effect) and with assistance from Zhen Zhu (another PhD student at UBC), they provide a new take on Dark Energy.

Diagram showing the Lambda-CBR universe, from the Big Bang to the the current era. Credit: Alex Mittelmann/Coldcreation

The team began by addressing the inconsistencies arising out of the two main theories that together explain all natural phenomena in the Universe. These theories are none other than General Relativity and quantum mechanics, which effectively explain how the Universe behaves on the largest of scales (i.e. stars, galaxies, clusters) and the smallest (subatomic particles).

Unfortunately, these two theories are not consistent when it comes to a little matter known as gravity, which scientists are still unable to explain in terms of quantum mechanics. The existence of Dark Energy and the expansion of the Universe are another point of disagreement. For starters, candidates theories like vacuum energy – which is one of the most popular explanations for Dark Energy – present serious incongruities.

According to quantum mechanics, vacuum energy would have an incredibly large energy density to it. But if this is true, then General Relativity predicts that this energy would have an incredibly strong gravitational effect, one which would be powerful enough to cause the Universe to explode in size. As Prof. Unruh shared with Universe Today via email:

“The problem is that any naive calculation of the vacuum energy gives huge values. If one assumes that there is some sort of cutoff so one cannot get energy densities much greater than the Planck energy density (or about 1095 Joules/meter³)  then one finds that one gets a Hubble constant – the time scale on which the Universe roughly doubles in size – of the order of 10-44 sec. So, the usual approach is to say that somehow something reduces that down so that one gets the actual expansion rate of about 10 billion years instead. But that ‘somehow’ is pretty mysterious and no one has come up with an even half convincing mechanism.”

Timeline of the Big Bang and the expansion of the Universe. Credit: NASA

Whereas other scientists have sought to modify the theories of General Relativity and quantum mechanics in order to resolve these inconsistencies, Wang and his colleagues sought a different approach. As Wang explained to Universe Today via email:

“Previous studies are either trying to modify quantum mechanics in some way to make vacuum energy small or trying to modify General Relativity in some way to make gravity numb for vacuum energy. However, quantum mechanics and General Relativity are the two most successful theories that explain how our Universe works… Instead of trying to modify quantum mechanics or General Relativity, we believe that we should first understand them better. We takes the large vacuum energy density predicted by quantum mechanics seriously and just let them gravitate according to General Relativity without modifying either of them.”

For the sake of their study, Wang and his colleagues performed new sets of calculations on vacuum energy that took its predicted high energy density into account. They then considered the possibility that on the tiniest of scales – billions of times smaller than electrons – the fabric of spacetime is subject to wild fluctuations, oscillating at every point between expansion and contraction.

Could fluctuations at the tiniest levels of space time explain Dark Energy and the expansion of the cosmos? Credit: University of Washington

As it swings back and forth, the result of these oscillations is a net effect where the Universe expands slowly, but at an accelerating rate. After performing their calculations, they noted that such an explanation was consistent with both the existence of quantum vacuum energy density and General Relativity. On top of that, it is also consistent with what scientists have been observing in our Universe for almost a century. As Unruh described it:

“Our calculations showed that one could consistently regard [that] the Universe on the tiniest scales is actually expanding and contracting at an absurdly fast rate; but that on a large scale, because of an averaging over those tiny scales, physics would not notice that ‘quantum foam’. It has a tiny residual effect in giving an effective cosmological constant (dark energy type effect). In some ways it is like waves on the ocean which travel as if the ocean were perfectly smooth but really we know that there is this incredible dance of the atoms that make up the water, and waves average over those fluctuations, and act as if the surface was smooth.”

In contrast to conflicting theories of a Universe where the various forces that govern it cannot be resolved and must cancel each other out, Wang and his colleagues presents a picture where the Universe is constantly in motion. In this scenario, the effects of vacuum energy are actually self-cancelling, and also give rise to the expansion and acceleration we have been observing all this time.

While it may be too soon to tell, this image of a Universe that is highly-dynamic (even on the tiniest scales) could revolutionize our understanding of spacetime. At the very least, these theoretical findings are sure to stimulate debate within the scientific community, as well as experiments designed to offer direct evidence. And that, as we know, is the only way we can advance our understanding of this thing known as the Universe.

Further Reading: UBC News, Physical Review D

The 2016 Nobel Prize In Physics: It’s Complicated

This year's Nobel Prize in physics highlights the complications of awarding breakthrough achievements. Credit: nobelprize.org

Update: This year’s Nobel Prize in Physics has been awarded to David J. Thouless (University of Washington), F. Duncan M. Haldane (Princeton University), and J. Michael Kosterlitz of Brown University for “theoretical discoveries of topological phase transitions and topological phases of matter”. One half of the prize was awarded to Thouless while the other half was jointly awarded to Haldane and Kosterlitz.

The Nobel Prize in physics is a coveted award. Every year, the prize is bestowed upon the individual who is deemed to have made the greatest contribution to the field of physics during the preceding year. And this year, the groundbreaking discovery of gravitational waves is anticipated to be the main focus.

This discovery, which was announced on February 11th, 2016, was made possible thanks to the development of the Laser Interferometer Gravitational-Wave Observatory (LIGO). As such, it is expected that the three scientists that are most responsible for the invention of the technology will receive the Nobel Prize for their work. However, there are those in the scientific community who feel that another scientist – Barry Barish – should also be recognized.

But first, some background is needed to help put all this into perspective. For starers, gravitational waves are ripples in the curvature of spacetime that are generated by certain gravitational interactions and which propagate at the speed of light. The existence of such waves has been postulated since the late 19th century.

LIGO's two facilities, located in . Credit: ligo.caltech.edu
LIGO’s two observatories, the located in Livingston, Louisiana; and Hanford, Washington. Credit: ligo.caltech.edu

However, it was not until the late 20th century, thanks in large part to Einstein and his theory of General Relativity, that gravitational-wave research began to emerge as a branch of astronomy. Since the 1960s, various gravitational-wave detectors have been built, which includes the LIGO observatory.

Founded as a Caltech/MIT project, LIGO was officially approved by the National Science Board (NSF) in 1984. A decade later, construction began on the facility’s two locations – in Hanford, Washington and Livingston, Louisiana. By 2002, it began to obtain data, and work began on improving its original detectors in 2008 (known as the Advanced LIGO Project).

The credit for the creation of LIGO goes to three scientists, which includes Rainer Weiss, a professor of physics emeritus at the Massachusetts Institute of Technology (MIT); Ronald Drever, an experimental physics who was professor emeritus at the California Institute of Technology and a professor at Glasgow University; and Kip Thorne, the Feynman Professor of Theoretical Physics at Caltech.

In 1967 and 68, Weiss and Thorne initiated efforts to construct prototype detectors, and produced theoretical work to prove that gravitational waves could be successfully analyzed. By the 1970s, using different methods, Weiss and Denver both succeeded in building detectors. In the coming years, all three men remained pivotal and influential, helping to make gravitational astronomy a legitimate field of research.

 A bird's eye view of LIGO Hanford's laser and vacuum equipment area (LVEA). The LVEA houses the pre-stabilized laser, beam splitter, input test masses, and other equipment. Credit: ligo.caltech.edu
LIGO Hanford’s laser and vacuum equipment area (LVEA), which houses the pre-stabilized laser, beam splitter, input test masses, and other equipment. Credit: ligo.caltech.edu

However, it has been argued that without Barish – a particle physicist at Caltech – the discovery would never have been made. Having become the Principal Investigator of LIGO in 1994, he inherited the project at a very crucial time. It had begun funding a decade prior, but coordinating the work of Wiess, Thorne and Drever (from MIT, Caltech and the University of Glasgow, respectively) proved difficult.

