Japanese Astronomy Pushes on After Hard Year

Artists concept of Japan’s Akatsuki spacecraft at Venus. Credit: JAXA

[/caption]

From faulty spacecraft to two damaged facilities, the past year has been a tough year for Japan’s astronomical programs. Yes despite the setbacks, Japan has already begun working to fix every problem they’ve faced in this difficult year.

The troubles started late last year as Japan’s Venus exploring spacecraft, Akatsuki failed to properly enter orbit around Venus. Ultimately, the failure was blamed on a faulty valve that didn’t allow the thruster to fire for the full length of the burn necessary to transfer into the correct orbit. Instead, the craft is now in a wide orbit around the Sun. The organization in charge of the probe, the Japan Aerospace Exploration Agency (JAXA) announced earlier this month that they will “attempt to reignite the damaged thruster nozzle” and, if the test goes well, can try again for an orbital insertion in November 2015.

The next setback came with the devastating March 11th earthquake which the facilities being used to study the samples returned from the sample and return mission Hayabusa were damaged. While the particles were safe, the sensitive accelerators that are used to study them suffered some damage. Restoration work is already underway and the teams in charge expect some operations to resume as early as this fall. Other instruments may take until early next year to resume operation. Despite the damage, the preliminary data (done before the Earthquake) has confirmed the particles are from the visited asteroid. They contain minerals such as olivine and iron sulfide contained in a rocky-type asteroid. No organic materials have been detected.

More recently, Japan’s flagship observatory, Subaru atop Mauna Kea, Hawaii, was damaged when coolant leaked onto several instruments as well as the primary mirror, halting operations early last month. According to the National Astronomical Observatory of Japan (NAOJ) which maintains the telescope, the mirror was washed with water which was successful in restoring its functionality. The primary camera, the Subaru Prime Focus Camera (Suprime-Cam) and its auxiliary equipment were also affected and are currently being inspected. However, the telescope has a second focus, known as a Nasmyth focus. Several instruments which make use of this focus, including the High Dispersion Spectograph, the 188-element Adaptive Optics system, the Infrared Camera and Spectrograph, and the High Contrast Instrument for the Subaru Next Generation Adaptive Optics, were all unaffected. With the cleaning of the mirror and the use of these instruments, the telescope was able to resume operations on the night of July 22.

With any luck, fortunes will continue to improve for Japan and their hard work and dedication can help them to overcome these issues. Ganbatte!

Equipment to Study Hayabusa’s Asteroid Samples Damaged in Japan Earthquake

Magnified view of a dust particle in the Hayabusa canister. Credit: JAXA

[/caption]

The large particle accelerator being used in to analyze the asteroid samples returned by the Hayabusa spacecraft was damaged by the March 11 earthquake in Japan, but the high energy accelerator at the KEK particle-physics laboratory will be repaired, according to this report on a Japanese website. An announcement on the KEK website said that all accelerators and experimental devices were stopped immediately “after the first shake” of the historic earthquake. “We have confirmed the radiation safety, and no hazard to the environment has been reported,” the announcement said. “Also there are no reports of casualties on both Tsukuba and Tokai campuses.” Tsukuba is in the mid-latitudes of Japan, about 50 km from Tokyo.

Apparently, the tiny asteroid particles are safe, but an official at KEK was quoted as saying (via Google Translate) “The accelerator needs to be adjusted very precisely. To suffer this much, but it takes time to recover, want to lose to the earthquake recovery.”

But the repairs to the accelerator may take a back seat to the current situation in Japan. The city of Tsukuba is going to take in refugees from Fukushima prefecture, where the heavily damaged nuclear reactor is located and the KEK facilities will provide support for radiation screening for the refugees upon their arrival.

