An Earth-like Planet Around a Dead Sun Provides Some Reassurance About the Future of Earth

Astronomers have discovered a distant white dwarf with an Earth-like planet in an orbit just beyond where Mars is in our solar system. Earth could end up in such an orbit circling a white dwarf in about 8 billion years, if, like this exoplanet, it can survive the sun's red giant phase on its way to becoming a white dwarf. Credit: Adam Makarenko

In about five billion years, our Sun will exit its main sequence phase and transition to its red giant phase. At this point, the Sun will expand and consume the planets of the inner Solar System, including Mercury and Venus. What will become of Earth when this happens has been the subject of debate for many decades. But with the recent explosion in exoplanet discoveries, 5,759 confirmed in 4,305 systems so far, astronomers hope to learn more about how planets fare as their stars near the end of their life cycle.

Using the 10-meter telescope at the Keck Observatory in Hawaii, an international team of astronomers discovered an Earth-like planet orbiting a white dwarf star 4,000 light-years from Earth. This planet orbits its star, about half the mass of our Sun, at a distance roughly twice that of the Earth today. The system resembles what is expected to become of our system once the Sun has exhausted the last of its fuel and sheds its outer layers. It also offers some assurances that Earth will survive the Sun becoming a red giant and exploding in a supernova.

Continue reading “An Earth-like Planet Around a Dead Sun Provides Some Reassurance About the Future of Earth”

Another Strike Against Primordial Black Holes as an Explanation for Dark Matter

An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to a black hole. Credit: Aaron Smith/TACC/UT-Austin.
An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to create black holes. Credit: Aaron Smith/TACC/UT-Austin.

The quest to understand dark matter has taken many twists and turns. It’s a scientific tale but also a human one. We know there’s a missing mass problem, but astrophysicists and cosmologists can’t figure out what the missing matter is. One of the most interesting potential solutions is primordial black holes (PBHs).

However, new research suggests that PBHs can only make up a small portion of dark matter if any at all.

Continue reading “Another Strike Against Primordial Black Holes as an Explanation for Dark Matter”

Some Clever Ways to Search for Primordial Black Holes

Primordial Black Holes (PBHs) have recently received much attention in the physics community. One of the primary reasons is the potential link to dark matter. In effect, if PBHs can be proven to exist, there’s a very good chance that they are what dark matter, the invisible thing that makes up 85% of the universe’s mass, is made of. If proven, that would surely be a Nobel-level discovery in astrophysics. 

Continue reading “Some Clever Ways to Search for Primordial Black Holes”

Roman Space Telescope Will Be Hunting For Primordial Black Holes

This artist's illustration shows what primordial black holes might look like. In reality, the black holes would struggle to form accretion disks, as shown. Image Credit: NASA’s Goddard Space Flight Center

When astrophysicists observe the cosmos, they see different types of black holes. They range from gargantuan supermassive black holes with billions of solar masses to difficult-to-find intermediate-mass black holes (IMBHs) all the way down to smaller stellar-mass black holes.

But there may be another class of these objects: primordial black holes (PBHs) that formed in the very early Universe. If they exist, the Nancy Grace Roman Space Telescope should be able to spot them.

Continue reading “Roman Space Telescope Will Be Hunting For Primordial Black Holes”

Gaia is so Accurate it Can Predict Microlensing Events

ESA/Gaia/DPAC; CC BY-SA 3.0 IGO. Acknowledgement: A. Moitinho.

The ESA’s Gaia Observatory continues its astrometry mission, which consists of measuring the positions, distances, and motions of stars (and the positions of orbiting exoplanets) with unprecedented precision. Launched in 2013 and with a five-year nominal mission (2014-2019), the mission is expected to remain in operation until 2025. Once complete, the mission data will be used to create the most detailed 3D space catalog ever, totaling more than 1 billion astronomical objects – including stars, planets, comets, asteroids, and quasars.

Another benefit of this data, according to a team of researchers led by the Chinese Academy of Sciences (CAS), is the ability to predict future microlensing events. Similar to gravitational lensing, this phenomenon occurs when light from background sources is deflected and amplified by foreground objects. Using information from Gaia‘s third data release (DR3), the team predicted 4500 microlensing events, 1664 of which are unlike any we have seen. These events will allow astronomers to conduct lucrative research into distant star systems, exoplanets, and other celestial objects.

