Big Bang Theory: Evolution of Our Universe

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

How was our Universe created? How did it come to be the seemingly infinite place we know of today? And what will become of it, ages from now? These are the questions that have been puzzling philosophers and scholars since the beginning the time, and led to some pretty wild and interesting theories. Today, the consensus among scientists, astronomers and cosmologists is that the Universe as we know it was created in a massive explosion that not only created the majority of matter, but the physical laws that govern our ever-expanding cosmos. This is known as The Big Bang Theory.

For almost a century, the term has been bandied about by scholars and non-scholars alike. This should come as no surprise, seeing as how it is the most accepted theory of our origins. But what exactly does it mean? How was our Universe conceived in a massive explosion, what proof is there of this, and what does the theory say about the long-term projections for our Universe?

The basics of the Big Bang theory are fairly simple. In short, the Big Bang hypothesis states that all of the current and past matter in the Universe came into existence at the same time, roughly 13.8 billion years ago. At this time, all matter was compacted into a very small ball with infinite density and intense heat called a Singularity. Suddenly, the Singularity began expanding, and the universe as we know it began.

Continue reading “Big Bang Theory: Evolution of Our Universe”

Satellite Debris Forces Space Station To Evade Threat Hours Before Collision Risk

The International Space Station as seen by the departing STS-134 crew on May 29, 2011. Credit: NASA

A spacecraft attached to the International Space Station did an “emergency maneuver” to push the complex, which now houses six people, away from a threatening piece of space debris Oct. 27, the European Space Agency said in a statement.

A hand-sized shard of the Russian Cosmos-2251 satellite, which collided with a U.S. Iridium satellite in 2009, would have come within at least four kilometers (2.5 miles) of the orbiting outpost. This was close enough for the space station partners to agree to a move six hours before the potential impact.

“This is the first time the station’s international partners have avoided space debris with such urgency,” the European Space Agency wrote. The push to a safer orbit took place using the agency’s automated transfer vehicle Georges Lemaître, which docked with the space station in August.

The International Space Station in October 2014, with the European automated transfer vehicle Georges Lemaître attached. Credit: Alexander Gerst/ESA/NASA
The International Space Station in October 2014, with the European automated transfer vehicle Georges Lemaître attached. Credit: Alexander Gerst/ESA/NASA

While many collision threats are spotted at least days before impact, occasionally ground networks aren’t able to see a piece until 24 hours or less before the potential impact. Since 2012, the space station has normally done last-minute maneuvers using Russian cargo Progress vehicles, but this time around none were docked there. This is where the ATV came in.

Controllers at the ATV control center in France then did a four-minute preprogrammed move that raised the station’s orbit by one kilometer (0.6 miles), enough to get out of the way.

The ATV is expected to remain at the station until February, when it will undock and burn up in the atmosphere. This is the last of the series of ATVs that Europe agreed to make as a part of its space station agreement.

Europe’s Last ATV Cargo Ship Docks Safely At Space Station

The European Space Agency cargo ship Georges Lemaître, the last automated transfer vehicle, docked safely at the International Space Station Aug. 12, 2014. Credit: NASA/Twitter

It took two weeks to get there, but all indications is it was worth the wait. The final automated transfer vehicle of the European Space Agency successfully docked with the International Space Station today (Aug. 12) at 9:30 a.m. EDT (1:30 p.m. UTC) — right on time.

The cargo vehicle has about seven tons of stuff on board, ranging from science experiments to fresh food. The astronauts always enjoy it when fruit and other new food arrives in these shipments, given so many of their meals are freeze-dried.

Also on board was a new rendezvous system manufactured by Canadian company Neptec, which is testing out new ways of docking for future cargo vehicles. And when it’s time for Georges Lemaître to leave the station around January 2015, sensors inside will monitor its planned destruction to make future cargo vehicles better equipped to survive re-entry.

Georges Lemaître left Earth July 29 from French Guiana, as did its four predecessors. The series of ATVs started in March 2008 when Jules Verne departed to resupply the Expedition 16 crew. The other vehicles were called Johannes Kepler, Edoardo Amaldi and Albert Einstein.

The new vehicle will be opened up on Wednesday. It will be a busy week for cargo vehicles at the station, as the privately constructed Cygnus spacecraft (from Orbital Sciences) is expected to leave the station on Friday at 6:40 a.m. EDT (10:40 a.m. UTC). Both Alexander Gerst (ESA) and Reid Wiseman (NASA) will release Cygnus using Canadarm2, a robotic arm on station.

Amazing Telescopic Pictures Of The Space Station And A Cargo Ship Heading That Way

Photos of the International Space Station taken from the ground, using a 10-inch Newtonian telescope and monochromatic camera. Credit: Ralf Vandebergh

Here’s your morning photographic space delight: the International Space Station and the last European automated transfer vehicle (ATV), Georges Lemaître, taken using a camera and 10-inch Newtonian telescope.

The photographer, Ralf Vandebergh, captured these images as the ATV flew to the space station. The ATV launched flawlessly on July 30 and is expected to meet up with the station on Aug. 12. Check out pictures of the cargo vehicle below the jump.

