A black hole is an extraordinarily massive, improbably dense knot of spacetime that makes a living swallowing or slinging away any morsel of energy that strays too close to its dark, twisted core. Anyone fortunate (or unfortunate) enough to directly observe one of these beasts in the wild would immediately notice the way its colossal gravitational field warps all of the light from the stars and galaxies behind it, a phenomenon known as gravitational lensing.
Thanks to the power of supercomputers, a curious observer no longer has to venture into outer space to see such a sight. A team of astronomers has released their first simulated images of the lensing effects of not just one, but two black holes, trapped in orbit by each other’s gravity and ultimately doomed to merge as one.
Astronomers have been able to model the gravitational effects of a single black hole since the 1970s, but the imposing mathematics of general relativity made doing so for a double black-hole system a much larger challenge. Over the last ten years, however, scientists have improved the accuracy of computer models that deal with these types of calculations in an effort to match observations from gravitational wave detectors like LIGO and VIRGO.
The research collaboration Simulating Extreme Spacetimes (SXS) has begun using these models to mimic the lensing effects of high-gravity systems involving objects such as neutron stars and black holes. In their most recent paper, the team imagines a camera pointing at a binary black hole system against a backdrop of the stars and dust of the Milky Way. One way to figure out what the camera would see in this situation would be to use general relativity to compute the path of each photon traveling from every light source at all points within the frame. This method, however, involves a nearly impossible number of calculations. So instead, the researchers worked backwards, mapping only those photons that would reach the camera and result in a bright spot on the final image – that is, photons that would not be swallowed by either of the black holes.
As you can see in the image above, the team’s simulations testify to the enormous effect that these black holes have on the fabric of spacetime. Ambient photons curl into a ring around the converging binaries in a process known as frame dragging. Background objects appear to multiply on opposite sides of the merger (for instance, the yellow and blue pair of stars in the “northeast” and the “southwest” areas of the ring). Light from behind the camera is even pulled into the frame by the black holes’ mammoth combined gravitational field. And each black hole distorts the appearance of the other, pinching off curved, comma-shaped regions of shadow called “eyebrows.” If you could zoom in with unlimited precision, you would find that there are, in fact, an infinite number of these eyebrows, each smaller than the last, like a cosmic set of Russian dolls.
In case you thought things couldn’t get any more amazing, SXS has also created two videos of the black hole merger: one simulated from above, and the other edge-on.
The SXS collaboration will continue to investigate gravitationally ponderous objects like black holes and neutron stars in an effort to better understand their astronomical and physical properties. Their work will also assist observational scientists as they search the skies for evidence of gravitational waves.
Check out the team’s ArXiv paper describing this work and their website for even more fascinating images.
When we think of gravity, we typically think of it as a force between masses. When you step on a scale, for example, the number on the scale represents the pull of the Earth’s gravity on your mass, giving you weight. It is easy to imagine the gravitational force of the Sun holding the planets in their orbits, or the gravitational pull of a black hole. Forces are easy to understand as pushes and pulls.
But we now understand that gravity as a force is only part of a more complex phenomenon described the theory of general relativity. While general relativity is an elegant theory, it’s a radical departure from the idea of gravity as a force. As Carl Sagan once said, “Extraordinary claims require extraordinary evidence,” and Einstein’s theory is a very extraordinary claim. But it turns out there are several extraordinary experiments that confirm the curvature of space and time.
The key to general relativity lies in the fact that everything in a gravitational field falls at the same rate. Stand on the Moon and drop a hammer and a feather, and they will hit the surface at the same time. The same is true for any object regardless of its mass or physical makeup, and this is known as the equivalence principle.
Since everything falls in the same way regardless of its mass, it means that without some external point of reference, a free-floating observer far from gravitational sources and a free-falling observer in the gravitational field of a massive body each have the same experience. For example, astronauts in the space station look as if they are floating without gravity. Actually, the gravitational pull of the Earth on the space station is nearly as strong as it is at the surface. The difference is that the space station (and everything in it) is falling. The space station is in orbit, which means it is literally falling around the Earth.
This equivalence between floating and falling is what Einstein used to develop his theory. In general relativity, gravity is not a force between masses. Instead gravity is an effect of the warping of space and time in the presence of mass. Without a force acting upon it, an object will move in a straight line. If you draw a line on a sheet of paper, and then twist or bend the paper, the line will no longer appear straight. In the same way, the straight path of an object is bent when space and time is bent. This explains why all objects fall at the same rate. The gravity warps spacetime in a particular way, so the straight paths of all objects are bent in the same way near the Earth.
