Webb and Hubble Work Together to Reveal This Spectacular Galaxy Pair — and Several Bonuses!

By combining data from the James Webb Space Telescope and the Hubble Space Telescope, this image of galaxy pair VV 191 includes near-infrared light from Webb, and ultraviolet and visible light from Hubble. Credit: NASA, ESA, CSA, Rogier Windhorst (ASU), William Keel (University of Alabama), Stuart Wyithe (University of Melbourne), JWST PEARLS Team, Alyssa Pagan (STScI).

What’s better than a pair of galaxies observed by a pair of iconic space telescopes? The answer to that, according to researchers using the Hubble and James Webb Space Telescopes, is finding even more galaxies and other remarkable details no one expected in the duo’s observations.

“Galaxies in the foreground, background, deep background, and into the depths,” said astronomer William Keel from Galaxy Zoo, on Twitter.

Continue reading “Webb and Hubble Work Together to Reveal This Spectacular Galaxy Pair — and Several Bonuses!”

A Solar Gravitational Lens Will be Humanity's Most Powerful Telescope. What are its Best Targets?

mage of a simulated Earth, at 1024×1024 pixel resolution, at the distance of Proxima Centauri,at 1.3 pc, as projectedby the SGL to an image plane at 650 AU from the Sun. Credit: Toth H. & Turyshev, S.G.

One of the central predictions of general relativity is that a massive object such as a star, galaxy, or black hole can deflect light passing nearby. This means that light from distant objects can be gravitationally lensed by objects closer to us. Under the right conditions, gravitational lensing can act as a kind of natural telescope, brightening and magnifying the light of distant objects. Astronomers have used this trick to observe some of the most distant galaxies in the universe. But astronomers have also thought about using this effect a little closer to home.

Continue reading “A Solar Gravitational Lens Will be Humanity's Most Powerful Telescope. What are its Best Targets?”

A Computer Algorithm is 88% Accurate in Finding Gravitational Lenses

Pictures of gravitational lenses from the AGEL survey. Credit: ARC Centre of Excellence for All Sky Astrophysics in 3-Dimensions (ASTRO3D) and the University of NSW (UNSW).

Astronomers have been assessing a new machine learning algorithm to determine how reliable it is for finding gravitational lenses hidden in images from all sky surveys. This type of AI was used to find about 5,000 potential gravitational lenses, which needed to be confirmed. Using spectroscopy for confirmation, the international team has now determined the technique has a whopping 88% success rate, which means this new tool could be used to find thousands more of these magical quirks of physics.

Continue reading “A Computer Algorithm is 88% Accurate in Finding Gravitational Lenses”

Astronomers Measure the Signal of Dark Matter From 12 Billion Years ago

Visualization of how dark matter lenses distant light. Credit: Reiko Matsushita (Nagoya University)

Although the particles of dark matter continue to allude us, astronomers continue to find evidence of it. In a recent study, they have seen its effect from the edge of visible space, when the universe was just 1.5 billion years old.

Continue reading “Astronomers Measure the Signal of Dark Matter From 12 Billion Years ago”

A Mission to Reach the Solar Gravitational Lens in 30 Years

NASA’s Institute for Advanced Concepts is famous for supporting outlandish ideas in the astronomy and space exploration fields. Since being re-established in 2011, the institute has supported a wide variety of projects as part of its three-phase program. However, so far, only three projects have gone on to receive Phase III funding. And one of those just released a white paper describing a mission to get a telescope that could effectively see biosignatures on nearby exoplanets by utilizing the gravitational lens of our own Sun.

Continue reading “A Mission to Reach the Solar Gravitational Lens in 30 Years”

Using the Sun as a Gravitational Lens Would Let Us See Exoplanets With Incredible Resolution

An artist view of countless exoplanets. Credit: NASA/JPL-Caltech

Have you ever seen wispy arcs and rings in astronomical images taken by the Hubble Space Telescope and other observatories? These unusual features are caused by a quirk of nature called gravitational lensing, which occurs when light from a distant object is distorted by a closer massive object along the same line of sight. This distortion effectively creates a giant lens which magnifies the background light source, allowing astronomers to observe objects embedded within those lens-created arcs and rings that are otherwise be too far and too dim to see.

A group of researchers are working on plans to build a spacecraft that could apply this quirk by using our Sun as a gravitational lens. Their goal is to see distant exoplanets orbiting other stars, and to image an Earth-like exoplanet, seeing it in exquisite detail, at a resolution even better than the well-known Apollo 8 Earthrise photo.

