In infrared, Cygnus-X is a glowing star nursery, and the Herschel space observatory has captured this beautiful new view showing an extremely active region of big-baby stars. It is located about 4,500 light-years from Earth in the constellation of Cygnus, the Swan. The image highlights the unique capabilities of Herschel to probe the birth of large stars and their influence on the surrounding interstellar material.
The bright white areas are where large stars have recently formed out of turbulent clouds, especially evident in the chaotic network of filaments seen in the right-hand portion of the image. The dense knots of gas and dust collapse to form new stars; the bubble-like structures are carved by the enormous radiation emitted by these stars.
In the center of the image, fierce radiation and powerful stellar winds from stars undetected at Herschel’s wavelengths have partly cleared and heated interstellar material, which then glows blue. The threads of compact red objects scattered throughout the image shows where future generations of stars will be born.
[/caption]
There may be some frantic activity going on in the narrow, dusty disk surrounding a nearby star named Fomalhaut. Scientists have been trying to understand the makeup of the disk, and new observations by the Herschel Space Observatory reveals the disk may come from cometary collisions. But in order to create the amount of dust and debris seen around Fomalhaut, there would have to be collisions destroying thousands of icy comets every day.
“I was really surprised,” said Bram Acke, who led a team on the Herschel observations. “To me this was an extremely large number.”
Fomalhaut is a young star, just a few hundred million years old, about 25.1 light years away and twice as massive as the Sun. It is the brightest star in the constellation Piscis Austrinus and one of the brightest stars in our sky, visible in the southern sky in the northern hemisphere in fall and early winter evenings.
Fomalhaut’s toroidal dust belt was discovered in the 1980s by the IRAS satellite. It’s been viewed several times by the Hubble Space Telescope, but Herschel’s new images of the belt show it in much more detail at far-infrared wavelengths than ever before.
Acke, from the University of Leuven in Belgium, and his team colleagues analyzed the Herschel observations and found the dust temperatures in the belt to be between –230 and –170 degrees C, and because Fomalhaut is slightly off-center and closer to the southern side of the belt, the southern side is warmer and brighter than the northern side.
Those observations collected starlight scattering off the grains in the belt and showed it to be very faint at Hubble’s visible wavelengths, suggesting that the dust particles are relatively large. But that appears to be incompatible with the temperature of the belt as measured by Herschel in the far-infrared.
While observations with Hubble suggested the grains in the dust disk would be relatively large, the Herschel data show that the dust in the belt has the thermal properties of small solid particles, with sizes of only a few millionths of a meter across. HST observations suggested solid grains more than ten times larger.
To resolve the paradox, Acke and colleagues suggest that the dust grains must be large fluffy aggregates, similar to dust particles released from comets in our own Solar System. These would have both the correct thermal and scattering properties.
However, this leads to another problem.
The bright starlight from Fomalhaut should blow small dust particles out of the belt very rapidly, yet such grains appear to remain abundant there.
So, the only way to explain the contradiction is to resupply the belt through continuous collisions between larger objects in orbit around Fomalhaut, creating new dust.
This isn’t the first time that evidence of cometary collisions have been seen around another star. Last year, astronomers using the Spitzer Space Telescope detected activity resembling a ‘heavy bombardment’ type of event where icy bodies from the outer solar system are possibly pummeling rocky worlds closer to the star.
At Fomalhaut, however, to sustain the belt, the rate of collisions must be remarkable: each day, the equivalent of either two 10 km-sized comets or 2,000 1 km-sized comets must be completely crushed into small, fluffy dust particles.
In order to keep the collision rate so high, scientists say there must be between 260 billion and 83 trillion comets in the belt, depending on their size. This is not unfathomable, the team says, as our own Solar System has a similar number of comets in its Oort Cloud, which formed from objects scattered from a disc surrounding the Sun when it was as young as Fomalhaut.
“These beautiful Herschel images have provided the crucial information needed to model the nature of the dust belt around Fomalhaut,” said Göran Pilbratt, ESA Herschel Project Scientist.
The mysterious galaxy Centaurus A is a great place to study the extreme processes that occur near super-massive black holes, scientists say, and this beautiful new image from the combined forces of the Herschel Space Observatory and the XMM-Newton x-ray satellite reveals energetic processes going on deep in the galaxy’s core. This beautiful image tells a tale of past violence that occurred here.