So what kind of experiment could possibly prove that gravity is warped spacetime? One stems from the fact that light can be deflected by a nearby mass. It is often argued that since light has no mass, it shouldn’t be deflected by the gravitational force of a body. This isn’t quite correct. Since light has energy, and by special relativity mass and energy are equivalent, Newton’s gravitational theory predicts that light would be deflected slightly by a nearby mass. The difference is that general relativity predicts it will be deflected twice as much.
The effect was first observed by Arthur Eddington in 1919. Eddington traveled to the island of Principe off the coast of West Africa to photograph a total eclipse. He had taken photos of the same region of the sky sometime earlier. By comparing the eclipse photos and the earlier photos of the same sky, Eddington was able to show the apparent position of stars shifted when the Sun was near. The amount of deflection agreed with Einstein, and not Newton. Since then we’ve seen a similar effect where the light of distant quasars and galaxies are deflected by closer masses. It is often referred to as gravitational lensing, and it has been used to measure the masses of galaxies, and even see the effects of dark matter.
Another piece of evidence is known as the time-delay experiment. The mass of the Sun warps space near it, therefore light passing near the Sun is doesn’t travel in a perfectly straight line. Instead it travels along a slightly curved path that is a bit longer. This means light from a planet on the other side of the solar system from Earth reaches us a tiny bit later than we would otherwise expect. The first measurement of this time delay was in the late 1960s by Irwin Shapiro. Radio signals were bounced off Venus from Earth when the two planets were almost on opposite sides of the sun. The measured delay of the signals’ round trip was about 200 microseconds, just as predicted by general relativity. This effect is now known as the Shapiro time delay, and it means the average speed of light (as determined by the travel time) is slightly slower than the (always constant) instantaneous speed of light.
A third effect is gravitational waves. If stars warp space around them, then the motion of stars in a binary system should create ripples in spacetime, similar to the way swirling your finger in water can create ripples on the water’s surface. As the gravity waves radiate away from the stars, they take away some of the energy from the binary system. This means that the two stars gradually move closer together, an effect known as inspiralling. As the two stars inspiral, their orbital period gets shorter because their orbits are getting smaller.
For regular binary stars this effect is so small that we can’t observe it. However in 1974 two astronomers (Hulse and Taylor) discovered an interesting pulsar. Pulsars are rapidly rotating neutron stars that happen to radiate radio pulses in our direction. The pulse rate of pulsars are typically very, very regular. Hulse and Taylor noticed that this particular pulsar’s rate would speed up slightly then slow down slightly at a regular rate. They showed that this variation was due to the motion of the pulsar as it orbited a star. They were able to determine the orbital motion of the pulsar very precisely, calculating its orbital period to within a fraction of a second. As they observed their pulsar over the years, they noticed its orbital period was gradually getting shorter. The pulsar is inspiralling due to the radiation of gravity waves, just as predicted.
Finally there is an effect known as frame dragging. We have seen this effect near Earth itself. Because the Earth is rotating, it not only curves spacetime by its mass, it twists spacetime around it due to its rotation. This twisting of spacetime is known as frame dragging. The effect is not very big near the Earth, but it can be measured through the Lense-Thirring effect. Basically you put a spherical gyroscope in orbit, and see if its axis of rotation changes. If there is no frame dragging, then the orientation of the gyroscope shouldn’t change. If there is frame dragging, then the spiral twist of space and time will cause the gyroscope to precess, and its orientation will slowly change over time.
We’ve actually done this experiment with a satellite known as Gravity Probe B, and you can see the results in the figure here. As you can see, they agree very well.
Each of these experiments show that gravity is not simply a force between masses. Gravity is instead an effect of space and time. Gravity is built into the very shape of the universe.
Think on that the next time you step onto a scale.
If you’re looking for something truly unique, then check out the cosmic menage aux trois ferreted out by a team of international astronomers using the Green Bank Telescope (GBT). This unusual group located in the constellation of Taurus includes a pulsar which is orbited by a pair of white dwarf stars. It’s the first time researchers have identified a triple star system containing a pulsar and the team has already employed the clock-like precision of the pulsar’s beat to observe the effects of gravitational interactions.