As such, it was decided that a single director was needed. Between 1987 and 1994, Rochus Vogt – a professor emeritus of Physics at Caltech – was appointed by the NSF to fill this role. While Vogt brought the initial team together and helped to get the construction of the project approved, he proved difficult when it came to dealing with bureaucracy and documenting his researchers progress.

As such, between 1989 through 1994, LIGO failed to progress technically and organizationally, and had trouble acquiring funding as well. By 1994, Caltech eased Vogt out of his position and appointed Barish to the position of director. Barish got to work quickly, making significant changes to the way LIGO was administered, expanding the research team, and developing a detailed work plan for the NSF.

Barish was also responsible for expanding LIGO beyond its Caltech and MIT constraints. This he did through the creation of the independent LIGO Scientific Collaboration (LSC), which gave access to outside researchers and institutions. This was instrumental in creating crucial partnerships, which included the UK Science and Technology Facilities Council, the Max Planck Society of Germany, and the Australian Research Council.

Artist's impression of how massive bodies (like our Sun) distort space time. Credit: T. Pyle/Caltech/MIT/LIGO Lab
Artist’s impression of how massive bodies (like our Sun) distort space time. Such bodies also create gravity waves when they accelerate through space and time. Credit: T. Pyle/Caltech/MIT/LIGO Lab

By 1999, construction had wrapped up on the LIGO observatories, and by 2002, they began taking their first bits of data. By 2004, the funding and groundwork was laid for the next phase of LIGO development, which involved a multi-year shut-down while the detectors were replaced with improved “Advanced LIGO” versions.

All of this was made possible by Barish, who retired in 2005 to head up other projects. Thanks to his sweeping reforms, LIGO got to work after an abortive start, began to produce data, procured funding, crucial partnerships, and now has more than 1000 collaborators worldwide, thanks to the LSC program he established.

Little wonder then why some scientists think the Nobel Prize should be split four-ways, awarding the three scientists who conceived of LIGO and the one scientist who made it happen. And as Barish himself was quoted as saying by Science:

“I think there’s a bit of truth that LIGO wouldn’t be here if I didn’t do it, so I don’t think I’m undeserving. If they wait a year and give it to these three guys, at least I’ll feel that they thought about it,” he says. “If they decide [to give it to them] this October, I’ll have more bad feelings because they won’t have done their homework.”

The approximate locations of the two gravitational-wave events detected so far by LIGO are shown on this sky map of the southern hemisphere. . Credit: LIGO/Axel Mellinger
The approximate locations of the two gravitational-wave events detected so far by LIGO are shown on this sky map of the southern hemisphere. . Credit: LIGO/Axel Mellinger

However, there is good reason to believe that the award will ultimately be split three ways, leaving Barish out. For instance, Weiss, Drever, and Thorne have been honored three times already this year for their work on LIGO. This has included the Special Breakthrough Prize in Fundamental Physics, the Gruber Cosmology Prize, and Kavli Prize in Astrophysics.

What’s more, in the past, the Nobel Prize in physics has tended to be awarded to those responsible for the intellectual contributions leading to a major breakthrough, rather than to those who did the leg work. Out of the last six Prizes issued (between 2010 and 2015), five have been awarded for the development of experimental methods, observational studies, and theoretical discoveries.

Only one award was given for a technical development. This was the case in 2014 where the award was given jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for “the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources”.

Basically, the Nobel Prize is a complicated matter. Every year, it is awarded to those who made a considerable contribution to science, or were responsible for a major breakthrough. But contributions and breakthroughs are perhaps a bit relative. Whom we choose to honor, and for what, can also be seen as an indication of what is valued most in the scientific community.

In the end, this year’s award may serve to highlight how significant contributions do not just entail the development of new ideas and methods, but also in bringing them to fruition.

Further Reading: Science, LIGO, Nobelprize.org

What is Time Dilation?

What is Time Dilation?

One of the most interesting topics in the field of science is the concept of General Relativity. You know, this idea that strange things happen as you near the speed of light. There are strange changes to the length of things, bizarre shifting of wavelengths. And most puzzling of all, there’s the concept of dilation: how you can literally experience more or less time based on how fast you’re traveling compared to someone else.

And even stranger than that? As we saw in the movie Interstellar, just spending time near a very massive object, like a black hole, can cause these same relativistic effects. Because mass and acceleration are sort of the same thing?

Honestly, it’s enough to give you a massive headache.

But just because I find the concept baffling, I’m still going to keep chipping away, trying to understand more about it and help you wrap your brain around it too. For my own benefit, for your benefit, but mostly for my benefit.

There’s a great anecdote in the history of physics – it’s probably not what actually happened, but I still love it.

One of the most famous astronomers of the 20th century was Sir Arthur Eddington, played by a dashing David Tennant in the 2008 movie, Einstein and Eddington. Which, you should really see, if you haven’t already.

So anyway, Doctor Who, I mean Eddington, had worked out how stars generate energy (through fusion) and personally confirmed that Einstein’s predictions of General Relativity were correct when he observed a total Solar Eclipse in 1919.

Arthur Eddington
Arthur Eddington

Apparently during a lecture by Sir Arthur Eddington, someone asked, “Professor Eddington, you must be one of the three people in the world who understands General Relativity.” He paused for a moment, and then said, “yes, but I’m trying to think of who the third person is.”

It’s definitely not me, but I know someone who does have a handle on General Relativity, and that’s Dr. Brian Koberlein, an astrophysics professor at the Rochester Institute of Technology. He covers this topic all the time on his blog, One Universe At A Time, which you should totally visit and read at briankoberlein.com.

In fact, just to demonstrate how this works, Brian has conveniently pushed his RIT office to nearly light speed, and is hurtling towards us right now.


Dr. Brian Koberlein:
Hi Fraser, thanks for having me. If you can hang on one second, I just have to slow down.

Fraser Cain:
What just happened there? Why were you all slowed down?

Brian:
It’s actually an interesting effect known as time dilation. One of the things about light is that no matter what frame of reference you’re in, no matter how you’re moving through the Universe, you’ll always measure the speed of light in a vacuum to be the same. About 300,000 kilometres per second.

And in order to do that, if you are moving relative to me, or if I’m moving relative to you, our references for time and space have to shift to keep the speed of light constant. As I move faster away from you, my time according to you has to appear to slow down. On the same hand, your time will appear to slow down relative to me.

And that time dilation effect is necessary to keep the speed of light constant.

Fraser:
Does this only happen when you’re moving?

A representation of the coordinate system of the warped space around Earth. Credit: NASA

Brian:
Time dilation doesn’t just occur because of relative motion, it can also occur because of gravity. Einstein’s theory of relativity says that gravity is a property of the warping of space and time. So when you have a mass like Earth, it actually warps space and time.

If you’re standing on the Earth, your time appears to move a little bit more slowly than someone up in space, because of the difference in gravity.

Now, for Earth, that doesn’t really matter that much, but for something like a black hole, it could matter a great deal. As you get closer and closer to a black hole, your time will appear to slow down more and more and more.

Fraser:
What would this mean for space travel?