The twisted disc of dust near the galaxy’s heart shows strong evidence that Centaurus A underwent a cosmic collision with another galaxy in the distant past. The colliding galaxy was ripped apart to form the warped disc, and the formation of young stars heats the dust to cause the infrared glow.
This multi-wavelength view of Centaurus A shows two massive jets of material streaming from a immense black hole in the center. When observed by radio telescopes, the jets stretch for up to a million light years, though the Herschel and XMM-Newton results focus on the inner regions.
At a distance of around 12 million light years from Earth, Centaurus A is the closest large elliptical galaxy to our own Milky Way.
“Centaurus A is the closest example of a galaxy to us with massive jets from its central black hole,” said Christine Wilson of McMaster University, Canada, who is leading the study of Centaurus A with Herschel. “Observations with Herschel, XMM-Newton and telescopes at many other wavelengths allow us to study their effects on the galaxy and its surroundings.”
Here’s a stunning new look deep inside the iconic “Pillars of Creation.” As opposed to the famous Hubble Space Telescope image (below) — which shows mainly the surface of the pillars of gas and dust — this composite image from ESA’s Herschel Space Observatory in far-infrared and XMM-Newton telescope in X-rays allows astronomers to peer inside the pillars and see more detail of the structures in this region. It shows how the hot young stars detected by the X-ray observations are carving out cavities, sculpting and interacting with the surrounding ultra-cool gas and dust.
But enjoy the view while you can. The sad part is that likely, this beautiful region has already been destroyed by a supernova 6,000 years ago. But because of the distance, we haven’t seen it happen yet.
The Eagle Nebula is 6,500 light-years away in the constellation of Serpens. It contains a young hot star cluster, NGC6611, which is visible with modest back-yard telescopes. This cluster is sculpting and illuminating the surrounding gas and dust, resulting in a huge hollowed-out cavity and pillars, each several light-years long.
The Hubble image hinted at new stars being born within the pillars, deep inside small clumps known as ‘evaporating gaseous globules’ or EGGs, but because of the obscuring dust, Hubble’s visible light picture was unable to see inside and prove that young stars were indeed forming.
The new image shows those hot young stars are responsible for carving the pillars.
The new image also uses data from near-infrared images from the European Southern Observatory’s (ESO’s) Very Large Telescope at Paranal, Chile, and visible-light data from its Max Planck Gesellschaft 2.2m diameter telescope at La Silla, Chile. All the individual images are below:
Earlier mid-infrared images from ESA’s Infrared Space Observatory and NASA’s Spitzer, and the new XMM-Newton data, have led astronomers to suspect that one of the massive, hot stars in NGC6611 may have exploded in a supernova 6,000 years ago, emitting a shockwave that destroyed the pillars. But we won’t see the destruction for several hundred years yet.
There’s enough water in a planet-forming disk around a distant star to fill several thousand Earth oceans, according to new observations with the Herschel space observatory. Astronomers have found evidence of water vapor originating from ice on dust grains in the disc around a young star, TW Hydrae. The star is between 5-10 million years old, so is in its final stages of formation.
“The detection of water sticking to dust grains throughout the disc would be similar to events in our own Solar System’s evolution, where over millions of years, similar dust grains then coalesced to form comets,” said Michiel Hogerheijde of Leiden University in the Netherlands, who led the study. “These comets we believe became a contributing source of water for the planets.”
But scientists say this latest research from Herschel breaks new ground in understanding water’s role in planet-forming discs and gives scientists a new testing ground for looking at how water came to our own planet.
“With Herschel we can follow the trail of water through all the steps of star and planet formation,” said Göran Pilbratt, Herschel Project Scientist at ESA.
Scientists think the water vapor signature is produced when the ice coated dust grains are warmed by interstellar UV radiation.
The idea isn’t new that Earth’s oceans originated from comets bombarding our planet back in its early days. But astronomers have now found the best evidence yet for this scenario. The Herschel infrared space observatory detected that comet Hartley 2, which originates from the distant Kuiper Belt, contains water with the same chemical signature as Earth’s oceans.
“Our results with Herschel suggest that comets could have played a major role in bringing vast amounts of water to an early Earth,” said Dariusz Lis, senior research associate in physics at the California Institute of Technology in Pasadena and co-author of a new paper in the journal Nature, published online on Oct. 5. “This finding substantially expands the reservoir of Earth ocean-like water in the solar system to now include icy bodies originating in the Kuiper Belt.”
Previous looks at various other comets showed water content different from Earth, with deuterium levels around twice that of Earth’s oceans, but those comets came from the Oort Cloud. Scientists theorized that if comets of this kind had collided with Earth, they could not have contributed more than a few percent of Earth’s water.