Continue reading “Using the Sun as a Gravitational Lens Would Let Us See Exoplanets With Incredible Resolution”

We can Probably Find Supernovae Enhanced by Gravitational Lensing, We Just Need to Look

Using the microlensing metthod, a team of astrophysicists have found the first extra-galactic planets! Credit: NASA/Tim Pyle

Gravitational lensing provides an opportunity to see supernovae and other transients much farther than we normally can. A new research proposal outlines a plan to use a comprehensive catalog of strong gravitational lenses to capture these rare events at extreme distances.

Continue reading “We can Probably Find Supernovae Enhanced by Gravitational Lensing, We Just Need to Look”

A New Record! Hubble Detects an Individual Star From a Time When the Universe Was Less Than a Billion Years Old

Gravitationally lensed image of Earendel
The star nicknamed Earendel, indicated by the white arrow, is positioned along a ripple in spacetime toat gives the image extreme magnification. Credit: NASA / ESA / Brian Welch (JHU) / Dan Coe (STScI) / Alyssa Pagan (STScI)

A star that sounds as if it came from “The Lord of the Rings” now marks one of the Hubble Space Telescope’s farthest frontiers: The fuzzy point of light, known as Earendel, has been dated to a mere 900 million years after the Big Bang and appears to represent the farthest-out individual star seen to date.

Based on its redshift value of 6.2, Earendel’s light has taken 12.9 billion years to reach Earth, astronomers report in this week’s issue of the journal Nature. That distance mark outshines Hubble’s previous record-holder for a single star, which registered a redshift of 1.5 and is thought to have existed when the universe was 4 billion years old.

The newly reported record comes with caveats. First of all, we’re talking here about a single star rather than star clusters or galaxies. Hubble has seen agglomerations of stars that go back farther in time.

“Normally at these distances, entire galaxies look like small smudges, with the light from millions of stars blending together,” lead author Brian Welch, an astronomer at Johns Hopkins University, said today in a news release. “The galaxy hosting this star has been magnified and distorted by gravitational lensing into a long crescent that we named the Sunrise Arc.”

A close look at the arc turned up several bright spots, but the characteristics of the light coming from Earendel pointed to a high redshift, which translates into extreme distance. The higher the redshift, the faster the source of the light is receding from us in an ever-more-quickly expanding universe.

Continue reading “A New Record! Hubble Detects an Individual Star From a Time When the Universe Was Less Than a Billion Years Old”

What is Einstein’s Theory of Relativity?

Einstein Lecturing
Albert Einstein during a lecture in Vienna in 1921. Credit: National Library of Austria/F Schmutzer/Public Domain

In the history of science and physics, several scholars, theories, and equations have become household names. In terms of scientists, notable examples include Pythagoras, Aristotle, Galileo, Newton, Planck, and Hawking. In terms of theories, there’s Archimede’s “Eureka,” Newton’s Apple (Universal Gravitation), and Schrodinger’s Cat (quantum mechanics). But the most famous and renowned is arguably Albert Einstein, Relativity, and the famous equation, E=mc2. In fact, Relativity may be the best-known scientific concept that few people truly understand.

For example, Einstein’s Theory of Relativity comes in two parts: the Special Theory of Relativity (SR and the General Theory of Relativity (GR). And the term “Relativity” itself goes back to Galileo Galilee and his explanation for why motion and velocity are relative to the observer. As you can probably tell, explaining how Einstein’s groundbreaking theory works require a deep dive into the history of physics, some advanced concepts, and how it all came together for one of the greatest minds of all time!

Continue reading “What is Einstein’s Theory of Relativity?”

If Alien Probes are Already in the Solar System, Maybe we Could Detect Them Calling Home

Artist's impression of the Milky Way Galaxy. Credit: ESO

It’s been seventy years since physicist Enrico Fermi asked his famous question: “Where is everybody?” And yet, the tyranny of the Fermi Paradox is still with us and will continue to be until definitive evidence of Extraterrestrial Intelligence (ETI) is found. In the meantime, scientists are forced to speculate as to why we haven’t found any yet and (more importantly) what we should be looking for. By focusing our search efforts, it is hoped that we may finally determine that we are not alone in the Universe.

In a recent study, two researchers from the University of Liège and the Massachusetts Institute of Technology (MIT) recommended that we look for evidence of transmissions from our Solar System. Based on the theory that ETIs exist and have already established a communications network in our galaxy, the team identified Wolf 359 as the best place to look for possible interstellar communications from an alien probe.

Continue reading “If Alien Probes are Already in the Solar System, Maybe we Could Detect Them Calling Home”