“This is a truly remarkable system with three degenerate objects. It has survived three phases of mass transfer and a supernova explosion, and yet it remained dynamically stable”, says Thomas Tauris, first author of the present study. “Pulsars have previously been found with planets and in recent years a number of peculiar binary pulsars were discovered which seem to require a triple system origin. But this new millisecond pulsar is the first to be detected with two white dwarfs.”
This wasn’t just a chance discovery. The observations of 4,200 light year distant J0337+1715 came from an intensive study program involving several of the world’s largest radio telescopes including the GBT, the Arecibo radio telescope in Puerto Rico, and ASTRON’s Westerbork Synthesis Radio Telescope in the Netherlands. West Virginia University graduate student Jason Boyles was the first to detect the millisecond pulsar, spinning nearly 366 times per second, and captured in a system which isn’t any larger than Earth’s orbit around the Sun. This close knit association, coupled with the fact the trio of stars is far denser than the Sun create the perfect conditions to examine the true nature of gravity. Generations of scientists have waited for such an opportunity to study the ‘Strong Equivalence Principle’ postulated in Einstein’s theory of General Relativity. “This triple star system gives us the best-ever cosmic laboratory for learning how such three-body systems work, and potentially for detecting problems with General Relativity, which some physicists expect to see under such extreme conditions,” says first author Scott Ransom of the National Radio Astronomy Observatory (NRAO).
“It was a monumental observing campaign,” comments Jason Hessels, of ASTRON (the Netherlands Institute for Radio Astronomy) and the University of Amsterdam. “For a time we were observing this pulsar every single day, just so we could make sense of the complicated way in which it was moving around its two companion stars.” Hessels led the frequent monitoring of the system with the Westerbork Synthesis Radio Telescope.
Not only did the research team tackle a formidable amount of data, but they also took on the challenge of modeling the system. “Our observations of this system have made some of the most accurate measurements of masses in astrophysics,” says Anne Archibald, also from ASTRON. “Some of our measurements of the relative positions of the stars in the system are accurate to hundreds of meters, even though these stars are about 10,000 trillion kilometers from Earth” she adds.
Leading the study, Archibald created the system simulation which predicts its motions. Using the solid science methods once employed by Isaac Newton to study the Earth-Moon-Sun system, she then combined the data with the ‘new’ gravity of Albert Einstein, which was necessary to make sense of the information. “Moving forward, the system gives the scientists the best opportunity yet to discover a violation of a concept called the Strong Equivalence Principle. This principle is an important aspect of the theory of General Relativity, and states that the effect of gravity on a body does not depend on the nature or internal structure of that body.”
Need a refresher on the equivalence principle? Then if you don’t remember Galileo’s dropping two different weighted balls from the Leaning Tower of Pisa, then perhaps you’ll recall Apollo 15 Commander Dave Scott’s dropping of a hammer and a falcon feather while standing on the airless surface of the Moon in 1971. Thanks to mirrors left on the lunar surface, laser ranging measurements have been studied for years and provide the strongest constraints on the validity of the equivalence principle. Here the experimental masses are the stars themselves, and their different masses and gravitational binding energies will serve to check whether they all fall towards each other according to the Strong Equivalence Principle, or not. “Using the pulsar’s clock-like signal we’ve started testing this,” Archibald explains. “We believe that our tests will be much more sensitive than any previous attempts to find a deviation from the Strong Equivalence Principle.” “We’re extremely happy to have such a powerful laboratory for studying gravity,” Hessels adds. “Similar star systems must be extremely rare in our galaxy, and we’ve luckily found one of the few!”
Time Reborn: From the Crisis of Physics to the Future of the Universe is one of those books intended to provoke discussion. Right from the first pages, author Lee Smolin — a Canadian theoretical physicist who also teaches philosophy — puts forward a position: time is real, and not an illusion of the human experience (as other physicists try to argue).
Smolin, in fact, uses that concept of time as a basis for human free will. If time is real, he writes, this is the result: “Novelty is real. We can create, with our imagination, outcomes not computable from knowledge of the present.”
Physics as philosophy. A powerful statement to make in the opening parts of the book. The only challenge is understanding the rest of it.