This photo shows some of the damage to the Tsukuba Space Center in Tsukuba, Japan, the main space center for the country's JAXA agency, from the 8.9-magnitude earthquake that struck on March 11, 2011. Credit: collectSPACE.com

Tsukuba is also home to the space center that oversees Japan’s Kibo laboratory on the International Space Station, as well the JAXA’s unmanned cargo ships that deliver supplies on orbit. The space center was slightly damaged, and for awhile NASA’s Mission Control in Houston took over operations remotely. According to Robert Pearlman on collectSPACE, several of the Japanese flight control team members and flight directors from the Tsukuba Space Center happened to be in Houston when the quake struck, preparing for the Expedition 27 crew rotation, as astronaut Satoshi Furukawa will be heading the ISS in May. However, operations from the mission control rooms were resumed at 4:00 p.m. on March 22, 2011.

JAXA Flight Control Team (JFCT) resuming the Kibo operations at the Mission Control Room (MCR). Credit: JAXA

Another center, the Kakuda Space Center, located in the Miyagi region close to the most serious effects of the earthquake and tsunami, was heavily damaged, and is closed with no timetable for reopening. The Kakuda center is JAXA’s rocket development and testing center and is Japan’s equivalent of the Stennis Space Center in Mississippi.

JAXA’s Tsukuba Space Center located in Tsukuba Science City,

Additionally, the ground-breaking ceremony for a new type of particle smasher known as a “super B factory” in Tsukuba has been postponed. Japan had invested $100 million to transform the KEKB collider in Tsukuba, into a Super KEKB, which will smash electrons into positrons at 40 times the rate of the current accelerator.
Just before the quake, the Japanese Space Agency JAXA had announced they are planning a second Hayabusa mission with an explosive twist. The second mission to an asteroid probe will include an impactor that detonates an explosive on the asteroid’s surface, similar to the Deep Impact mission.

The launch was tentatively planned for launch in 2014, heading to a space rock catalogued as 162173 1999 JU3. The probe would land on the surface and, collect samples before and after the impactor blasts its way to the asteroid’s interior.

Despite the problems Hayabusa encountered along its arduous journey to and from asteroid Itokawa –including thruster, communications, gyro and fuel-leak problems, as well as uncertainty whether the probe landed on the asteroid – JAXA and the Japanese people were buoyed by the success of Hayabusa.

It is not clear how the tragic earthquake and tsunami will affect future space missions for Japan, but obviously the country has more important issues ahead of them. May the spirit of the Japanese people be lifted again.

Sources: NHK,, KEK , collectSPACE, Moon and Back, JAXA

Hat tip to Emily Lakdawalla via Twitter.

No Asteroid Particles Found in Second Hayabusa Compartment, But More in First

Artist concept of the Hayabusa spacecraft, which visited asteroid Itokawa in 2005 and returned samples to Earth in 2010. Credit: JAXA
Artist concept of the Hayabusa spacecraft, which visited asteroid Itokawa in 2005 and returned samples to Earth in 2010. Credit: JAXA

[/caption]

No visible material from asteroid Itokawa was found inside the second compartment of a canister returned to Earth by the Hayabusa spacecraft. However, JAXA also announced that more micron-sized grains have been found in the first compartment, opened earlier this year. Reportedly, the first compartment has about 1,500 tiny particles, however some might be aluminum particles from the container itself. But about 20 grains were rocky or mineral-based. However, according to the Daily Yomiuri Online, no visible material was inside the second chamber, although further investigations of the second compartment will be done with a special microscope.

Hayabusa attempted to land on Itokawa twice. The cylindrical canister was divided into two chambers, and the second chamber was to contain material collected during the spacecraft’s first landing.
JAXA officials expect the second compartment to contain more microscopic particles from Itokawa since the first landing was longer than the second.

As far as the particles from the first chamber, several have been observed with an electron microscope, and according to UmannedSpaceflight.com, the “rocky” ones are 30 microns in size, with several larger ones are about 100 microns.

JAXA hopes to provide more insight on the nature of the grains by the end of the year.

