Astronomers Discover Potential New Building Block of Organic Matter in Interstellar Space

A new study expands on the classical theory of panspermia, addressing whether or not life could be distributed on a galactic scale. Credit: NASA

Carbon is the building block for all life on Earth and accounts for approximately 45–50% of all dry biomass. When bonded with elements like hydrogen, it produces the organic molecules known as hydrocarbons. When bonded with hydrogen, oxygen, nitrogen, and phosphorus, it produces pyrimidines and purines, the very basis for DNA. The carbon cycle, where carbon atoms continually travel from the atmosphere to the Earth and back again, is also integral to maintaining life on Earth over time.

As a result, scientists believe that carbon should be easy to find in space, but this is not always the case. While it has been observed in many places, astronomers have not found it in the volumes they would expect to. However, a new study by an international team of researchers from the Massachusetts Institute of Technology (MIT) and the Harvard-Smithsonian Center for Astrophysics (CfA) has revealed a new type of complex molecule in interstellar space. Known as 1-cyanoprene, this discovery could reveal where the building blocks of life can be found and how they evolve.

Continue reading “Astronomers Discover Potential New Building Block of Organic Matter in Interstellar Space”

A Black Hole Burps out Material, Years After Feasting on a Star

. Credit: DESY/Science Communication Lab

Originally predicted by Einstein’s Theory of General Relativity, black holes are the most extreme object in the known Universe. These objects form when stars reach the end of their life cycle, blow off their outer layers, and are so gravitationally powerful that nothing (not even light) can escape their surfaces. They are also of interest because they allow astronomers to observe the laws of physics under the most extreme conditions. Periodically, these gravitational behemoths will devoir stars and other objects in their vicinity, releasing tremendous amounts of light and radiation.

In October 2018, astronomers witnessed one such event when observing a black hole in a galaxy located 665 million light-years from Earth. While astronomers have witnessed events like this before, another team from the Harvard & Smithsonian Center for Astrophysics noticed something unprecedented when they examined the same black hole three years later. As they explained in a recent study, the black hole was shining very brightly because it was ejecting (or “burping”) leftover material from the star at half the speed of light. Their findings could provide new clues about how black holes feed and grow over time.

Continue reading “A Black Hole Burps out Material, Years After Feasting on a Star”

A new Simulation of the Universe Contains 60 Trillion Particles, the Most Ever

Illustris simulation, showing the distribution of dark matter in 350 million by 300,000 light years. Galaxies are shown as high-density white dots (left) and as normal, baryonic matter (right). Credit: Markus Haider/Illustris

Today, the greatest mysteries facing astronomers and cosmologists are the roles gravitational attraction and cosmic expansion play in the evolution of the Universe. To resolve these mysteries, astronomers and cosmologists are taking a two-pronged approach. These consist of directly observing the cosmos to observe these forces at work while attempting to find theoretical resolutions for observed behaviors – such as Dark Matter and Dark Energy.

In between these two approaches, scientists model cosmic evolution with computer simulations to see if observations align with theoretical predictions. The latest of which is AbacusSummit, a simulation suite created by the Flatiron Institute’s Center for Computational Astrophysics (CCA) and the Harvard-Smithsonian Center for Astrophysics (CfA). Capable of processing nearly 60 trillion particles, this suite is the largest cosmological simulation ever produced.

Continue reading “A new Simulation of the Universe Contains 60 Trillion Particles, the Most Ever”

A New Plan to Search for Extraterrestrial Artifacts at Earth and Across the Solar System

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

On October 19th, 2017, astronomers made the first-ever detection of an interstellar object (ISO) in our Solar System. This body, named 1I/2017 U1 (‘Oumuamua), was spotted shortly after it flew by Earth on its way to the outer Solar System. Years later, astronomers are still hypothesizing what this object could have been (an interstellar “dust bunny,” hydrogen iceberg, nitrogen icebergs), with Harvard Prof. Abraham Loeb going as far as to suggest that it might have been an extraterrestrial solar sail.

Roughly three years later, interest in extraterrestrial visitors has not subsided, in part because of the release of the Pentagon report on the existence of “Unidentified Aerial Phenomena.” This prompted Loeb and several of his fellow scientists to form the Galileo Project, a multi-national, multi-institutional research team dedicated to bringing the search for Extraterrestrial Technological Civilizations (ETC) into the mainstream.

Continue reading “A New Plan to Search for Extraterrestrial Artifacts at Earth and Across the Solar System”

A Review of “Extraterrestrial” by Prof. Avi Loeb

Credit: Houghton Mifflin Harcourt

On October 19th, 2017, astronomers from the Haleakala Observatory in Hawaii announced the first-ever detection of an interstellar object in our Solar System. In honor of the observatory that first spotted it, this object (designated 1I/2017 U1) was officially named ‘Oumuamua by the IAU – a Hawaiian term loosely translated as “Scout” (or, “a messenger from afar arriving first.”)

