What is Einstein’s Theory of Relativity?

Einstein Lecturing
Albert Einstein during a lecture in Vienna in 1921. Credit: National Library of Austria/F Schmutzer/Public Domain

In the history of science and physics, several scholars, theories, and equations have become household names. In terms of scientists, notable examples include Pythagoras, Aristotle, Galileo, Newton, Planck, and Hawking. In terms of theories, there’s Archimede’s “Eureka,” Newton’s Apple (Universal Gravitation), and Schrodinger’s Cat (quantum mechanics). But the most famous and renowned is arguably Albert Einstein, Relativity, and the famous equation, E=mc2. In fact, Relativity may be the best-known scientific concept that few people truly understand.

For example, Einstein’s Theory of Relativity comes in two parts: the Special Theory of Relativity (SR and the General Theory of Relativity (GR). And the term “Relativity” itself goes back to Galileo Galilee and his explanation for why motion and velocity are relative to the observer. As you can probably tell, explaining how Einstein’s groundbreaking theory works require a deep dive into the history of physics, some advanced concepts, and how it all came together for one of the greatest minds of all time!

Continue reading “What is Einstein’s Theory of Relativity?”

If Alien Probes are Already in the Solar System, Maybe we Could Detect Them Calling Home

Artist's impression of the Milky Way Galaxy. Credit: ESO

It’s been seventy years since physicist Enrico Fermi asked his famous question: “Where is everybody?” And yet, the tyranny of the Fermi Paradox is still with us and will continue to be until definitive evidence of Extraterrestrial Intelligence (ETI) is found. In the meantime, scientists are forced to speculate as to why we haven’t found any yet and (more importantly) what we should be looking for. By focusing our search efforts, it is hoped that we may finally determine that we are not alone in the Universe.

In a recent study, two researchers from the University of Liège and the Massachusetts Institute of Technology (MIT) recommended that we look for evidence of transmissions from our Solar System. Based on the theory that ETIs exist and have already established a communications network in our galaxy, the team identified Wolf 359 as the best place to look for possible interstellar communications from an alien probe.

Continue reading “If Alien Probes are Already in the Solar System, Maybe we Could Detect Them Calling Home”

Advanced Civilizations Could use Their Stars to Communicate (and as Telescopes)

A schematic of a on-axis stellar relay transmission system, opening angles, distances, and sizes not to scale. The initial unfocused transmission beam may even have an annular pattern to prevent flux from being lost to the disk of the Sun.A reversed arrangement can be used to receive signals from a distant star by focusing rays onto the spacecraft. c. Kerby and Wright 2021

A Long Distance Call

E.T. managed to call home with a Speak and Spell, buzzsaw blade, and an umbrella. The reality of interstellar communication is a bit more complicated. Space is really, really big. The power needed to transmit a signal across the void is huge. However, rather than using super high power transmitters, recent research by Stephen Kerby and Jason T. Wright shows that we could make use of a natural signal gain boost built into solar systems – the gravitational lensing of a solar system’s star. Networking a series of stars as nodes could get signals across vast tracts of the Milky Way. And we may be able to detect if our Sun is already part of an alien galactic communication network.

Distant Satellites at the far reaches of the solar system may use the natural focusing of light by the Sun to communicate across space – c. NASA
Continue reading “Advanced Civilizations Could use Their Stars to Communicate (and as Telescopes)”

What a Perfect Gravitational Lens

Clustered at the centre of this image are six luminous spots of light, four of them forming a circle around a central pair. Credit: ESA/Hubble & NASA, Acknowledgment: J. Schmidt

A stunning new photograph from the Hubble Space Telescope shows a nearly perfect Einstein Ring, an effect caused by gravitational lensing. This is one of the most complete Einstein Rings ever seen.

Continue reading “What a Perfect Gravitational Lens”

Astronomers saw the Same Supernova Three Times Thanks to Gravitational Lensing. And in Twenty Years They Think They’ll see it one More Time

It is hard for humans to wrap their heads around the fact that there are galaxies so far away that the light coming from them can be warped in a way that they actually experience a type of time delay.  But that is exactly what is happening with extreme forms of gravitational lensing, such as those that give us the beautiful images of Einstein rings.  In fact, the time dilation around some of these galaxies can be so extreme that the light from a single event, such as a supernova, can actually show up on Earth at dramatically different times.  That is exactly what a team led by Dr. Steven Rodney at the University of South Carolina and Dr. Gabriel Brammer of the University of Copenhagen has found. Except three copies of this supernova have already appeared – and the team thinks it will show up again one more time, 20 years from now.

