Scientist Discusses Latest Report of Rising Global Temperatures

Earth's surface temperatures have mainly increased since 1880. Credit: NASA

[/caption]

A new NASA report says the past decade was the warmest ever on Earth, at least since modern temperature measurements began in 1880. The study analyzed global surface temperatures and also found that 2009 was the second-warmest year on record, again since modern temperature measurements began. Last year was only a small fraction of a degree cooler than 2005, the warmest yet, putting 2009 in a virtual tie with the other hottest years, which have all occurred since 1998. This annual surface temperature study is one that always generates considerable interest — and some controversy. Gavin Schmidt, a climatologist at NASA’s Goddard Institute for Space Studies (GISS) offered some context on this latest report, in an interview with the NASA Earth Science News Team.

NASA’s Earth Science News Team: Every year, some of the same questions come up about the temperature record. What are they?

Gavin Schmidt: First, do the annual rankings mean anything? Second, how should we interpret all of the changes from year to year — or inter-annual variability — the ups and downs that occur in the record over short time periods? Third, why does NASA GISS get a slightly different answer than the Met Office Hadley Centre does? Fourth, is GISS somehow cooking the books in its handling and analysis of the data?

NASA: 2009 just came in as tied as the 2nd warmest on record, which seems notable. What is the significance of the yearly temperature rankings?

The map shows temperature changes for the last decade—January 2000 to December 2009—relative to the 1951-1980 mean. Credit: NASA

Gavin Schmidt: In fact, for any individual year, the ranking isn’t particularly meaningful. The difference between the second warmest and sixth warmest years, for example, is trivial. The media is always interested in the annual rankings, but whether it’s 2003, 2007, or 2009 that’s second warmest doesn’t really mean much because the difference between the years is so small. The rankings are more meaningful as you look at longer averages and decade-long trends.

NASA: Why does GISS get a different answer than the Met Office Hadley Centre [a UK climate research group that works jointly with the Climatic Research Unit at the University of East Anglia to perform an analysis of global temperatures]?

Gavin Schmidt: It’s mainly related to the way the weather station data is extrapolated. The Hadley Centre uses basically the same data sets as GISS, for example, but it doesn’t fill in large areas of the Arctic and Antarctic regions where fixed monitoring stations don’t exist. Instead of leaving those areas out from our analysis, you can use numbers from the nearest available stations, as long as they are within 1,200 kilometers. Overall, this gives the GISS product more complete coverage of the polar areas.

NASA: Some might hear the word “extrapolate” and conclude that you’re “making up” data. How would you reply to such criticism?

Gavin Schmidt: The assumption is simply that the Arctic Ocean as a whole is warming at the average of the stations around it. What people forget is that if you don’t put any values in for the areas where stations are sparse, then when you go to calculate the global mean, you’re actually assuming that the Arctic is warming at the same rate as the global mean. So, either way you are making an assumption.

Which one of those is the better assumption? Given all the changes we’ve observed in the Arctic sea ice with satellites, we believe it’s better to assume the Arctic Ocean is changing at the same rate as the other stations around the Arctic. That’s given GISS a slightly larger warming, particularly in the last couple of years, relative to the Hadley Centre.

NASA: Many have noted that the winter has been particularly cold and snowy in some parts of the United States and elsewhere. Does this mean that climate change isn’t happening?

Gavin Schmidt: No, it doesn’t, though you can’t dismiss people’s concerns and questions about the fact that local temperatures have been cool. Just remember that there’s always going to be variability. That’s weather. As a result, some areas will still have occasionally cool temperatures — even record-breaking cool — as average temperatures are expected to continue to rise globally.

NASA: So what’s happening in the United States may be quite different than what’s happening in other areas of the world?

Gavin Schmidt: Yes, especially for short time periods. Keep in mind that that the contiguous United States represents just 1.5 percent of Earth’s surface.

NASA: GISS has been accused by critics of manipulating data. Has this changed the way that GISS handles its temperature data?

Gavin Schmidt: Indeed, there are people who believe that GISS uses its own private data or somehow massages the data to get the answer we want. That’s completely inaccurate. We do an analysis of the publicly available data that is collected by other groups. All of the data is available to the public for download, as are the computer programs used to analyze it. One of the reasons the GISS numbers are used and quoted so widely by scientists is that the process is completely open to outside scrutiny.

NASA: What about the meteorological stations? There have been suggestions that some of the stations are located in the wrong place, are using outdated instrumentation, etc.

Gavin Schmidt: Global weather services gather far more data than we need. To get the structure of the monthly or yearly anomalies over the United States, for example, you’d just need a handful of stations, but there are actually some 1,100 of them. You could throw out 50 percent of the station data or more, and you’d get basically the same answers. Individual stations do get old and break down, since they’re exposed to the elements, but this is just one of things that the NOAA has to deal with. One recent innovation is the set up of a climate reference network alongside the current stations so that they can look for potentially serious issues at the large scale – and they haven’t found any yet.