Brian:
In many times in science fiction, you’ll see the idea of a rocket moving very close to the speed of light, and using time dilation to travel to distant stars.

But you could actually do the same thing with gravity. If you had a black hole that was going out to another star or another galaxy, you could actually take your spaceship and orbit it very close to the black hole. And your time would seem to slow down. While you’re orbiting the black hole, the black hole would take its time to get to another star or another galaxy, and for you it would seem really quick.

Orbiting near a moving black hole doesn't seem like the safest mode of transportation, but time dilation might make it worth the risk. Credit: NAOJ
Orbiting near a moving black hole doesn’t seem like the safest mode of transportation, but time dilation might make it worth the risk. Credit: NAOJ

So that’s another way that you could use time dilation to travel to the stars, at least in science fiction.

Fraser:
All right Brian, I’ve got one final question for you. If you get more massive as you get closer to the speed of light, could you get so much mass that you turn into a black hole? I’d like you to answer this question in the form of a blog post on briankoberlein.com and on the Google+ post we’re going to link right here.

Brian:
Thanks Fraser, I’ll have that answer up on my website.


Once again, we visited the baffling realm of time dilation, and returned relatively unscathed. It doesn’t mean that I understand it any better, but I hope you do, anyway. Once again, a big thanks to Dr. Koberlein for taking a few minutes out of his relativistic travel to answer our questions. Make sure you visit his blog and read his answer to my question.

A Star Is About To Go 2.5% The Speed Of Light Past A Black Hole

Artist’s impression of the star S2 passing very close to the supermassive black hole at the centre of the Milky Way. Credit: ESO

Since it was first discovered in 1974, astronomers have been dying to get a better look at the Supermassive Black Hole (SBH) at the center of our galaxy. Known as Sagittarius A*, scientists have only been able to gauge the position and mass of this SBH by measuring the effect it has on the stars that orbit it. But so far, more detailed observations have eluded them, thanks in part to all the gas and dust that obscures it.

Luckily, the European Southern Observatory (ESO) recently began work with the GRAVITY interferometer, the latest component in their Very Large Telescope (VLT). Using this instrument, which combines near-infrared imaging, adaptive-optics, and vastly improved resolution and accuracy, they have managed to capture images of the stars orbiting Sagittarius A*. And what they have observed was quite fascinating.

One of the primary purposes of GRAVITY is to study the gravitational field around Sagittarius A* in order to make precise measurements of the stars that orbit it. In so doing, the GRAVITY team – which consists of astronomers from the ESO, the Max Planck Institute, and multiple European research institutes – will be able to test Einstein’s theory of General Relativity like never before.

The core of the Milky Way. Credit: NASA/JPL-Caltech/S. Stolovy (SSC/Caltech)
Spitzer image of the core of the Milky Way Galaxy. Credit: NASA/JPL-Caltech/S. Stolovy (SSC/Caltech)

In what was the first observation conducted using the new instrument, the GRAVITY team used its powerful interferometric imaging capabilities to study S2, a faint star which orbits Sagittarius A* with a period of only 16 years. This test demonstrated the effectiveness of the GRAVITY instrument – which is 15 times more sensitive than the individual 8.2-metre Unit Telescopes the VLT currently relies on.

This was an historic accomplishment, as a clear view of the center of our galaxy is something that has eluded astronomers in the past. As GRAVITY’s lead scientist, Frank Eisenhauer – from the Max Planck Institute for Extraterrestrial Physics in Garching, Germany – explained to Universe Today via email:

“First, the Galactic Center is hidden behind a huge amount of interstellar dust, and it is practically invisible at optical wavelengths. The stars are only observable in the infrared, so we first had to develop the necessary technology and instruments for that. Second, there are so many stars concentrated in the Galactic Center that a normal telescope is not sharp enough to resolve them. It was only in the late 1990′ and in the beginning of this century when we learned to sharpen the images with the help of speckle interferometry and adaptive optics to see the stars and observe their dance around the central black hole.”

But more than that, the observation of S2 was very well timed. In 2018, the star will be at the closest point in its orbit to the Sagittarius A*  – just 17 light-hours from it. As you can see from the video below, it is at this point that S2 will be moving much faster than at any other point in its orbit (the orbit of S2 is highlighted in red and the position of the central black hole is marked with a red cross).

When it makes its closest approach, S2 will accelerate to speeds of almost 30 million km per hour, which is 2.5% the speed of light. Another opportunity to view this star reach such high speeds will not come again for another 16 years – in 2034. And having shown just how sensitive the instrument is already, the GRAVITY team expects to be able make very precise measurements of the star’s position.

In fact, they anticipate that the level of accuracy will be comparable to that of measuring the positions of objects on the surface of the Moon, right down to the centimeter-scale. As such, they will be able to determine whether the motion of the star as it orbits the black hole are consistent with Einstein’s theories of general relativity.

“[I]t is not the speed itself to cause the general relativistic effects,” explained Eisenhauer, “but the strong gravitation around the black hole. But the very  high orbital speed is a direct consequence and measure of the gravitation, so we refer to it in the press release because the comparison with the speed of light and the ISS illustrates so nicely the extreme conditions.

Artist's impression of the influence gravity has on space time. Credit: space.com
Artist’s impression of the influence gravity has on space-time. Credit: space.com

As recent simulations of the expansion of galaxies in the Universe have shown, Einstein’s theories are still holding up after many decades. However, these tests will offer hard evidence, obtained through direct observation. A star traveling at a portion of the speed of light around a supermassive black hole at the center of our galaxy will certainly prove to be a fitting test.

And Eisenhauer and his colleagues expect to see some very interesting things. “We hope to see a “kick” in the orbit.” he said. “The general relativistic effects increase very strongly when you approach the black hole, and when the star swings by, these effects will slightly change the direction of the
orbit.”

While those of us here at Earth will not be able to “star gaze” on this occasion and see R2 whipping past Sagittarius A*, we will still be privy to all the results. And then, we just might see if Einstein really was correct when he proposed what is still the predominant theory of gravitation in physics, over a century later.

Further Reading: eso.org

Japanese 3D Galaxy Map Confirms Einstein Was One Smart Dude

An international team of researchers have produced the largest 3-D map of the universe to date, which validates Einstein's theory of General Relativity. Credit: NAOJ/CFHT/ SDSS

On June 30th, 1905, Albert Einstein started a revolution with the publication of theory of Special Relativity. This theory, among other things, stated that the speed of light in a vacuum is the same for all observers, regardless of the source. In 1915, he followed this up with the publication of his theory of General Relativity, which asserted that gravity has a warping effect on space-time. For over a century, these theories have been an essential tool in astrophysics, explaining the behavior of the Universe on the large scale.

However, since the 1990s, astronomers have been aware of the fact that the Universe is expanding at an accelerated rate. In an effort to explain the mechanics behind this, suggestions have ranged from the possible existence of an invisible energy (i.e. Dark Energy) to the possibility that Einstein’s field equations of General Relativity could be breaking down. But thanks to the recent work of an international research team, it is now known that Einstein had it right all along.

Continue reading “Japanese 3D Galaxy Map Confirms Einstein Was One Smart Dude”

Who was Stephen Hawking?