Confirmed: Hayabusa Nabbed Asteroid Particles

An electron micrograph image of the edge of a special Teflon spatula that scraped the interior surfaces of Hayabusa's sample return capsule. Credit: JAXA

[/caption]

The Japan Aerospace Exploration Agency (JAXA) has confirmed that the tiny particles inside the Hayabusa spacecraft’s sample return container are in fact from the asteroid Itokawa. Scientists examined the particles to determine if the probe successfully captured and brought back anything from the asteroid, and in a press release said “about 1,500 grains were identified as rocky particles, and most were determined to be of extraterrestrial origin, and definitely from Asteroid Itokawa.”

These are the first samples from an asteroid ever returned to Earth; the only other extraterrestrial samples brought back to Earth came from the Apollo missions to the Moon. See correction, below.

Previously, JAXA said that although particles were inside the container, it wasn’t clear if they were from the asteroid or if they could be of terrestrial origin (dust from Earth that could have been inside the container).

The particles samples were collected from the chamber by a specially shaped Teflon spatula and examined with a scanning electron microscope. There were two chambers inside the container, and from the press release (in Japanese) it appears all the particles were found in one chamber, Chamber A.

Most of the particles are extremely small, about 10 microns in size and require special handling and equipment. Unfortunately they aren’t the “peanut-sized” chunks of rock that the mission originally hoped to capture. This will make analyzing the particles difficult, but not impossible.

Hayabusa's sample return cannister and parachute on the ground in the Australian outback. Credit: JAXA

During the seven-year round trip journey, Hayabusa arrived at Itokawa in November, 2005. The mechanism that was intended to capture the samples apparently failed, but scientists were hopeful that at least some dust had made its way into the return canister. After a circuitous and troubled-filled return trip home, the sample return capsule was ejected and landed in Australia in June of this year.

Here are the other successful sample return missions:
Apollo Moon missions (1969-1972)
Soviet Union’s Luna 16 (1970) returned 101 grams of lunar soil
Luna 20 (1974) returned 30 grams
Luna 24 (1976) returned 170.1 grams.
The Orbital Debris Collection (ODC) experiment, deployed on the Mir space station for 18 months during 1996–1997, used aerogel to capture interplanetary dust particles in orbit.
Genesis (2001-2004) captured and returned molecules collected from the solar wind. It crashed in the Utah desert, but samples were able to be retreived.
Stardust (1999-2006) collected particles from the tail of a comet, as well as a few interstellar dust grains.

Source: JAXA

JAXA: Hayabusa Capsule Contains Particles, Maybe of Asteroid

Artist concept of the Hayabusa spacecraft, which visited asteroid Itokawa in 2005 and returned samples to Earth in 2010. Credit: JAXA
Artist concept of the Hayabusa spacecraft, which visited asteroid Itokawa in 2005 and returned samples to Earth in 2010. Credit: JAXA

[/caption]

At a press conference yesterday, officials from the Japan Aerospace Exploration Agency (JAXA) announced that they had “scraped up” a hundred or so particles of dust, perhaps grains of dust from the asteroid, Itokawa, inside the sample return capsule of the Hayabusa spacecraft. This is great news, as previous reports from JAXA indicated they weren’t sure if there were any particles at all inside the container. Originally, the mission had hoped to bring back “peanut-sized” asteroid samples, but the device that was supposed to fire pellets at the asteroid may not have worked, and for a time, scientists were even unsure if the spacecraft had even touched down on the asteroid.

During the seven-year round trip journey, Hayabusa arrived at Itokawa in November, 2005. After a circuitous and troubled-filled return trip home, the sample return capsule was ejected and landed in Australia in June of this year.

The 100 or so grains reported yesterday are extremely tiny, and the micron-sized particles were scraped off the sides of container and are now being examined with an electron microscope. They don’t appear to be metallic, so are not fragments from the container, but they don’t have absolute proof yet that the particles are from the asteroid.

Soon, the grains will be examined using particle accelerator/synchrotron. Additionally, some reports indicated there is another yet unopened compartment that will be examined soon.

A little surfing of the net (in all languages) reveals there are tons of news articles out there reporting this. The only problem is that some of these news reports called the potential asteroid particles “extraterrestrial,” which then became translated as “extraterrestrial life” in the next article in another language. Ah, the wonders of the internet!