Smolin advertises his book as open to the general reader who has no background in physics or mathematics, promising that there aren’t even equations to worry about. He also breaks up the involved explanations with wry observations of fatherhood, or by bringing up anecdotes from his past.
It works, but you need to be patient. Theoretical physics is so far outside of the everyday that at times it took me (with education focusing on journalism and space policy, admittedly) two or three readings of the same passage to understand what was going on.
But as I took my time, a whole world opened up to me.
I found myself understanding more about Einstein’s special and general relativity than I did in readings during high school and university. The book also made me think differently about cosmology (the nature of the universe), especially in relation to biological laws.
While the book is enjoyable, it is probably best not to read it in isolation as it is a positional one — a book that gathers information scientifically and analytically, to be sure, but one that does not have a neutral point of view to the conclusions.
We’d recommend picking up other books such as the classic A Brief History of Time (by physicist Stephen Hawking) to learn more about the universe, and how other scientists see time work.
We record the Weekly Space Hangout every Friday at 12 pm Pacific / 3 pm Eastern. You can watch us live on Google+, Cosmoquest or listen after as part of the Astronomy Cast podcast feed (audio only).
Visible-light Hubble image of the jet emitted by the 3-billion-solar-mass black hole at the heart of galaxy M87 (Feb. 1998) Credit: NASA/ESA and John Biretta (STScI/JHU)
Even though black holes — by their definition and very nature — are the ultimate hoarders of the Universe, gathering and gobbling up matter and energy to the extent that not even light can escape their gravitational grip, they also often exhibit the odd behavior of flinging vast amounts of material away from them as well, in the form of jets that erupt hundreds of thousands — if not millions — of light-years out into space. These jets contain superheated plasma that didn’t make it past the black hole’s event horizon, but rather got “spun up” by its powerful gravity and intense rotation and ended up getting shot outwards as if from an enormous cosmic cannon.
The exact mechanisms of how this all works aren’t precisely known as black holes are notoriously tricky to observe, and one of the more perplexing aspects of the jetting behavior is why they always seem to be aligned with the rotational axis of the actively feeding black hole, as well as perpendicular to the accompanying accretion disk. Now, new research using advanced 3D computer models is supporting the idea that it’s the black holes’ ramped-up rotation rate combined with plasma’s magnetism that’s responsible for shaping the jets.
In a recent paper published in the journal Science, assistant professor at the University of Maryland Jonathan McKinney, Kavli Institute director Roger Blandford and Princeton University’s Alexander Tchekhovskoy report their findings made using computer simulations of the complex physics found in the vicinity of a feeding supermassive black hole. These GRMHD — which stands for General Relativistic Magnetohydrodynamic — computer sims follow the interactions of literally millions of particles under the influence of general relativity and the physics of relativistic magnetized plasmas… basically, the really super-hot stuff that’s found within a black hole’s accretion disk.
What McKinney et al. found in their simulations was that no matter how they initially oriented the black hole’s jets, they always eventually ended up aligned with the rotational axis of the black hole itself — exactly what’s been found in real-world observations. The team found that this is caused by the magnetic field lines generated by the plasma getting twisted by the intense rotation of the black hole, thus gathering the plasma into narrow, focused jets aiming away from its spin axes — often at both poles.
At farther distances the influence of the black hole’s spin weakens and thus the jets may then begin to break apart or deviate from their initial paths — again, what has been seen in many observations.
This “magneto-spin alignment” mechanism, as the team calls it, appears to be most prevalent with active supermassive black holes whose accretion disk is more thick than thin — the result of having either a very high or very low rate of in-falling matter. This is the case with the giant elliptical galaxy M87, seen above, which exhibits a brilliant jet created by a 3-billion-solar-mass black hole at its center, as well as the much less massive 4-million-solar-mass SMBH at the center of our own galaxy, Sgr A*.
Since the late 20th century, astronomers have been aware of data that suggest the universe is not only expanding, but expanding at an accelerating rate. According to the currently accepted model, this accelerated expansion is due to dark energy, a mysterious repulsive force that makes up about 73% of the energy density of the universe. Now, a new study reveals an alternative theory: that the expansion of the universe is actually due to the relationship between matter and antimatter. According to this study, matter and antimatter gravitationally repel each other and create a kind of “antigravity” that could do away with the need for dark energy in the universe.