But Herschel’s observations of Hartley 2 are the first in-depth look at water in a comet from the Kuiper Belt — home of icy, rocky bodies that includes dwarf planets and innumerable comets — and it showed a surprising difference.
Using HIFI, a highly sensitive infrared spectrometer, Herschel peered into the comet’s coma, or thin, gaseous atmosphere, and found that Hartley 2 possessed half as much “heavy water” as other comets analyzed to date. In heavy water, one of the two normal hydrogen atoms has been replaced by the heavy hydrogen isotope known as deuterium. The ratio between heavy water and light, or regular, water in Hartley 2 is the same as the water on Earth’s surface.
“Comet Hartley’s deuterium-to-hydrogen ratio is almost exactly the same as the water in Earth’s oceans,” says Paul Hartogh, Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany, who led the international team of astronomers in this study.
The amount of heavy water in a comet is related to the environment where the comet formed, and by comparing the deuterium to hydrogen ratio found in the water in Earth’s oceans with that in extraterrestrial objects, astronomers were hoping to identify the origin of our water.
Astronomers know Hartley 2 comes from the Kuiper Belt, since they can track its path as it swoops into Earth’s neighborhood in the inner solar system every six-and-a-`half years. The five comets besides Hartley 2 whose heavy-water-to-regular-water ratios have been obtained all came from the Oort Cloud, an even more distant region in the solar system. This region is 10,000 times farther away than the Kuiper Belt, and is home to the most documented comets.
The team is now using Herschel to look at other Kuiper Belt comets to see whether they, too, carry the same type of water.
“Thanks to this detection made possible by Herschel, an old, very interesting discussion will be revived and invigorated,” said Göran Pilbratt, ESA Herschel Project Scientist. “It will be exciting to see where this discovery will take us.”
In 2005, NASA’s Cassini spacecraft gave us an incredible view of Enceladus chuffing out fountains of water vapor and ice. This action creates an enormous halo of gas, dust and ice that surrounds this Saturnian satellite and enables the planet’s E ring. Now Enceladus is once again in the spotlight as the only moon in the Solar System known to significantly contribute to its parent planet’s chemistry.
Earlier this year, ESA announced that its Herschel Space Observatory had observed a huge torus of water vapor around Saturn which apparently originated from Enceladus. It spans approximately 600,000 kilometers across and runs about 60,000 kilometers deep, but more so than its size is what it appears to be doing… adding water to Saturn’s upper atmosphere. Because the vapor isn’t detectable at visible wavelengths, this observation came as revelation for the Herschel scope.
“Herschel is providing dramatic new information about everything from planets in our own solar system to galaxies billions of light-years away,” said Paul Goldsmith, the NASA Herschel project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California.
While the Herschel infrared observation is new, the indication of a vapor torus around Saturn isn’t. NASA’s Voyager and Hubble missions had given astronomers clues in the past. In 1997, the European Space Agency’s Infrared Space Observatory cited water in Saturn’s atmosphere and two years later NASA’s Submillimeter Wave Astronomy Satellite confirmed it again. But this confirmation only added up to a puzzle. Water found in Saturn’s lower cloud levels couldn’t rise past the colder, upper deck… So where was the water coming from? The answer came in the form of Herschel’s observations and some very astute computer modeling.
“What’s amazing is that the model, which is one iteration in a long line of cloud models, was built without knowledge of the observation.” says Tim Cassidy, a recent post-doctoral researcher at JPL who is now at the University of Colorado’s Laboratory for Atmospheric and Space Physics, Boulder. “Those of us in this small modeling community were using data from Cassini, Voyager and the Hubble telescope, along with established physics. We weren’t expecting such detailed ‘images’ of the torus, and the match between model and data was a wonderful surprise.”
Through these simulations, researchers hypothesized that much of the water in the torus was simply lost to space and some is pulled back by gravity to add material to Saturn’s rings. However, it’s the 3-5% that made it back to Saturn’s atmosphere that’s the most interesting. Just how much water vapor is out there? Thanks to combining information from both Herschel and the Ultraviolet Imaging Spectrograph (UVIS) instrument aboard the Cassini spacecraft, we’ve learned that about 12,000 kilograms is being ejected from Enceladus every minute. Can you image how much that would add up to in the period of a year… or more?!