Multiple follow-up observations were made as ‘Oumuamua left our Solar System and countless research studies resulted. For the most part, these studies addressed the mystery of what ‘Oumuamua truly was: a comet, an asteroid, or something else entirely? Into this debate, Dr. Shmuel Bialy and Prof. Avi Loeb of the Harvard Institute for Theory and Computation (ITC) argued that ‘Oumuamua could have been an extraterrestrial probe!

Having spent the past few years presenting this controversial theory before the scientific and astronomical community, Prof. Loeb has since shared the story of how he came to it in his new book, Extraterrestrial: The First Sign of Intelligent Life Beyond Earth. The book is a seminal read, addresses the mystery of ‘Oumuamua, and (most importantly) urges readers to take seriously the possibility that an extraterrestrial encounter took place

Continue reading “A Review of “Extraterrestrial” by Prof. Avi Loeb”

The Sun Might Have Once Had a Binary Companion Star

Credit: CfA

For some time now, astronomers have known that the majority of systems in our galaxy consist of binary pairs rather than individual stars. What’s more, in recent decades, research has revealed that stars like our Sun are actually born in clusters within solar nebulas. This has led to efforts in recent years to locate G-type (yellow dwarf) stars in our galaxy that could be the Sun’s long-lost “solar siblings.”

And now, a new study by Harvard astronomers Amir Siraj and Prof. Abraham Loeb has shown that the Sun may once have once had a very similar binary companion that got kicked out of our Solar System. If confirmed, the implications of this could be groundbreaking, especially where theories on how the Oort Cloud formed and whether or not our system captured a massive object (Planet Nine) in the past.

Continue reading “The Sun Might Have Once Had a Binary Companion Star”

Some Astronomers Think Betelgeuse Dimmed Because it “Sneezed”. And it Might be Getting Ready to do it Again

Artist's impression of Betelgeuse. Credit: ESO/L. Calçada

Betelgeuse, the tenth brightest star in the night sky and the second brightest in the constellation Orion, has been behaving a little oddly lately. Beginning in December of 2019, researchers from Villanova University noticed the red supergiant was dimming noticeably. This trend continued into the new year, with Betelgeuse dimming throughout January and February of 2020. eventually losing two-thirds of its brilliance.

From this point onward, Betelgeuse began to brighten again and returned to its typical visual brightness by April. And now, the massive star dimming once again, and ahead of schedule. In response, an international team of researchers recently conducted a study where they theorized that this pattern might be the result of Betelgeuse “sneezing” out dense clouds of hot gas which then cooled.

Continue reading “Some Astronomers Think Betelgeuse Dimmed Because it “Sneezed”. And it Might be Getting Ready to do it Again”

How Researchers Produce Sharp Images of a Black Hole

Credit: CfA

In April of 2019, the Event Horizon Telescope collaboration history made history when it released the first image of a black hole ever taken. This accomplishment was decades in the making and triggered an international media circus. The picture was the result of a technique known as interferometry, where observatories across the world combined light from their telescopes to create a composite image.

This image showed what astrophysicists have predicted for a long time, that extreme gravitational bending causes photons to fall in around the event horizon, contributing to the bright rings that surround them. Last week, on March 18th, a team of researchers from the Harvard-Smithsonian Center for Astrophysics (CfA) announced new research that shows how black hole images could reveal an intricate substructure within them.

Continue reading “How Researchers Produce Sharp Images of a Black Hole”

Astronomers Image the Atmosphere of a Red Dwarf Planet for the First Time. Spoiler Alert, it’s a Terrible Place to Live

An artist's conception of The Earth-sized exoplanet LHS 3844b which orbits a small star 49 light-years from Earth. It may be covered in dark volcanic rock, according to observations by NASA’s Spitzer Space Telescope. The Spitzer data also suggest the planet has little to no atmosphere. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)

The field of exoplanet research continues to grow by leaps and bounds. Thanks to missions like the Kepler Space Telescope, over four-thousand planets have been discovered beyond our Solar System, with more being confirmed all the time. Thanks to these discoveries and all that we’ve learned from them, the focus has begun to transition from the process of discovery to characterization.

For instance, a group of astronomers was able to image the surface of a planet orbiting a red dwarf star for the first time. Using data from the NASA Spitzer Space Telescope, the team was able to provide a rare glimpse at the conditions on the planet’s surface. And while those conditions were rather inhospitable – akin to something like Hades, but with less air to breathe – this represents a major breakthrough in the study of exoplanets.

Continue reading “Astronomers Image the Atmosphere of a Red Dwarf Planet for the First Time. Spoiler Alert, it’s a Terrible Place to Live”

A New Planetary System Has Been Found with Three Super Earths

Artist’s impression of a view from the HD 7924 planetary system looking back toward our sun, which would be easily visible to the naked eye. Since HD 7924 is in our northern sky, an observer looking back at the sun would see objects like the Southern Cross and the Magellanic Clouds close to our sun in their sky. Credit: Karen Termaura and BJ Fulton, UH IfA

As of March 1st, 2018, 3,741 exoplanets have been confirmed in 2,794 systems, with 622 systems having more than one planet. Most of the credit for these discoveries goes to the Kepler space telescope, which has discovered roughly 3500 planets and 4500 planetary candidates. In the wake of all these discoveries, the focus has shifted from pure discovery to research and characterization.