Continue reading “Gaia is so Accurate it Can Predict Microlensing Events”

Roman Could Finally Tell Us if Primordial Black Holes Exist

An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to a black hole. Credit: Aaron Smith/TACC/UT-Austin.
An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to create black holes. Credit: Aaron Smith/TACC/UT-Austin.

When the Universe erupted into existence with the Big Bang, all of its matter was compressed into a tiny area. Cosmologists theorize that in some regions, subatomic matter may have been so tightly packed that matter collapsed into primordial black holes. If these primordial black holes exist, they’re small, and they could be hiding among the population of free-floating planets.

Continue reading “Roman Could Finally Tell Us if Primordial Black Holes Exist”

If Rogue Planets are Everywhere, How Could We Explore Them?

This artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background. Rogue planets have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Image Credit: ESO/M. Kornmesser/S. Guisard

At one time, astronomers believed that the planets formed in their current orbits, which remained stable over time. But more recent observations, theory, and calculations have shown that planetary systems are subject to shake-ups and change. Periodically, planets are kicked out of their star systems to become “rogue planets,” bodies that are no longer gravitationally bound to any star and are adrift in the interstellar medium (ISM). Some of these planets may be gas giants with tightly bound icy moons orbiting them, which they could bring with them into the ISM.

Like Jupiter, Saturn, Uranus, and Neptune, these satellites could have warm water interiors that might support life. Other research has indicated that rocky planets with plenty of water on their surfaces could also support life through a combination of geological activity and the decay of radionuclides. According to a recent paper by an international team of astronomers, there could be hundreds of rogue planets in our cosmic neighborhood. Based on their first-ever feasibility analysis, they also indicate that deep space missions could explore these unbound objects more easily than planets still bound to their stars.

Continue reading “If Rogue Planets are Everywhere, How Could We Explore Them?”

There Could be Trillions of Rogue Planets Wandering the Milky Way

Artist's rendition of an ice-encrusted, Earth-mass rogue planet free-floating through space. (Credit: NASA’s Goddard Space Flight Center)

A pair of new studies set to be published in The Astronomical Journal examine new discoveries in the field of rogue planets, which are free-floating exoplanets that drift through space unbound by the gravitational tug of a star. They can form within their own solar system and get ejected, or they can form independently, as well. The first study examines only the second discovery of an Earth-mass rogue planet—the first being discovered in September 2020—while the second study examines the potential number of rogue planets that could exist in our Milky Way Galaxy.

Continue reading “There Could be Trillions of Rogue Planets Wandering the Milky Way”

A Rogue Earth and Neptune Might Have Been Found in Older Data

An artist's illustration of a rogue planet, dark and mysterious. Image Credit: NASA

Scientists have found what appear to be rogue planets hidden in old survey data. Their results are starting to define the poorly-understood rogue planet population. In the near future, the Nancy Grace Roman Space Telescope will conduct a search for more free-floating planets, and the team of researchers developed some methods that will aid that search.

Continue reading “A Rogue Earth and Neptune Might Have Been Found in Older Data”

Hubble Pins Down the Mass of a Potential Free-Floating Black Hole That’s 5,000 Light-Years Away

This is an artist’s impression of a black hole drifting through our Milky Way galaxy. The black hole is the crushed remnant of a massive star that exploded as a supernova. The surviving core is several times the mass of our Sun. The black hole traps light because of its intense gravitational field. The black hole distorts the space around it, which warps images of background stars lined up almost directly behind it. This gravitational "lensing" effect offers the only telltale evidence for the existence of lone black holes wandering our galaxy, of which there may be a population of 100 million. The Hubble Space Telescope goes hunting for these black holes by looking for distortion in starlight as the black holes drift in front of background stars. Credit: ESA

Earlier this year, astronomers used microlensing and the Hubble Space Telescope to detect, for the first time, a rogue black hole that is about 5,000 lightyears away from Earth. Now, with more precise measurements, they have been able to determine an approximate mass of this hard-to-detect object. However, the surprisingly low mass means there’s a chance this object may not actually be a black hole.

Continue reading “Hubble Pins Down the Mass of a Potential Free-Floating Black Hole That’s 5,000 Light-Years Away”