“With the Herschel measurements of the torus from 2009 and 2010 and our cloud model, we were able to calculate a source rate for water vapor coming from Enceladus,” said Cassidy. “It agrees very closely with the UVIS finding, which used a completely different method.”
“We can see the water leaving Enceladus and we can detect the end product — atomic oxygen — in the Saturn system,” said Cassini UVIS science team member Candy Hansen, of the Planetary Science Institute, Tucson, Ariz. “It’s very nice with Herschel to track where it goes in the meantime.”
A tiny percentage adds up to some mighty big numbers, and the water molecules from the torus impact Saturn’s atmosphere to a great degree by contributing hydrogen and oxygen.
“When water hangs out in the torus, it is subject to the processes that dissociate water molecules,” said Hansen, “first to hydrogen and hydroxide, and then the hydroxide dissociates into hydrogen and atomic oxygen.” This oxygen is dispersed through the Saturn system. “Cassini discovered atomic oxygen on its approach to Saturn, before it went into orbit insertion. At the time, no one knew where it was coming from. Now we do.”
Very few days go by that we don’t learn something new about the Solar System and its inner workings. Thanks to observations like those done by the Herschel Space Observatory and missions like Cassini-Huygens, we’re able to further understand the dynamics behind the beauty… and how a tiny player can carry a major role.
“The profound effect this little moon Enceladus has on Saturn and its environment is astonishing,” said Hansen.
Was the universe a kinder, gentler place in the past that we have thought? The Herschel space observatory has looked back across time with its infrared eyes and has seen that galaxy collisions played only a minor role in triggering star births in the past, even though today the birth of stars always seem to be generated by galaxies crashing into each other. So what was the fuel for star formation in the past?
Simple. Gas.
The more gas a galaxy contained, the more stars were born.
Scientists say this finding overturns a long-held assumption and paints a nobler picture of how galaxies evolve.
Astronomers have known that the rate of star formation peaked in the early Universe, about 10 billion years ago. Back then, some galaxies were forming stars ten or even a hundred times more vigorously than is happening in our Galaxy today.
In the nearby, present-day Universe, such high birth rates are very rare and always seem to be triggered by galaxies colliding with each other. So, astronomers had assumed that this was true throughout history.
But Herschel’s observations of two patches of sky show a different story.
Looking at these regions of the sky, each about a third of the size of the full Moon, Herschel has seen more than a thousand galaxies at a variety of distances from the Earth, spanning 80% of the age of the cosmos.
In analyzing the Herschel data, David Elbaz, from CEA Saclay in France, and his team found that even though some galaxies in the past were creating stars at incredible rates, galaxy collisions played only a minor role in triggering star births. The astronomers were able to compare the amount of infrared light released at different wavelengths by these galaxies, the team has shown that the star birth rate depends on the quantity of gas they contain, not whether they are colliding.
They say these observations are unique because Herschel can study a wide range of infrared light and reveal a more complete picture of star birth than ever seen before.
“It’s only in those galaxies that do not already have a lot of gas that collisions are needed to provide the gas and trigger high rates of star formation,” said Elbaz.
Today’s galaxies have used up most of their gaseous raw material after forming stars for more than 10 billion years, so they do rely on collisions to jump-start star formation, but in the past galaxies grew slowly and gently from the gas that they attracted from their surroundings.
It’s raining on Saturn! Well, kind of. Actually, not really. But there’s some really cool news about Saturn, Enceladus and water – great topics, all. The bubbly water shooting from the moon Enceladus is responsible for the “mystery” water that was found in Saturn’s upper atmosphere several years ago. Observations with the Herschel space observatory has shown that water ice from geysers on Enceladus forms a giant ring of water vapor around Saturn.
Astronomers from the ESA’s Infrared Observatory discovered the presence of trace amounts of water in Saturn’s atmosphere back in 1997, but couldn’t really find an explanation for why it was there and how it got there. Water vapor can’t be seen in visible light, but Herschel’s infrared vision was able to track down the source of the water vapor.
Enceladus expels around 250 kg of water vapor every second, through a collection of jets from the south polar region known as the Tiger Stripes because of their distinctive surface markings. Much of the ice ends up in orbit around Saturn, creating the hazy E ring in which Enceladus resides.
But a small amount reaches Saturn – about 3% to 5% of Enceladus’s ejected water ends up on the home planet of Saturn.
Phil Plait, The Bad Astronomer figured out that a decent rain shower on Earth is 7,000,000,000,000 times heavier than the rainfall on Saturn. So, not a lot of water makes it to Saturn.