The vehicle will stay docked to the space station for six months before making a planned re-entry in the atmosphere with a load of trash. The European Space Agency plans to track its fiery destruction to better design cargo vehicles in the future.

“The project is proceeding under our ‘Design for Demise’ effort to design space hardware in such a way that it is less likely to survive reentry and potentially endanger the public,”said Neil Murray, who is leading the project at the European Space Agency (ESA), in a July statement.

“Design for Demise in turn is part of the agency’s clean space initiative, seeking to render the space industry more environmentally friendly in space as well as on Earth.”

Pictures of the last European automated transfer vehicle going to the International Space Station in 2014. Pictures taken using a 10-inch Newtonian telescope and monochromatic camera. Credit: Ralf Vandebergh
Pictures of the last European automated transfer vehicle going to the International Space Station in 2014. Pictures taken using a 10-inch Newtonian telescope and monochromatic camera. Credit: Ralf Vandebergh

Rocket Replay: Watch Europe’s Last Space Station Automated Transfer Vehicle Soar

Europe's last automated transfer vehicle, Georges Lemaitre, lifts off from French Guiana en route to the International Space Station July 29, 2014. Credit: ESA–S. Corvaja, 2014

The last of Europe’s five automated transfer vehicles made a flawless launch to orbit yesterday (July 30). So far, all is going well with ATV Georges Lemaître as it brings a load of cargo to the International Space Station. You can watch the launch above. The ship is not only acting as a freighter, but a testbed for technology to help with docking and re-entry.

“It is with great pride that we saw the fifth successful launch of this beautiful spacecraft,” stated Thomas Reiter, the European Space Agency’s director of human spaceflight and operations, in a press release. “But the adventure doesn’t end here. ATV knowhow and technology will fly again to space as early as 2017, powering NASA’s Orion spacecraft with the European Service Module, ushering in the next generation of space exploration.”

It will take until Aug. 12 for the ATV to make its way to the space station. On its way, the vehicle will do a flyaround to test a laser infrared imaging sensor that could help future space vehicles dock with objects that don’t have docking ports.

Then it will stick on the space station for up to six months before making a planned re-entry, full of trash. In a first for Europe, how the ship breaks up will be carefully tracked to inform the design of future space vehicles that could survive re-entry. By the way, ESA has a stunning photo gallery of the rocket’s liftoff here, but we put a couple of samples below.

The Ariane 5 rocket carrying Europe's last automated transfer vehicle blasts off from French Guiana July 29, 2014. Credit: ESA-S. Corvaja
The Ariane 5 rocket carrying Europe’s last automated transfer vehicle blasts off from French Guiana July 29, 2014. Credit: ESA-S. Corvaja

Cargo Ship’s Fiery Demise Could Help Predict What Happens When The Space Station Burns Up

Artist's conception of the final Automated Transfer Vehicle (ATV), Georges Lemaître, breaking up during re-entry following a cargo run to the International Space Station. Credit: ESA–D. Ducros

It’s sad to think about, but there will be a day sometime when the International Space Station makes its final journey — a destructive re-entry into Earth’s atmosphere. Historically, it’s been hard to break up large pieces of space hardware safely. Pieces of the Skylab space station famously rained down in Australia, while Mir’s demise triggered warnings across its re-entry path.

The European Space Agency sees an opportunity to gather more information for this future use: closely watching what happens when the final Automated Transfer Vehicle (ATV), Georges Lemaître, goes to the International Space Station and has its planned breakup in the atmosphere following the shipment.

They plan to record its last moments using a heat-seeking camera on the inside of the spacecraft. This sort of thing has been done before with NASA and the Japanese Aerospace Exploration Agency, but this will be a first for ESA.

“The data should also hold broader value,” stated Neil Murray, who is leading the project at the European Space Agency (ESA).

“The project is proceeding under our ‘Design for Demise’ effort to design space hardware in such a way that it is less likely to survive reentry and potentially endanger the public. Design for Demise in turn is part of the agency’s clean space initiative, seeking to render the space industry more environmentally friendly in space as well as on Earth.”

The Automated Transfer Vehicle Albert Einstein burning up on Nov. 2, 2013 at 12:04 GMT over an uninhabitated part of the Pacific Ocean. This picture was snapped from the International Space Station. Credit: ESA/NASA
The Automated Transfer Vehicle Albert Einstein burning up on Nov. 2, 2013 at 12:04 GMT over an uninhabitated part of the Pacific Ocean. This picture was snapped from the International Space Station. Credit: ESA/NASA

The camera will ride inside, bolted to a rack, and transmit the last 20 seconds of its lifetime to a special Reentry Satcom capsule that is designed to survive the breakup. The data will in turn be sent to Earth using an Iridium satellite.

While the SatCom will be protected by a heatshield, the challenge will be transmitting the information through the plasma generated as it falls at 6 to 7 kilometers (3.7 to 4.3 miles) a second. The breakup will happen at 80 kilometers (50 miles) and the plasma will be there until below an altitude of about 40 kilometers (25 miles), ESA stated.

“The fall will generate high-temperature plasma around it, but signals from its omnidirectional antenna should be able to make it through any gap in the plasma to the rear,” the agency added.

Georges Lemaître is expected to launch later this month and last six months in space before re-entry.

Source: European Space Agency