In honor of Dr. Stephen Hawking, the COSMOS center will be creating the most detailed 3D mapping effort of the Universe to date. Credit: BBC, Illus.: T.Reyes

When we think of major figures in the history of science, many names come to mind. Einstein, Newton, Kepler, Galileo – all great theorists and thinkers who left an indelible mark during their lifetime. In many cases, the full extent of their contributions would not be appreciated until after their death. But those of us that are alive today are fortunate to have a great scientist among us who made considerable contributions – Dr. Stephen Hawking.

Considered by many to be the “modern Einstein”, Hawking’s work in cosmology and theoretical physics was unmatched among his contemporaries. In addition to his work on gravitational singularities and quantum mechanics, he was also responsible for discovering that black holes emit radiation. On top of that, Hawking was a cultural icon, endorsing countless causes, appearing on many television shows as himself, and penning several books that have made science accessible to a wider audience.

Early Life:

Hawking was born on January 8th, 1942 (the 300th anniversary of the death of Galileo) in Oxford, England. His parents, Frank and Isobel Hawking, were both students at Oxford University, where Frank studied medicine and Isobel studied philosophy, politics and economics. The couple originally lived in Highgate, a suburb of London, but moved to Oxford to get away from the bombings during World War II and give birth to their child in safety. The two would go on to have two daughters, Philippa and Mary, and one adopted son, Edward.

The family moved again in 1950, this time to St. Albans, Hertfordshire, because Stephen’s father became the head of parasitology at the National Institute for Medical Research (now part of the Francis Crick Institute). While there, the family gained the reputation for being highly intelligent, if somewhat eccentric. They lived frugally, living in a large, cluttered and poorly maintained house, driving around in a converted taxicab, and constantly reading (even at the dinner table).

Stephen Hawking as a young man. Credit: gazettereview.com
Stephen Hawking as a young man. Credit: gazettereview.com

Education:

Hawking began his schooling at the Byron House School, where he experienced difficulty in learning to read (which he later blamed on the school’s “progressive methods”.) While in St. Albans, the eight-year-old Hawking attended St. Albans High School for Girls for a few months (which was permitted at the time for younger boys). In September of 1952, he was enrolled at Radlett School for a year, but would remain at St. Albans for the majority of his teen years due the family’s financial constraints.

While there, Hawking made many friends, with whom he played board games, manufactured fireworks, model airplanes and boats, and had long discussions with on subjects ranging from religion to extrasensory perception. From 1958, and with the help of the mathematics teacher Dikran Tahta, Hawking and his friends built a computer from clock parts, an old telephone switchboard and other recycled components.

Though he was not initially academically successfully, Hawking showed considerable aptitude for scientific subjects and was nicknamed “Einstein”. Inspired by his teacher Tahta, he decided to study mathematics at university. His father had hoped that his son would attend Oxford and study medicine, but since it was not possible to study math there at the time, Hawking chose to study physics and chemistry.

Stephen Hawking (holding the handkerchief) and the Oxford Boat Club. Credit: focusfeatures.com
Stephen Hawking (holding the handkerchief) and the Oxford Boat Club. Credit: focusfeatures.com

In 1959, when he was just 17, Hawking took the Oxford entrance exam and was awarded a scholarship. For the first 18 months, he was bored and lonely, owing to the fact that he was younger than his peers and found the work “ridiculously easy”. During his second and third year, Hawking made greater attempts to bond with his peers and developed into a popular student, joining the Oxford Boat Club and developing an interest in classical music and science fiction.

When it came time for his final exam, Hawking’s performance was lackluster. Instead of answering all the questions, he chose to focus on theoretical physics questions and avoided any that required factual knowledge. The result was a score that put him on the borderline between first- and second-class honors. Needing a first-class honors for his planned graduate studies in cosmology at Cambridge, he was forced to take a via (oral exam).

Concerned that he was viewed as a lazy and difficult student, Hawking described his future plans as follows during the viva: “If you award me a First, I will go to Cambridge. If I receive a Second, I shall stay in Oxford, so I expect you will give me a First.” However, Hawking was held in higher regard than he believed, and received a first-class BA (Hons.) degree, thus allowing him to pursue graduate work at Cambridge University in October 1962.

Hawking on graduation day in 1962. Credit: telegraph.co.uk
Hawking on graduation day in 1962. Credit: telegraph.co.uk

Hawking experienced some initial difficulty during his first year of doctoral studies. He found his background in mathematics inadequate for work in general relativity and cosmology, and was assigned Dennis William Sciama (one of the founders of modern cosmology) as his supervisor, rather than noted astronomer Fred Hoyle (whom he had been hoping for).

In addition, it was during his graduate studies that Hawking was diagnosed with early-onset amyotrophic lateral sclerosis (ALS). During his final year at Oxford, he had experienced an accident where he fell down a flight of stairs, and also began experiencing difficulties when rowing and incidents of slurred speech. When the diagnosis came in 1963, he fell into a state of depression and felt there was little point in continuing his studies.

However, his outlook soon changed, as the disease progressed more slowly than the doctors had predicted – initially, he was given two years to live. Then, with the encouragement of Sciama, he returned to his work, and quickly gained a reputation for brilliance and brashness. This was demonstrated when he publicly challenged the work of noted astronomer Fred Hoyle, who was famous for rejecting the Big Bang theory, at a lecture in June of 1964.

Stephen Hawking and Jane Wilde on their wedding day, July 14, 1966. Credit: telegraph.co.uk
Stephen Hawking and Jane Wilde on their wedding day, July 14, 1966. Credit: telegraph.co.uk

When Hawking began his graduate studies, there was much debate in the physics community about the prevailing theories of the creation of the universe: the Big Bang and the Steady State theories. In the former, the universe was conceived in a gigantic explosion, in which all matter in the known universe was created. In the latter, new matter is constantly created as the universe expands. Hawking quickly joined the debate.

Hawking became inspired by Roger Penrose’s theorem that a spacetime singularity – a point where the quantities used to measure the gravitational field of a celestial body become infinite – exists at the center of a black hole. Hawking applied the same thinking to the entire universe, and wrote his 1965 thesis on the topic. He went on to receive a research fellowship at Gonville and Caius College and obtained his PhD degree in cosmology in 1966.

It was also during this time that Hawking met his first wife, Jane Wilde. Though he had met her shortly before his diagnosis with ALS, their relationship continued to grow as he returned to complete his studies. The two became engaged in October of 1964 and were married on July 14th, 1966. Hawking would later say that his relationship with Wilde gave him “something to live for”.

Scientific Achievements:

In his doctoral thesis, which he wrote in collaboration with Penrose, Hawking extended the existence of singularities to the notion that the universe might have started as a singularity. Their joint essay – entitled, “Singularities and the Geometry of Space-Time” – was the runner-up in the 1968 Gravity Research Foundation competition and shared top honors with one by Penrose to win Cambridge’s most prestigious Adams Prize for that year.

In 1970, Hawking became part of the Sherman Fairchild Distinguished Scholars visiting professorship program, which allowed him to lecture at the California Institute of Technology (Caltech). It was during this time that he and Penrose published a proof that incorporated the theories of General Relativity and the physical cosmology developed by Alexander Freidmann.

Based on Einstein’s equations, Freidmann asserted that the universe was dynamic and changed in size over time. He also asserted that space-time had geometry, which is determined by its overall mass/energy density. If equal to the critical density, the universe has zero curvature (i.e. flat configuration); if it is less than critical, the universe has negative curvature (open configuration); and if greater than critical, the universe has a positive curvature (closed configuration)

According to the Hawking-Penrose singularity theorem, if the universe truly obeyed the models of general relativity, then it must have begun as a singularity. This essentially meant that, prior to the Big Bang, the entire universe existed as a point of infinite density that contained all of the mass and space-time of the universe, before quantum fluctuations caused it to rapidly expand.