But the fact that a moon is having an effect on its planet is unprecedented, as far as we know.
“There is no analogy to this behaviour on Earth,” said Paul Hartogh, Max-Planck-Institut für Sonnensystemforschung, in Germany, who led the collaboration on the analysis of these results. “No significant quantities of water enter our atmosphere from space. This is unique to Saturn.”
The running theory is that Enceladus has a liquid subsurface ocean of Perrier-like bubbly (and maybe salty) water. No one knows yet how much water lies beneath the moon’s surface, but it is thought that the pressure from the rock and ice layers above combined with heat from within force the water up through the Tiger Stripes. When this water reaches the surface it instantly freezes, sending plumes of ice particles hundreds of miles into space.
The total width of the torus is more than 10 times the radius of Saturn, yet it is only about one Saturn radius thick. Enceladus orbits the planet at a distance of about four Saturn radii, replenishing the torus with its jets of water.
The water in Saturn’s upper atmosphere is ultimately transported to lower levels, where it condenses. But scientists say the amounts are so tiny that the resulting clouds are not observable.
Again, despite its enormous size, this torus has it has escaped detection until now because of how water vapor is transparent to visible light but not at the infrared wavelengths Herschel was designed to see.
“Herschel has proved its worth again. These are observations that only Herschel can make,” says Göran Pilbratt, ESA Herschel Project Scientist. “ESA’s Infrared Space Observatory found the water vapour in Saturn’s atmosphere. Then NASA/ESA’s Cassini/Huygens mission found the jets of Enceladus. Now Herschel has shown how to fit all these observations together.”
Observations with Herschel have revealed unprecedented views of a ring in the centre of our Milky Way galaxy. The ribbon of gas and dust is more than 600 light years across and appears to be twisted, for reasons which have yet to be explained. The origin of the ring could provide insight into the history of the Milky Way.
Professor Bruce Swinyard of the Rutherford Appleton Laboratory said “Herschel’s detectors are ideally suited to see through the dust lying between us and the center of our galaxy, and to find the relatively cold material, at only 15 degrees above absolute zero, which we have learned makes up the ring.” The new results are published in a recent issue of the Astrophysical Journal Letters.
Warmer gas and dust from the center of our galaxy is shown in blue in the above image, while the colder material appears red. The ring, in yellow, is made of gas and dust at a temperature of just 15 degrees above absolute zero. The bright regions are denser, and include some of the most massive and active sites of star formation in our galaxy.
“Hints of this feature were seen in previous images of the Galactic Centre made from the ground, but no-one realised what it was,” explained Dr. Mark Thompson of the University of Hertfordshire. “It was not until the launch of Herschel, with its unparalleled wavelength coverage, that we could measure the temperature of the dust clouds and determine its true nature.”
The central region of our galaxy is dominated by a bar-like structure, which stirs up the material in the outer galaxy as it rotates over millions of years and is thought to be responsible for its spiral structure. The ring seen by Herschel lies right in the middle of this bar, encircling the region which harbors a super-massive black hole at the center of our galaxy. Professor Glenn White of The Open University and The Rutherford Appleton Laboratory said that “although bars have been seen in other galaxies, this ring of cold material revealed by Herschel, and the way it twists around the Galactic Centre, were completely unexpected, revealing several surprises.”
Firstly, the ring of gas is twisted, so from our vantage point we see two loops which appear to meet in the middle. These are seen in yellow in the image above, tilted slightly such that they run from top-left to bottom-right. Secondly, it seems to be slightly offset from the very center of our Galaxy, where a super-massive black hole lurks. “This is what is so exciting about launching a new space telescope like Herschel,” said Sergio Molinari of the Institute of Space Physics in Rome, Italy, lead author of the new paper. “We have a new and exciting mystery on our hands, right at the center of our own galaxy.”
The reason for the ring’s twist and offset are unknown, but understanding their origin may help explain the origin of the ring itself. Computer simulations indicate that bars and rings such as those we see in the center of our galaxy can be formed by gravitational interactions. It is possible that the structures in the heart of the Milky Way were caused by interactions with our largest neighbor, the Andromeda Galaxy.
“Like all good science experiments, Herschel is creating as many questions as it answers”, said Professor Matt Griffin, of the University of Cardiff, and Principle Investigator on one of Herschel’s detectors used in this study. “Unravelling the mystery of this ring could help us to explore the processes which have taken place deep in the heart of our Galaxy over billions of years.”