Massimo Villata, a scientist from the Observatory of Turin in Italy, began the study with two major assumptions. First, he posited that both matter and antimatter have positive mass and energy density. Traditionally, the gravitational influence of a particle is determined solely by its mass. A positive mass value indicates that the particle will attract other particles gravitationally. Under Villata’s assumption, this applies to antiparticles as well. So under the influence of gravity, particles attract other particles and antiparticles attract other antiparticles. But what kind of force occurs between particles and antiparticles?
To resolve this question, Villata needed to institute the second assumption – that general relativity is CPT invariant. This means that the laws governing an ordinary matter particle in an ordinary field in spacetime can be applied equally well to scenarios in which charge (electric charge and internal quantum numbers), parity (spatial coordinates) and time are reversed, as they are for antimatter. When you reverse the equations of general relativity in charge, parity and time for either the particle or the field the particle is traveling in, the result is a change of sign in the gravity term, making it negative instead of positive and implying so-called antigravity between the two.
Villata cited the quaint example of an apple falling on Isaac Newton’s head. If an anti-apple falls on an anti-Earth, the two will attract and the anti-apple will hit anti-Newton on the head; however, an anti-apple cannot “fall” on regular old Earth, which is made of regular old matter. Instead, the anti-apple will fly away from Earth because of gravity’s change in sign. In other words, if general relativity is, in fact, CPT invariant, antigravity would cause particles and antiparticles to mutually repel. On a much larger scale, Villata claims that the universe is expanding because of this powerful repulsion between matter and antimatter.
What about the fact that matter and antimatter are known to annihilate each other? Villata resolved this paradox by placing antimatter far away from matter, in the enormous voids between galaxy clusters. These voids are believed to have stemmed from tiny negative fluctuations in the primordial density field and do seem to possess a kind of antigravity, repelling all matter away from them. Of course, the reason astronomers don’t actually observe any antimatter in the voids is still up in the air. In Villata’s words, “There is more than one possible answer, which will be investigated elsewhere.” The research appears in this month’s edition of Europhysics Letters.
Gravitational waves are apparently devilishly difficult things to model with Einstein field equations, since they are highly dynamic and non-symmetric. Traditionally, the only way to get close to predicting the likely effects of gravity waves was to estimate the required Einstein equation parameters by assuming the objects causing the gravity waves did not generate strong gravity fields themselves – and nor did they move at velocities anywhere close to the speed of light.
Trouble is, the mostly likely candidate objects that might generate detectable gravity waves – close binary neutron stars and merging black holes – have exactly those properties. They are highly compact, very massive bodies that often move at relativistic (i.e. close to the speed of light) velocities.
So, firstly no-one has yet detected gravity waves. But even in 1916, Einstein considered their existence likely and demonstrated mathematically that gravitational radiation should arise when you replace a spherical mass with a rotating dumbbell of the same mass which, due to its geometry, will generate dynamic ebb and flow effects on space-time as it rotates.
To test Einstein’s theory, it’s necessary to design very sensitive detecting equipment – and to date all such attempts have failed. Further hopes now largely rest on the Laser Interferometer Space Antenna (LISA), which is not expected to launch before 2025.
However, as well as sensitive detection equipment like LISA, you also need to calculate what sort of phenomena and what sort of data would represent definitive evidence of a gravity wave – which is where all the theory and math required to determine these expected values is vital.
Initially, theoreticians worked out a post-Newtonian (i.e. Einstein era) approximation (i.e. guesstimate) for a rotating binary system – although it was acknowledged that this approximation would only work effectively for a low mass, low velocity system – where any complicating relativistic and tidal effects, arising from the self-gravity and velocities of the binary objects themselves, could be ignored.
Then came the era of numerical relativity where the advent of supercomputers made it possible to actually model all the dynamics of close massive binaries moving at relativistic speeds, much as how supercomputers can model very dynamic weather systems on Earth.
Surprisingly, or if you like unreasonably, the calculated values from numerical relativity were almost identical to those calculated by the supposedly bodgy post-Newtonian approximation. The post-Newtonian approximation approach just isn’t supposed to work for these situations.
All the authors are left with is the possibility that gravitational redshift makes processes near very massive objects appear slower and gravitationally ‘weaker’ to an external observer than they really are. That could – kind of, sort of – explain the unreasonable effectiveness… but only kind of, sort of.