Per the Friedmann equations, the geometry of the universe is determined by its overall mass/energy density. If equal to the critical density, ?0 the universe has zero curvature (flat configuration). If less than critical, the universe has negative curvature (open configuration). If greater than critical, the universe has positive curvature (closed configuration). Image credit: NASA/GSFC
Per the Friedmann equations, the geometry of the universe is determined by its overall mass/energy density, and can have either flat, negative, or positive curvature. Credit: NASA/GSFC

Also in 1970, Hawking postulated what became known as the second law of black hole dynamics. With James M. Bardeen and Brandon Carter, he proposed the four laws of black hole mechanics, drawing an analogy with the four laws of thermodynamics.

These four laws stated that – for a stationary black hole, the horizon has constant surface gravity; for perturbations of stationary black holes, the change of energy is related to change of area, angular momentum, and electric charge; the horizon area is, assuming the weak energy condition, a non-decreasing function of time; and that it is not possible to form a black hole with vanishing surface gravity.

In 1971, Hawking released an essay titled “Black Holes in General Relativity” in which he conjectured that the surface area of black holes can never decrease, and therefore certain limits can be placed on the amount of energy they emit. This essay won Hawking the Gravity Research Foundation Award in January of that year.

In 1973, Hawking’s first book, which he wrote during his post-doc studies with George Ellis, was published. Titled, The Large Scale Structure of Space-Time, the book describes the foundation of space itself and the nature of its infinite expansion, using differential geometry to examine the consequences of Einstein’s General Theory of Relativity.

Hawking was elected a Fellow of the Royal Society (FRS) in 1974, a few weeks after the announcement of Hawking radiation (see below). In 1975, he returned to Cambridge and was given a new position as Reader, which is reserved for senior academics with a distinguished international reputation in research or scholarship.

The mid-to-late 1970s was a time of growing interest in black holes, as well as the researchers associated with them. As such, Hawking’s public profile began to grow and he received increased academic and public recognition, appearing in print and television interviews and receiving numerous honorary positions and awards.

In the late 1970s, Hawking was elected Lucasian Professor of Mathematics at the University of Cambridge, an honorary position created in 1663 which is considered one of the most prestigious academic posts in the world. Prior to Hawking, its former holders included such scientific greats as Sir Isaac Newton, Joseph Larmor, Charles Babbage, George Stokes, and Paul Dirac.

His inaugural lecture as Lucasian Professor of Mathematics was titled: “Is the end in sight for Theoretical Physics”. During the speech, he proposed N=8 Supergravity – a quantum field theory which involves gravity in 8 supersymmetries – as the leading theory to solve many of the outstanding problems physicists were studying.

Hawking’s promotion coincided with a health crisis which led to Hawking being forced to accept some nursing services at home. At the same time, he began making a transition in his approach to physics, becoming more intuitive and speculative rather than insisting on mathematical proofs. By 1981, this saw Hawking begin to focus his attention on cosmological inflation theory and the origins of the universe.

Inflation theory – which had been proposed by Alan Guth that same year – posits that following the Big Bang, the universe initially expanded very rapidly before settling into to a slower rate of expansion. In response, Hawking presented work at the Vatican conference that year, where he suggested that their might be no boundary or beginning to the universe.

During the summer of 1982, he and his colleague Gary Gibbons organized a three-week workshop on the subject titled “The Very Early Universe” at Cambridge University. With Jim Hartle, an American physicist and professor of physics at the University of California, he proposed that during the earliest period of the universe (aka. the Planck epoch) the universe had no boundary in space time.

In 1983, they published this model, known as the Hartle-Hawking state. Among other things, it asserted that before the Big Bang, time did not exist, and the concept of the beginning of the universe is therefore meaningless. It also replaced the initial singularity of the Big Bang with a region akin to the North Pole which (similar to the real North Pole) one cannot travel north of because it is a point where lines meet that has no boundary.

This proposal predicted a closed universe, which had many existential implications, particularly about the existence of God. At no point did Hawking rule out the existence of God, choosing to use God in a metaphorical sense when explaining the mysteries of the universe. However, he would often suggest that the existence of God was unnecessary to explain the origin of the universe, or the existence of a unified field theory.

In 1982, he also began work on a book that would explain the nature of the universe, relativity and quantum mechanics in a way that would be accessible to the general public. This led him to sign a contract with Bantam Books for the sake of publishing A Brief History of Time, the first draft of which he completed in 1984.

After multiple revisions, the final draft was published in 1988, and was met with much critical acclaim. The book was translated into multiple languages, remained at the top of bestseller lists in both the US and UK for months, and ultimately sold an estimated 9 million copies. Media attention was intense, and Newsweek magazine cover and a television special both described him as “Master of the Universe”.

Further work by Hawking in the area of arrows of time led to the 1985 publication of a paper theorizing that if the no-boundary proposition were correct, then when the universe stopped expanding and eventually collapsed, time would run backwards. He would later withdraw this concept after independent calculations disputed it, but the theory did provide valuable insight into the possible connections between time and cosmic expansion.

During the 1990’s, Hawking continued to publish and lecture on his theories regarding physics, black holes and the Big Bang. In 1993, he co-edited a book with Gary Gibbons on on Euclidean quantum gravity, a theory they had been working on together in the late 70s. According to this theory, a section of a gravitational field in a black hole can be evaluated using a functional integral approach, such that it can avoid the singularities.

That same year, a popular-level collection of essays, interviews and talks titled, Black Holes and Baby Universes and Other Essays was also published. In 1994, Hawking and Penrose delivered a series of six lectures at Cambridge’s Newton Institute, which were published in 1996 under the title “The Nature of Space and Time“.

It was also in 1990s that major developments happened in Hawking’s personal life. In 1990, he and Jane Hawking commenced divorce proceedings after many years of strained relations, owing to his disability, the constant presence of care-givers, and his celebrity status. Hawking remarried in 1995 to Elaine Mason, his caregiver of many years.

Stephen Hawking lectured regularly throughout the 90s and 2000s. Credit: educatinghumanity.com
Stephen Hawking lectured regularly throughout the 90s, many of which were collected and published in “The Nature of Space and Time” in 1996. Credit: educatinghumanity.com

In the 2000s, Hawking produced many new books and new editions of older ones. These included The Universe in a Nutshell (2001), A Briefer History of Time (2005), and God Created the Integers (2006). He also began collaborating with Jim Hartle of the University of California, Santa Barbara, and the European Organization for Nuclear Research (CERN) to produce new cosmological theories.

Foremost of these was Hawking’s “top-down cosmology”, which states that the universe had not one unique initial state but many different ones, and that predicting the universe’s current state from a single initial state is therefore inappropriate. Consistent with quantum mechanics, top-down cosmology posits that the present “selects” the past from a superposition of many possible histories.

In so doing, the theory also offered a possible resolution of the “fine-tuning question”, which addresses the possibility that life can only exist when certain physical constraints lie within a narrow range. By offering this new model of cosmology, Hawking opened up the possibility that life may not be bound by such restrictions and could be much more plentiful than previously thought.