We’ll keep you posted!

JAXA Delays Releasing Details of Hayabusa Sample Return

Hayabusa's shadow beside a circled reflective target it dropped as a guide for its sample recovery approach. Credit: JAXA

[/caption]

No news yet if there are specks of asteroid dust in the Haybusa sample return container. JAXA has decided to postpone releasing any information, including publishing a detailed analysis of the particles that may have been collected. According to The Japan Times, JAXA said it is taking more time than originally expected to collect the particles because they are smaller than it was assumed they’d be. This provides some hope, however, that there is actually something of interest in the container.

Originally, JAXA had hoped to publish a report by September, but now it’s looking like December or later.

JAXA said it is going to take several hours to collect just one particle, which likely measures just a few thousandths of a millimeter in diameter. Munetaka Ueno, a senior JAXA official, said the agency wants to analyze the particles with extreme care because repeating the process will be difficult.

The original plan was for JAXA to remove the particles and then let researchers across the country for a more detailed analysis.

We waited seven years for Haybusa to fly to and then return home from asteroid Itokawa, so we should be able to wait a couple more months. Here’s hoping the particle extraction doesn’t encounter as many problems as the spacecraft had.

Source: The Japan Times

Hayabusa Sample Return Canister Opened, Contains Material

Hayabusa's sample return canister was opened to reveal a small particle inside. Credit: JAXA

[/caption]

The sample return canister from the Hayabusa spacecraft has been opened, and does contain a small amount of dust particles, according to the JAXA website. This is very encouraging news! However, it is not yet known if the dust is from the asteroid Itokawa, where Hayabusa briefly touched down, or if it could be from Earth — left in the container from before launch, or it possibly could have made its way in there during the landing/post landing handling. “Material on the planet or asteroid or particulate matter is at this stage is unknown, we will consider in detail,” is the Google translate version of the JAXA press release. According to Emily Lakdawalla at the Planetary Society, the dust grains are extremely small, about 0.01-millimeter in size, and there are about a dozen of them inside the container. This image was taken on June 28, 2010, and below is a magnified view of one of the particles.

Magnified view of a dust particle in the Hayabusa canister. Credit: JAXA

This magnified view was taken on June 29, and shows a magnified view of one very small particle being picked up by a quartz manipulator, which appears as a stripe on the image.
It likely will take several weeks to confirm whether the particles are from the asteroid, but if so, would be the first-ever asteroid sample return.

Below is an image of Earth that Hayabusa took as it approached the home planet.

Earth seen by the returning Hayabusa. Credit: JAXA

Sources: JAXA, The Planetary Society, BBC

Subaru Telescope Takes Montage of Hayabusa’s Return to Earth

The composite image from 11 images, each with 5 sec exposure, spaced by 35-50 sec. The magnitude of Hayabusa is estimated to be 21 mag. Credit: Subaru Telescope Team

[/caption]

The world watched and waited for the Hayabusa spacecraft to make its return to Earth on June 13, 2010 and the people of Japan — who built and launched the little spacecraft that could (and did!) — were especially hopeful in watching and waiting. Japan’s Subaru Telescope (although located on Mauna Kea in Hawaii) turned its expectant eyes towards Hayabusa and captured the spacecraft’s flight between the Moon and Earth in 11 different images.

A note from the Subaru Telescope team:

During the busy time preparing the observations, Doctor Masafumi Yagi and his team managed to maneuver the telescope just in time to catch Hayabusa before it disappeared down south in the twilight sky. At that time, Hayabusa was a little less than half way between Moon and Earth. Five seconds exposures, each spaced by 35 – 50 seconds in the V filter with Suprime Cam, it showed up in clear trace at the position expected to be. Brightness is estimated to be only 21 magnitudes. At this level, one can see a background galaxy clearly.

We are waiting to hear more from the project team at ISAS/JAXA. In the meantime, congratulations to all who are involved in this unprecedented endeavor.