Sources: NASA, NASA Earth Observatory

Gases In The Atmosphere

Atmosphere layers. Image credit: NASA
Atmosphere layers. Image credit: NASA

[/caption]There are different gases in the atmosphere. There’s nitrogen (the most abundant of them all), oxygen, and argon. There are of course a lot more but they’re no more than 1% of the entire atmosphere.

Among the minority are the greenhouse gases, carbon dioxide being the most prominent of them all. These gases are presently cast as harmful to the planet, being the primary cause of global warming. Of course, they’re only harmful because they’ve exceeded their ideal levels. Anything that comes in excess is not good, right?

At ideal levels, greenhouse gases play an important role in keeping our planet warm enough for us and other organisms to live comfortably. Unfortunately, the rapid rate of industrialization has caused greenhouse gases to accumulate, forming a layer too thick for infrared radiation (which originally came in from the Sun as solar radiation) to escape.

The different gases in the atmosphere actually make up five principal layers. Starting from the lowest layer, there’s the Troposphere, followed by Stratosphere, then the Mesosphere, then Thermosphere, and finally the Exosphere.

The peak of Mount Everest, high as it is, is still part of the Troposphere. The Stratosphere is the layer at which most weather balloons fly. The Mesosphere is where meteors mostly ignite. The Thermosphere is where the International Space Station orbits.

Since the Karman line (which serves as the boundary between the Earth’s immediate atmosphere and outer space) is found in the lower region of the Thermosphere, much of this layer of gases in the atmosphere is considered outer space. Finally, the exosphere, being the outermost layer, is where you can find the lightest gases: hydrogen and helium.

Many properties of the gases in the atmosphere are dependent on the altitude at which they are found. For instance, average density of these gases generally decrease as one rises to higher altitudes. As a result, the pressure (being due to the collisions of the particles that make up the gas) also decreases in the same manner.

Since the force of gravity pulls down on the masses of these gases, the heavier gases are typically found near the surface of the Earth while the lightest ones (e.g. hydrogen and helium) are found in higher altitudes. All these properties are just generalizations though. Temperature and fluid dynamics also influence these properties.

Want to learn more about the atmosphere and air pressure? You can read about both here in Universe Today.

Of course, you can find more info at NASA too. Follow these links:
Earth’s Atmosphere
Earth

Tired eyes? We recommend you let your ears do the work for a change. Here are some episodes from Astronomy Cast:
Atmospheres
Plate Tectonics

An Astronomical Perspective on Climate Change

Ice cores and deep sea bed cores provide the best available record of changes in global temperature and CO2 content of the atmosphere going back 800,000 years. The data shows a clear periodicity in global temperatures which is thought to be linked to the Milankovitch cycle.

Back in 1920, Milutin Milankovitch, a Serbian mathematician, proposed that fine changes in Earth’s orbit around the Sun could explain an approximately 100,000 year cycle in glaciation seen from geological evidence. The tilt of the Earth’s axis swings slightly over a 41,000 year cycle – the eccentricity of Earth’s orbit moves from almost circular to more elliptical and back again over a 413,000 year cycle – and overlaying that you have not only the precession of the equinoxes, which is an inherent wobble in the Earth’s axial spin over a 26,000 year cycle, but also a precession of the whole of Earth’s orbit over a 23,000 year cycle.

Ice core data does show a rough concordance between glaciation and the synchronicity of these orbital cycles. Even though there’s no significant change in the mean amount of solar radiation reaching the Earth over the period of its annual orbit – the orbital changes can lead to increased polar shadowing and cooling.

Once ice does start advancing from the poles, a positive feedback loop can develop – since more ice increases the albedo of Earth’s surface and reflects more of the Sun’s heat back into space, thus reducing mean global temperatures.

ice coreIt’s thought that what limits the ice advancing is increasing CO2 in the atmosphere – which can be measured from trapped bubbles of air in the ice cores. More ice formation leads to less exposed land area for photosynthesis and silicate rock weathering to remove CO2 from the atmosphere. So the more ice that’s formed, the more CO2 accumulates in the atmosphere – which causes mean global temperatures to rise, which limits ongoing ice formation.

Of course the opposite is true in an ice-melting phase. Ice melting also follows a positive feedback loop since less ice means less albedo, meaning less solar radiation is reflected back into space and mean global temperatures rise. But again, CO2 becomes the limiting factor. With more exposed land, more CO2 is drawn from the atmosphere by photosynthesizing forests and rock weathering. A consequent drop in atmospheric CO2 cools the planet and hence limits ongoing ice melting.

But there lies the rub. We are in an ice-melting phase of the Milankovitch cycle now, where the Earth’s orbit is closer to circular and the Earth’s tilt is closer to perpendicular. But CO2 levels aren’t declining – partly because we’ve chopped a lot of trees and forests down, but mostly because of anthropogenic CO2 production. Without the limiting factor of declining CO2 we’ve seen in previous Milankovitch cycles, presumably the ice is just going to keep on melting as the albedo of the Earth surface declines.

Projected changes in coastlines with 170 metre sea level riseSo you might want to rethink that next coastal real estate purchase – or hope for the best from Copenhagen.