In 2006, Hawking and his second wife, Elaine Mason, quietly divorced, and Hawking resumed closer relationships with his first wife Jane, his children (Robert, Lucy and Timothy), and grandchildren. In 2009, he retired as Lucasian Professor of Mathematics, which was required by Cambridge University regulations. Hawking has continued to work as director of research at the Cambridge University Department of Applied Mathematics and Theoretical Physics ever since, and has made no indication of retiring.

“Hawking Radiation” and the “Black Hole Information Paradox”:

In the early 1970s, Hawking’s began working on what is known as the “no-hair theorem”. Based on the Einstein-Maxwell equations of gravitation and electromagnetism in general relativity, the theorem stated that all black holes can be completely characterized by only three externally observable classical parameters: mass, electric charge, and angular momentum.

In this scenario, all other information about the matter which formed a black hole or is falling into it (for which “hair’ is used as a metaphor), “disappears” behind the black-hole event horizon, and is therefore preserved but permanently inaccessible to external observers.

In 1973, Hawking traveled to Moscow and met with Soviet scientists Yakov Borisovich Zel’dovich and Alexei Starobinsky. During his discussions with them about their work, they showed him how the uncertainty principle demonstrated that black holes should emit particles. This contradicted Hawking’ second law of black hole thermodynamics (i.e. black holes can’t get smaller) since it meant that by losing energy they must be losing mass.

What’s more, it supported a theory advanced by Jacob Bekenstein, a graduate student of John Wheeler University, that black holes should have a finite, non-zero temperature and entropy. All of this contradicted the “no-hair theorem” about black boles. Hawking revised this theorem shortly thereafter, showing that when quantum mechanical effects are taken into account, one finds that black holes emit thermal radiation at a temperature.

From 1974 onward, Hawking presented Bekenstein’s results, which showed that black holes emit radiation. This came to be known as “Hawking radiation”, and was initially controversial. However, by the late 1970s and following the publication of further research, the discovery was widely accepted as a significant breakthrough in theoretical physics.

However, one of the outgrowths of this theory was the likelihood that black holes gradually lose mass and energy. Because of this, black holes that lose more mass than they gain through other means are expected to shrink and ultimately vanish – a phenomena which is known as black hole “evaporation”.

In 1981, Hawking proposed that information in a black hole is irretrievably lost when a black hole evaporates, which came to be known as the “Black Hole Information Paradox”. This states that physical information could permanently disappear in a black hole, allowing many physical states to devolve into the same state.

This was controversial because it violated two fundamental tenets of quantum physics. In principle, quantum physics tells us that complete information about a physical system – i.e. the state of its matter (mass, position, spin, temperature, etc.) – is encoded in its wave function up to the point when that wave function collapses. This in turn gives rise to two other principles.

The first is Quantum Determinism, which states that – given a present wave function – future changes are uniquely determined by the evolution operator. The second is Reversibility, which states that the evolution operator has an inverse, meaning that the past wave functions are similarly unique. The combination of these means that the information about the quantum state of matter must always be preserved.

By proposing that this information disappears once a black evaporates, Hawking essentially created a fundamental paradox. If a black hole can evaporate, which causes all the information about a quantum wave function to disappear, than information can in fact be lost forever. This has been the subject of ongoing debate among scientists, one which has remained largely unresolved.

However, by 2003, the growing consensus among physicists was that Hawking was wrong about the loss of information in a black hole. In a 2004 lecture in Dublin, he conceded his bet with fellow John Preskill of Caltech (which he made in 1997), but described his own, somewhat controversial solution to the paradox problem – that black holes may have more than one topology.

In the 2005 paper he published on the subject – “Information Loss in Black Holes” – he argued that the information paradox was explained by examining all the alternative histories of universes, with the information loss in those with black holes being cancelled out by those without. As of January 2014, Hawking has described the Black Hole Information Paradox as his “biggest blunder”.

Other Accomplishments:

In addition to advancing our understanding of black holes and cosmology through the application of general relativity and quantum mechanics, Stephen Hawking has also been pivotal in bringing science to a wider audience. Over the course of his career, he has published many popular books, traveled and lectured extensively, and has made numerous appearances and done voice-over work for television shows, movies and even provided narration for the Pink Floyd song, “Keep Talking”.

Stephen Hawking's theories on black holes became the subject of many television specials, such as . Credit: discovery.com
Stephen Hawking’s theories on black holes became the subject of television specials, such as “Stephen Hawking’s Universe” on PBS. Credit: discovery.com

A film version of A Brief History of Time, directed by Errol Morris and produced by Steven Spielberg, premiered in 1992. Hawking had wanted the film to be scientific rather than biographical, but he was persuaded otherwise. In 1997, a six-part television series Stephen Hawking’s Universe premiered on PBS, with a companion book also being released.

In 2007, Hawking and his daughter Lucy published George’s Secret Key to the Universe, a children’s book designed to explain theoretical physics in an accessible fashion and featuring characters similar to those in the Hawking family. The book was followed by three sequels – George’s Cosmic Treasure Hunt (2009), George and the Big Bang (2011), George and the Unbreakable Code (2014).

Since the 1990s, Hawking has also been a major role model for people dealing with disabilities and degenerative illnesses, and his outreach for disability awareness and research has been unparalleled. At the turn of the century, he and eleven other luminaries joined with Rehabilitation International to sign the Charter for the Third Millennium on Disability, which called on governments around the world to prevent disabilities and protect disability rights.

Professor Stephen Hawking during a zero-gravity flight. Image credit: Zero G.
Professor Stephen Hawking participating in a zero-gravity flight (aka. the “Vomit Comet”) in 2007. Credit: gozerog.com

Motivated by the desire to increase public interest in spaceflight and to show the potential of people with disabilities, in 2007 he participated in zero-gravity flight in a “Vomit Comet” – a specially fitted aircraft that dips and climbs through the air to simulate the feeling of weightlessness – courtesy of Zero Gravity Corporation, during which he experienced weightlessness eight times.

In August 2012, Hawking narrated the “Enlightenment” segment of the 2012 Summer Paralympics opening ceremony. In September of 2013, he expressed support for the legalization of assisted suicide for the terminally ill. In August of 2014, Hawking accepted the Ice Bucket Challenge to promote ALS/MND awareness and raise contributions for research. As he had pneumonia in 2013, he was advised not to have ice poured over him, but his children volunteered to accept the challenge on his behalf.

During his career, Hawking has also been a committed educator, having personally supervised 39 successful PhD students.He has also lent his name to the ongoing search for extra-terrestrial intelligence and the debate regarding the development of robots and artificial intelligence. On July 20th, 2015, Stephen Hawking helped launch Breakthrough Initiatives, an effort to search for extraterrestrial life in the universe.

Also in 2015, Hawking lent his voice and celebrity status to the promotion of The Global Goals, a series of 17 goals adopted by the United Nations Sustainable Development Summit to end extreme poverty, social inequality, and fixing climate change over the course of the next 15 years.