In this respect, planets detected using the Transit Method are especially valuable since they allow for the study of these planets in detail. For example, a team of astronomers recently discovered three Super-Earths orbiting a star known GJ 9827, which is located just 100 light years (30 parsecs) from Earth. The proximity of the star, and the fact that it is orbited by multiple Super-Earths, makes this system ideal for detailed exoplanet studies.

The study, titled “A System of Three Super Earths Transiting the Late K-Dwarf GJ 9827 at Thirty Parsecs“, recently appeared online. The study was led by Joseph E. Rodriguez of the Harvard-Smithsonian Center for Astrophysics and included members from The University of Texas at Austin, Columbia University, the Massachusetts Institute of Technology, and the NASA Exoplanet Science Institute.

Artistic design of the super-Earth GJ 625 b and its star, GJ625 (Gliese 625). Credit: Gabriel Pérez/SMM (IAC)

As with all Kepler discoveries, these planets were discovered using the Transit Method (aka. Transit Photometry), where stars are monitored for periodic dips of brightness. These dips are the result of exoplanets passing in front of the star (i.e. transiting) relative to the observer. While this method is ideal for placing constraints on the size and orbital periods of a planet, it can also allow for exoplanet characterization.

Basically, scientists are able to learn things about their atmospheres by measuring the spectra produced by the star’s light as it passes through the planet’s atmosphere. Combined with radial velocity measurements of the star, scientists can also place constraints on the planet’s mass and radius and can determine things about the planet’s interior structure.

For the sake of their study, the team analyzed data obtained by the K2 mission, which showed the presence of three Super-Earths around the star GJ 9827 (GJ 9827 b, c, and d). Since they initially submitted their research paper back in September of 2017, the presence of these planets has been confirmed by another team of astronomers. As Dr. Rodriguez told Universe Today via email:

“We detected three super-Earth sized planets orbiting in a very compact configuration. Specifically, the three planets have radii of 1.6, 1.2, and 2.1 times the radius of Earth and all orbit their host star within 6.2 days. We note that this system was independently discovered (simultaneously) by another team from Wesleyan University (Niraula et al. 2017).”

The super-Earth exoplanet 55 Cancri e, depicted with its star in this artist’s concept, likely has an atmosphere thicker than Earth’s but with ingredients that could be similar to those of Earth’s atmosphere. Credit: NASA/JPL

These three exoplanets are especially interesting because the larger of the two have radii that place them in the range between being rocky or gaseous. Few such exoplanets have been discovered so far, which makes these three a prime target for research. As Dr. Rodriguez explained:

Super Earth sized planets are the most common type of planet we know of but we do not have one in our own solar system, limiting our ability to understand them. They are especially important because their radii span the rock to gas transition (as I discuss below in one of the other responses). Essentially, planets larger then 1.6 times the radius of the Earth are less dense and have thick hydrogen/helium atmospheres while planets smaller are very dense with little to no atmosphere.”

Another interesting thing about these super-Earths is how their short orbital periods – which are 1.2, 3.6 and 6.2 days, respectively – would result in fairly hot temperatures. In short, the team estimates that the three super-Earths experience surface temperatures of 1172 K (899 °C; 1650 °F), 811 K (538 °C; 1000 °F), and 680 K (407 °C; 764 °F), respectively.

By comparison, Venus – the hottest planet in the Solar System – experiences surface temperatures of 735 K (462 °C; 863 °F). So while temperatures on Venus are hot enough to melt lead, conditions on GJ 9827 b are almost hot enough to melt bronze.

The light curve obtained during Campaign 12 of the K2 mission of the GJ 9827 system. Credit: Rodriguez et al., 2018.

However, the most significant thing about this discovery is the opportunities it could provide for exoplanet characterization. At just 100 light-years from Earth, it will be relatively easy for the next-generation telescopes (such as the James Webb Space Telescope) to conduct studies of their atmospheres and provide a more detailed picture of this system of planets.

In addition, these three strange planets are all in the same system, which makes conducting observation campaigns that much easier. As Rodriguez concluded:

“The GJ 9827 system is unique because one planet is smaller than this cutoff, one planet is larger, and the third planet has a radius of ~1.6  times the radius of the Earth, right on that border. So in one system, we have planets that span this rock to gas transition. This is important because we can study the atmosphere’s of these planets, look for differences in the composition of their atmospheres and begin to understand why this transition occurs at 1.6 times the radius of the Earth. Since all three planets orbit the same star, the effect of the host star is kept constant in this “experiment”. Therefore, if these three planets in GJ 9827 were instead orbiting three separate stars, we would have to worry about how the host star is influencing or affecting the planet’s atmosphere. In the GJ 9827 system, we do not have to worry about this since they orbit the same star.”

Further Reading: CfA, arXiv