Continue reading “Astronomers saw the Same Supernova Three Times Thanks to Gravitational Lensing. And in Twenty Years They Think They’ll see it one More Time”

It Could be Possible to see Gravitational Wave Lenses

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist's impression of merging binary black holes. Credit: LIGO/A. Simonnet.

Gravitational-wave astronomy is very different from that of electromagnetic light. While gravitational waves are faint and difficult to detect, they also pass through matter with little effect. In essence, the material universe is transparent to gravitational waves. This makes gravitational wave astronomy a powerful tool when studying the universe. But it’s still in the early stages, and there is much to learn about how gravitational waves behave.

Continue reading “It Could be Possible to see Gravitational Wave Lenses”

Gaia Might Even be Able to Detect the Gravitational Wave Background of the Universe

Embry-Riddle researchers used data captured by the Gaia satellite (shown here in an artist’s impression) to determine the ages of stars. Credit: European Space Agency – D. Ducros, 2013
Embry-Riddle researchers used data captured by the Gaia satellite (shown here in an artist’s impression) to determine the ages of stars. Credit: European Space Agency – D. Ducros, 2013

The Gaia spacecraft is an impressive feat of engineering. Its primary mission is to map the position and motion of more than a billion stars in our galaxy, creating the most comprehensive map of the Milky Way thus far. Gaia collects such a large amount of precision data that it can make discoveries well beyond its main mission. For example, by looking at the spectra of stars, astronomers can measure the mass of individual stars to within 25% accuracy. From the motion of stars, astronomers can measure the distribution of dark matter in the Milky Way. Gaia can also discover exoplanets when they pass in front of a star. But one of the more surprising uses is that Gaia could help us detect cosmic gravitational waves.

Continue reading “Gaia Might Even be Able to Detect the Gravitational Wave Background of the Universe”

A new Technique Could use Quasars to Directly Measure the Expansion Rate of the Universe

an artistic concept of a quasar
Concept image of a galactic quasar. Astronomers used the Event Horizon Telescope to study details at the heart of one like this called NRAO 530. Credit: ParallelVision, Pixabay

One of the biggest challenges to measuring the expansion of the universe is the fact that many of the methods we use are model-dependent. The most famous example is the use of distant supernovae, where we compare the standard brightness of a Type Ia supernova with their apparent brightness to find their distance. But knowing the standard brightness depends upon comparing them to the brightness of Cepheid variables which is in turn determined by measuring the distances of nearby stars via parallax. Every step of this cosmic distance ladder depends upon the step before it.

Continue reading “A new Technique Could use Quasars to Directly Measure the Expansion Rate of the Universe”

You Thought Black Hole Event Horizons Looked Strange. Check out Binary Black Hole Event Horizons

The lensing effects can be complex and difficult to calculate. Credit: NASA’s Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell

One of the strangest predictions of general relativity is that gravity can deflect the path of light. The effect was first observed by Arthur Eddington in 1919. While the bending effect of the Sun is small, near a black hole light deflection can be significant. So significant that you need a powerful supercomputer to calculate how light will behave.

Continue reading “You Thought Black Hole Event Horizons Looked Strange. Check out Binary Black Hole Event Horizons”

Gaia Finds 12 Examples of Einstein Crosses; Galaxies Being Gravitationally Lensed so we see Them Repeated 4 Times

Credit and : R. Hurt (IPAC/Caltech)/The GraL Collaboration

In 1915, Einstein put the finishing touches on his Theory of General Relativity (GR), a revolutionary new hypothesis that described gravity as a geometric property of space and time. This theory remains the accepted description of gravitation in modern physics and predicts that massive objects (like galaxies and galaxy clusters) bend the very fabric of spacetime.

As result, massive objects (like galaxies and galaxy clusters) can act as a lens that will deflect and magnify light coming from more distant objects. This effect is known as “gravitational lensing,” and can result in all kinds of visual phenomena – not the least of which is known as an “Einstein Cross.” Using data from the ESA’s Gaia Observatory, a team of researchers announced the discovery of 12 new Einstein Crosses.

Continue reading “Gaia Finds 12 Examples of Einstein Crosses; Galaxies Being Gravitationally Lensed so we see Them Repeated 4 Times”