President Barack Obama talks with Stephen Hawking in the Blue Room of the White House before a ceremony presenting him and 15 others the Presidential Medal of Freedom, August 12, 2009. The Medal of Freedom is the nation's highest civilian honor. (Official White House photo by Pete Souza)
President Barack Obama talks with Stephen Hawking in the Blue Room of the White House before a ceremony presenting him and 15 others the Presidential Medal of Freedom, August 12th, 2009. Credit: Pete Souza/White House photo stream

Honors and Legacy:

As already noted, in 1974, Hawking was elected a Fellow of the Royal Society (FRS), and was one of the youngest scientists to become a Fellow. At that time, his nomination read:

Hawking has made major contributions to the field of general relativity. These derive from a deep understanding of what is relevant to physics and astronomy, and especially from a mastery of wholly new mathematical techniques. Following the pioneering work of Penrose he established, partly alone and partly in collaboration with Penrose, a series of successively stronger theorems establishing the fundamental result that all realistic cosmological models must possess singularities. Using similar techniques, Hawking has proved the basic theorems on the laws governing black holes: that stationary solutions of Einstein’s equations with smooth event horizons must necessarily be axisymmetric; and that in the evolution and interaction of black holes, the total surface area of the event horizons must increase. In collaboration with G. Ellis, Hawking is the author of an impressive and original treatise on “Space-time in the Large.

Other important work by Hawking relates to the interpretation of cosmological observations and to the design of gravitational wave detectors.

On 12 November Peter Higgs and Stephen Hawking visited the "Collider" exhibition at London's Science Museum (Image: c. Science Museum 2013)
Peter Higgs and Stephen Hawking visiting the “Collider” exhibition at London’s Science Museum in 2013, in honor of the discovery of the Higgs Boson. Credit: sciencemuseum.org.uk

In 1975, he was awarded both the Eddington Medal and the Pius XI Gold Medal, and in 1976 the Dannie Heineman Prize, the Maxwell Prize and the Hughes Medal. In 1977, he was appointed a professor with a chair in gravitational physics, and received the Albert Einstein Medal and an honorary doctorate from the University of Oxford by the following year.

In 1981, Hawking was awarded the American Franklin Medal, followed by a Commander of the Order of the British Empire (CBE) medal the following year. For the remainder of the decade, he was honored three times, first with the Gold Medal of the Royal Astronomical Society in 1985, the Paul Dirac Medal in 1987 and, jointly with Penrose, with the prestigious Wolf Prize in 1988. In 1989, he was appointed Member of the Order of the Companions of Honour (CH), but reportedly declined a knighthood.

In 1999, Hawking was awarded the Julius Edgar Lilienfeld Prize of the American Physical Society. In 2002, following a UK-wide vote, the BBC included him in their list of the 100 Greatest Britons. More recently, Hawking has been awarded the Copley Medal from the Royal Society (2006), the Presidential Medal of Freedom, America’s highest civilian honor (2009), and the Russian Special Fundamental Physics Prize (2013).

Several buildings have been named after him, including the Stephen W. Hawking Science Museum in San Salvador, El Salvador, the Stephen Hawking Building in Cambridge, and the Stephen Hawking Center at Perimeter Institute in Canada. And given Hawking’s association with time, he was chosen to unveil the mechanical “Chronophage” – aka. the Corpus Clock – at Corpus Christi College Cambridge in September of 2008.

Stephen Hawking being presented by his daughter Lucy Hawking at the lecture he gave for NASA's 50th anniversary. Credit: NASA/Paul Alers
Stephen Hawking being presented by his daughter Lucy Hawking at the lecture he gave for NASA’s 50th anniversary. Credit: NASA/Paul Alers

Also in 2008, while traveling to Spain, Hawking received the Fonseca Prize – an annual award created by the University of Santiago de Compostela which is awarded to those for outstanding achievement in science communication. Hawking was singled out for the award because of his “exceptional mastery in the popularization of complex concepts in Physics at the very edge of our current understanding of the Universe, combined with the highest scientific excellence, and for becoming a public reference of science worldwide.”

Multiple films have been made about Stephen Hawking over the years as well. These include the previously mentioned A Brief History of Time, the 1991 biopic film directed by Errol Morris and Stephen Spielberg; Hawking, a 2004 BBC drama starring Benedict Cumberbatch in the title role; the 2013 documentary titled “Hawking”, by Stephen Finnigan.

Most recently, there was the 2014 film The Theory of Everything that chronicled the life of Stephen Hawking and his wife Jane. Directed by James Marsh, the movie stars Eddie Redmayne as Professor Hawking and Felicity Jones as Jane Hawking.

Death:

Dr. Stephen Hawking passed away in the early hours of Wednesday, March 14th, 2018 at his home in Cambridge. According to a statement made by his family, he died peacefully. He was 76 years old, and is survived by his first wife, Jane Wilde, and their three children – Lucy, Robert and Tim.

When all is said and done, Stephen Hawking was the arguably the most famous scientist alive in the modern era. His work in the field of astrophysics and quantum mechanics has led to a breakthrough in our understanding of time and space, and will likely be poured over by scientists for decades. In addition, he has done more than any living scientist to make science accessible and interesting to the general public.

Stephen Hawking holding a public lecture at the Stockholm Waterfront congress center, 24 August 2015. Credit: Public Domain/photo by Alexandar Vujadinovic
Stephen Hawking holding a public lecture at the Stockholm Waterfront congress center, 24 August 2015. Credit: Public Domain/photo by Alexandar Vujadinovic

To top it off, he traveled all over the world and lectured on topics ranging from science and cosmology to human rights, artificial intelligence, and the future of the human race. He also used the celebrity status afforded him to advance the causes of scientific research, space exploration, disability awareness, and humanitarian causes wherever possible.

In all of these respects, he was very much like his predecessor, Albert Einstein – another influential scientist-turned celebrity who was sure to use his powers to combat ignorance and promote humanitarian causes. But what was  especially impressive in all of this is that Hawking has managed to maintain his commitment to science and a very busy schedule while dealing with a degenerative disease.

For over 50 years, Hawking lived with a disease that doctor’s initially thought would take his life within just two. And yet, he not only managed to make his greatest scientific contributions while dealing with ever-increasing problems of mobility and speech, he also became a jet-setting personality who travelled all around the world to address audiences and inspire people.

His passing was mourned by millions worldwide and, in the worlds of famed scientist and science communicator Neil DeGrasse Tyson , “left an intellectual vacuum in its wake”. Without a doubt, history will place Dr. Hawking among such luminaries as Einstein, Newton, Galileo and Curie as one of the greatest scientific minds that ever lived.

We have many great articles about Stephen Hawking here at Universe Today. Here is one about Hawking Radiation, How Do Black Holes Evaporate?, why Hawking could be Wrong About Black Holes, and recent experiments to Replicate Hawking Radiation in a Laboratory.

And here are some video interviews where Hawking addresses how God is not necessary for the creation of the Universe, and the trailer for Theory of Everything.

Astronomy Cast has a number of great podcasts that deal with Hawing and his discoveries, like: Episode 138: Quantum Mechanics, and Questions Show: Hidden Fusion, the Speed of Neutrinos, and Hawking Radiation.

For more information, check out Stephen Hawking’s website, and his page at Biography.com

Who was Albert Einstein?

Albert Einstein's Inventions
Albert Einstein in 1947. Credit: Library of Congress

At the end of the millennium, Physics World magazine conducted a poll where they asked 100 of the world’s leading physicists who they considered to be the top 10 greatest scientist of all time. The number one scientist they identified was Albert Einstein, with Sir Isaac Newton coming in second. Beyond being the most famous scientist who ever lived, Albert Einstein is also a household name, synonymous with genius and endless creativity.

As the discoverer of Special and General Relativity, Einstein revolutionized our understanding of time, space, and universe. This discovery, along with the development of quantum mechanics, effectively brought to an end the era of Newtonian Physics and gave rise to the modern age. Whereas the previous two centuries had been characterized by universal gravitation and fixed frames of reference, Einstein helped usher in an age of uncertainty, black holes and “scary action at a distance”.