Imagine a spinning black hole so colossal and so powerful that it kicks photons, the basic units of light, and sends them careening thousands of light years through space. Some of the photons make it to Earth. Scientists are announcing in the journal NaturePhysics today that those well-traveled photons still carry the signature of that colossal jolt, as a distortion in the way they move. The disruption is like a long-distance missive from the black hole itself, containing information about its size and the speed of its spin.
The researchers say the jostled photons are key to unraveling the theory that predicts black holes in the first place.
“It is rare in general-relativity research that a new phenomenon is discovered that allows us to test the theory further,” says Martin Bojowald, a Penn State physics professor and author of a News & Views article that accompanies the study.
Black holes are so gravitationally powerful that they distort nearby matter and even space and time. Called framedragging, the phenomenon can be detected by sensitive gyroscopes on satellites, Bojowald notes.
Lead study author Fabrizio Tamburini, an astronomer at the University of Padova (Padua) in Italy, and his colleagues have calculated that rotating spacetime can impart to light an intrinsic form of orbital angular momentum distinct from its spin. The authors suggest visualizing this as non-planar wavefronts of this twisted light like a cylindrical spiral staircase, centered around the light beam.
“The intensity pattern of twisted light transverse to the beam shows a dark spot in the middle — where no one would walk on the staircase — surrounded by concentric circles,” they write. “The twisting of a pure [orbital angular momentum] mode can be seen in interference patterns.” They say researchers need between 10,000 and 100,000 photons to piece a black hole’s story together.
And telescopes need some kind of 3D (or holographic) vision in order to see the corkscrews in the light waves they receive, Bojowald said: “If a telescope can zoom in sufficiently closely, one can be sure that all 10,000-100,000 photons come from the accretion disk rather than from other stars farther away. So the magnification of the telescope will be a crucial factor.”
He believes, based on a rough calculation, that “a star like the sun as far away as the center of the Milky Way would have to be observed for less than a year. So it is not going to be a direct image, but one would not have to wait very long.”
Study co-author Bo Thidé, a professor and program director at the Swedish Institute of Space Physics, said a year may be conservative, even in the case of a small rotation and a need for up to 100,000 photons.
“But who knows,” he said. “We will know more after we have made further detailed modelling – and observations, of course. At this time we emphasize the discovery of a
new general relativity phenomenon that allows us to make observations, leaving precise quantitative predictions aside.”
One of the most interesting constants and challenges in physics is the speed of light. The speed of light has a lot of important implications for physics from General Relativity to the search for a unified theory. Physicists and aeronautics engineers designing future space craft see it as the last great barrier to practical interstellar travel. So how fast does light travel?
We know that light has a finite speed and it travels at the speed of 300,000 kilometers per second. This a great distance to travel. On earth this speed is almost instantaneous. However we now know that its limits can be determined on the larger scale of space. For example it takes about 8.3 minutes for light from the Sun to reach the Earth. To reach the nearest star to the Solar System it takes about 3 to 4 years. This limitation of light is what we call the light speed barrier.
In the early days of science the argument of whether the speed of light was instantaneous or not was a major source of debate. As early as the Greeks, there were proponents that argued for both a finite and infinite speed for light. There were also writings during the 11th century by Arab philosophers that proposed that the speed of light depended on the medium it traveled through. It would not be until the 20th century that physicists such as Planck and Einstein would discover the actual speed of light and light’s properties.
As mentioned earlier the speed of light does change. It is actually only 300,000 km in a vacuum. The speed varies slightly in air and other mediums depending on transparency and refractive quality. The speed of light however tends to still be considerably faster than that of others waves such as sound waves. It was also discovered that the speed of light applies to all forms of electromagnetic radiation not just visible light. Physicists are also proposing that the speed of light also applies to gravity waves.
Understanding of the speed of light has led to some interesting theories in physics. Many of them can be found in Einstein’s theories of General Relativity and Special relativity. First off, only massless particles such as photons can naturally reach the speed of light otherwise it would take essentially infinite energy to reach this speed. However objects with mass can theoretically achieve a significant percentage of light speed. It is also proposed that even if light speed could be reach it would produce certain side effects. One is time dilation where while traveling at light speed a Rip Van Winkle effect occurs where years would pass by for observers while a person traveling at light speed would only experience moments of time in the same perceived period. It has also been theorized exceed light speed would lead to time travel.