We know how stars form. Clouds of interstellar gas and dust gravitationally collapse to form a burst of star formation we call a stellar nursery. Eventually, the cores of these protostars become dense enough to ignite their nuclear furnace and shine as true stars. But catching stars in that birth-moment act is difficult. Young stars are often hidden deep within their dense progenitor cloud, so we don’t see their light until they’ve already started shining. But new observations from the Hubble Space Telescope have given us our earliest glimpse of a shiny new star.
Continue reading “Hubble Sees a Star About to Ignite”JWST Reveals a Newly-Forming Double Protostar
As our newest, most perceptive eye on the ongoing unfolding of the cosmos, the James Webb Space Telescope is revealing many things that were previously unseeable. One of the space telescope’s science goals is to expand our understanding of how stars form. The JWST has the power to see into the cocoons of gas and dust that hide young protostars.
It peered inside one of these cocoons and showed us that what we thought was a single star is actually a binary star.
Continue reading “JWST Reveals a Newly-Forming Double Protostar”It’s Like Looking at the Infant Sun: Webb Captures Image of an Energetic Young Star
Ever wondered what our young Sun might have looked like in its infancy some five billion years ago?
The audacious JWST has captured an image of a very young star much like our young Sun, though the star itself is obscured. Instead, we see supersonic jets of gas. Young stars can blast out jets of material as they form, and the jets light up the surrounding gas. The luminous regions created by the jets as they slam into the gas are called Herbig-Haro Objects.
Continue reading “It’s Like Looking at the Infant Sun: Webb Captures Image of an Energetic Young Star”