Continue reading “Who was Albert Einstein?”

Astronomy Cast Ep. 368: Searching for the Aether Wind: the Michelson–Morley Experiment

Waves move through a medium, like water or air. So it seemed logical to search for a medium that light waves move through. The Michelson-Morley Experiment attempted to search for this medium, known as the “luminiferous aether”. The experiment gave a negative result, and helped set the stage for the theory of General Relativity.
Continue reading “Astronomy Cast Ep. 368: Searching for the Aether Wind: the Michelson–Morley Experiment”

Don’t Look At Black Holes Too Closely, They Might Disappear

This artist’s impression shows the surroundings of the supermassive black hole at the heart of the active galaxy NGC 3783 in the southern constellation of Centaurus (The Centaur). Credit: ESO/M. Kornmesser

We’ve come a long way in 13.8 billion years; but despite our impressively extensive understanding of the Universe, there are still a few strings left untied. For one, there is the oft-cited disconnect between general relativity, the physics of the very large, and quantum mechanics, the physics of the very small. Then there is problematic fate of a particle’s intrinsic information after it falls into a black hole. Now, a new interpretation of fundamental physics attempts to solve both of these conundrums by making a daring claim: at certain scales, space and time simply do not exist.

Let’s start with something that is not in question. Thanks to Einstein’s theory of special relativity, we can all agree that the speed of light is constant for all observers. We can also agree that, if you’re not a photon, approaching light speed comes with some pretty funky rules – namely, anyone watching you will see your length compress and your watch slow down.

But the slowing of time also occurs near gravitationally potent objects, which are described by general relativity. So if you happen to be sight-seeing in the center of the Milky Way and you make the regrettable decision to get too close to our supermassive black hole’s event horizon (more sinisterly known as its point-of-no-return), anyone observing you will also see your watch slow down. In fact, he or she will witness your motion toward the event horizon slow dramatically over an infinite amount of time; that is, from your now-traumatized friend’s perspective, you never actually cross the event horizon. You, however, will feel no difference in the progression of time as you fall past this invisible barrier, soon to be spaghettified by the black hole’s immense gravity.

So, who is “correct”? Relativity dictates that each observer’s point of view is equally valid; but in this situation, you can’t both be right. Do you face your demise in the heart of a black hole, or don’t you? (Note: This isn’t strictly a paradox, but intuitively, it feels a little sticky.)

And there is an additional, bigger problem. A black hole’s event horizon is thought to give rise to Hawking radiation, a kind of escaping energy that will eventually lead to both the evaporation of the black hole and the destruction of all of the matter and energy that was once held inside of it. This concept has black hole physicists scratching their heads. Because according to the laws of physics, all of the intrinsic information about a particle or system (namely, the quantum wavefunction) must be conserved. It cannot just disappear.

Dr. Stephen Hawking of Cambridge University alongside illustrations of a black hole and an event horizon with Hawking Radiation. He continues to engage his grey matter to uncover the secrets of the Universe while others attempt to confirm his existing theories. (Photo: BBC, Illus.: T.Reyes)
Dr. Stephen Hawking of Cambridge University alongside illustrations of a black hole and an event horizon with Hawking Radiation. He continues to engage his grey matter to uncover the secrets of the Universe while others attempt to confirm his existing theories. (Photo: BBC, Illus.: T.Reyes)

Why all of these bizarre paradoxes? Because black holes exist in the nebulous space where a singularity meets general relativity – fertile, yet untapped ground for the elusive theory of everything.

Enter two interesting, yet controversial concepts: doubly special relativity and gravity’s rainbow.

Just as the speed of light is a universally agreed-upon constant in special relativity, so is the Planck energy in doubly special relativity (DSR). In DSR, this value (1.22 x 1019 GeV) is the maximum energy (and thus, the maximum mass) that a particle can have in our Universe.

Two important consequences of DSR’s maximum energy value are minimum units of time and space. That is, regardless of whether you are moving or stationary, in empty space or near a black hole, you will agree that classical space breaks down at distances shorter than the Planck length (1.6 x 10-35 m) and classical time breaks down at moments briefer than the Planck time (5.4 x 10-44 sec).

In other words, spacetime is discrete. It exists in indivisible (albeit vanishingly small) units. Quantum below, classical above. Add general relativity into the picture, and you get the theory of gravity’s rainbow.

Physicists Ahmed Farag Ali, Mir Faizal, and Barun Majumder believe that these theories can be used to explain away the aforementioned black hole conundrums – both your controversial spaghettification and the information paradox. How? According to DSR and gravity’s rainbow, in regions smaller than 1.6 x 10-35 m and at times shorter than 5.4 x 10-44 sec… the Universe as we know it simply does not exist.

Einstein and Relativity
“Say what??” -Albert Einstein

“In gravity’s rainbow, space does not exist below a certain minimum length, and time does not exist below a certain minimum time interval,” explained Ali, who, along with Faizal and Majumder, authored a paper on this topic that was published last month. “So, all objects existing in space and occurring at a time do not exist below that length and time interval [which are associated with the Planck scale].”

Luckily for us, every particle we know of, and thus every particle we are made of, is much larger than the Planck length and endures for much longer than the Planck time. So – phew! – you and I and everything we see and know can go on existing. (Just don’t probe too deeply.)

The event horizon of a black hole, however, is a different story. After all, the event horizon isn’t made of particles. It is pure spacetime. And according to Ali and his colleagues, if you could observe it on extremely short time or distance scales, it would cease to have meaning. It wouldn’t be a point-of-no-return at all. In their view, the paradox only arises when you treat spacetime as continuous – without minimum units of length and time.

“As the information paradox depends on the existence of the event horizon, and an event horizon like all objects does not exist below a certain length and time interval, then there is no absolute information paradox in gravity’s rainbow. The absence of an effective horizon means that there is nothing absolutely stopping information from going out of the black hole,” concluded Ali.

No absolute event horizon, no information paradox.

And what of your spaghettification within the black hole? Again, it depends on the scale at which you choose to analyze your situation. In gravity’s rainbow, spacetime is discrete; therefore, the mathematics reveal that both you (the doomed in-faller) and your observer will witness your demise within a finite length of time. But in the current formulation of general relativity, where spacetime is described as continuous, the paradox arises. The in-faller, well, falls in; meanwhile, the observer never sees the in-faller pass the event horizon.

“The most important lesson from this paper is that space and time exist only beyond a certain scale,” said Ali. “There is no space and time below that scale. Hence, it is meaningless to define particles, matter, or any object, including black holes, that exist in space and time below that scale. Thus, as long as we keep ourselves confined to the scales at which both space and time exist, we get sensible physical answers. However, when we try to ask questions at length and time intervals that are below the scales at which space and time exist, we end up getting paradoxes and problems.”

To recap: if spacetime continues on arbitrarily small scales, the paradoxes remain. If, however, gravity’s rainbow is correct and the Planck length and the Planck time are the smallest unit of space and time that fundamentally exist, we’re in the clear… at least, mathematically speaking. Unfortunately, the Planck scales are far too tiny for our measly modern particle colliders to probe. So, at least for now, this work provides yet another purely theoretical result.

The paper was published in the January 23 issue of Europhysics Letters. A pre-print of the paper is available here.