A GIF animation of the 11 images is available here — but be warned, the file is huge. You can click on the top image for a full-sized huge-ified image, too.

And here are some images of the recovery teams who picked up the sample return canister in the Woomera Prohibited Area in Australia. The canister will be taken to Japan and opened in a few weeks, or perhaps months, after rigorous testing. Only then will we find out if any asteroid samples made it in the canister for the ride back to Earth.

Recovery team makes sure all is safe with the sample return canister. Credit: JAXA
The recovery team handles the heat sheild for the Hayabusa sample return capsule. Credit: JAXA, Hayabusa Twitter feed.
JAXA's Hayabusa space capsule is transported inside a box to a clean room inside the Instrumentation Building at the Woomera Test Range, South Australia. Credit: Australian Science Media Centre

You can see more images of the canister retrieval at the Hayabusa Twitpic page and the Australian Science Media Centre’s Flickr page

Source: Subaru

Hayabusa Sample Return Capsule Retrieved

Hayabusa's sample return cannister and parachute on the ground in the Australian outback. Credit: JAXA

[/caption]

Scientists from Japan were given the go-ahead to retrieve the sample return capsule from the Hayabusa spacecraft, which is hoped to contain the first piece of asteroid ever brought to Earth, perhaps providing insight into the origins of asteroids – and our universe. The capsule was ejected three hours before reaching Earth, and the sample canister descended through Earth’s atmosphere, preceding the spacecraft which broke up in spectacular fashion (click here to see the video) over the Australian Outback. The capsule lay in the Woomera Prohibited Area until morning when Aboriginal elders deemed it had not landed in any indigenous sacred sites, giving the OK for the scientists to retrieve it.

The insulated and cushioned re-entry capsule, 40 cm in diameter and 25 cm deep has a mass of about 20 kg. The capsule had a convex nose covered with a 3 cm thick ablative heat shield to protect the samples from the high velocity (~13 km/s) re-entry.

Apparently, it landed right on target. The director of the Woomera test range, Doug Gerrie, said the probe had completed a textbook landing in the South Australian desert. “They landed it exactly where they nominated they would.

Hayabusa's heat shield was also recovered from the Australian outback. Credit: JAXA

The capsule will remain sealed until it arrives at the JAXA facility near Tokyo, and may remain unopened for weeks as it undergoes testing.

The mission launched in 2003, and endured a series of technical glitches over its five-billion-kilometer (three-billion-mile) journey to the asteroid Itokawa and back. A large solar flare in late 2003 “injured” the solar panels, providing less power to Hayabusa’s ion engines, delaying the rendezvous with the asteroid. Then, as the spacecraft approached Itokawa, Hayabusa lost the use of its Y-axis reaction wheel. While it flew near the asteroid and sent back data, scientists and engineers aren’t sure if the spacecraft was successful in obtaining samples, as while it appears Hayabusa landed briefly, it is not certain the “bullets” fired to stir up dust for the container to capture. The return to Earth was delayed by three years from more thruster and navigational failures, but the JAXA team nursed and coaxed the spacecraft back home to a spectacular return. There was concern that the parachute batteries may be been depleted due to the extra time it took to get back to Earth, but obviously they worked quite well.

Sources: JAXA, NASA, AFP

Hayabusa Returns!

Japan’s little spacecraft that could returned to Earth, putting on quite a show over the Australian outback, making a fiery reentry. Hayabusa returned around 10 a.m. EDT (1400 GMT) in the Woomera Prohibited Area of South Australia. In the video you’ll see a little speck of light ahead of the falling debris: that’s the sample return canister with, hopefully, some precious goods aboard – samples from asteroid Itokawa. The canister separated about three hours before reaching Earth, and returned to Earth via parachute. The canister has been recovered, and will be taken to Japan where scientists will open it to find out if there is anything inside.

The return was monitored scientists from around the world, including a NASA crew on aboard a DC-8 airplane who took the video footage.
Continue reading “Hayabusa Returns!”