Amazing Impact Crater Where a Triple Asteroid Smashed into Mars

A triple crater in Elysium Planitia on Mars. Credit: NASA/JPL/University of Arizona.

At first glance, you many not guess that this feature on Mars is an impact crater. The reason it looks so unusual is that it likely is a triple impact crater, formed when three asteroids struck all at once in the Elysium Planitia region.

Why do planetary scientists think the three craters did not form independently at different times?

“The ejecta blanket appears to be uniform around the triple-crater showing no signs of burial or overlapping ejecta from overprinting craters,” write scientists Eric Pilles, Livio Tornabene, Ryan Hopkins, and Kayle Hansen on the HiRISE website. “The crater rims are significantly stunted where the craters overlap.”

This oblong-shaped crater could have been created from a triple asteroid, or it could have been a binary asteroid, and one broke apart, creating the three overlapping craters. The team says the two larger craters must have been produced by asteroids of approximately the same size, probably on the order of a few hundred meters across.

“The northern crater might have been created by a smaller asteroid, which was orbiting the larger binary pair, or when one of the binary asteroids broke up upon entering the atmosphere,” the team explained. “The shape of the triple-crater is oblong, suggesting an oblique impact; therefore, another alternative would be that the asteroid split upon impact and ricocheted across the surface, creating additional craters.”

Studying craters on Mars — and there are lots of them, thanks to Mars’ sparse atmosphere — can help estimate the ages of different terrains, as well as revealing materials such as ice or minerals that get exposed from the impact.

HiRISE is the amazing camera on board the Mars Reconnaissance Orbiter.

A Martian Blue Snake, Brought To You By Canadians And A Spacecraft

A false-color image of part of Cerberus Fossae on Mars. The view shows two rifts intersecting with each other, with sand (in deep blue) and dust. Credit: NASA/JPL-Caltech/University of Arizona/Western University Planetary Sciences Division

Here’s the awesome thing about space and social media: in some cases, you can often follow along with a mission almost as soon as the images come to Earth. A group of Canadians is taking that to the next level this month as they take control of the 211th imaging cycle of a powerful camera on the Mars Reconnaissance Orbiter.

While some images need to be kept back for science investigations, the team is sharing several pictures a day on Twitter and on Facebook portraying the views they saw coming back from the High Resolution Imaging Science Experiment (HiRISE) camera. The results are astounding, as you can see in the images below.

“It’s mind-blowing to realize that when the team, myself included, first look at the images, we are likely the first people on Earth to lay eyes upon a portion of the Martian surface that may have not been imaged before at such high resolution,” stated research lead Livio Tornabene, who is part of Western University’s center for planetary science and exploration.

The team will capture up to 150 images between Nov. 30 and Dec. 12, and already have released close to two dozen to the public. Some of the best are below.

Bizarre Mars: Did Lava Bubbles Wrinkle This Giant Circle?

The Mars Reconnaissance Orbiter took this image of a "circular feature" estimated to be 1.2 miles (2 kilometers) in diameter. Picture released in December 2014. Credit: NASA/JPL-Caltech/University of Arizona

NASA is puzzled by this “enigmatic landform” caught on camera by one of its Mars orbiters, but looking around the region provides some possible clues. This 1.2-mile (2-kilometer) feature is surrounded by relatively young lava flows, so they suspect that it could be some kind of volcanism in the Athabasca area that created this rippled surface.

“Perhaps lava has intruded underneath this mound and pushed it up from beneath. It looks as if material is missing from the mound, so it is also possible that there was a significant amount of ice in the mound that was driven out by the heat of the lava,” NASA wrote in an update on Thursday (Dec. 4).

“There are an array of features like this in the region that continue to puzzle scientists. We hope that close inspection of this … image, and others around it, will provide some clues regarding its formation.”

The picture was captured by the Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE), a University of Arizona payload which has released a whole slew of intriguing pictures lately. We’ve collected a sample of them below.

These transverse aeolian ridges seen by the Mars Reconnaissance Orbiter are caused by wind, but scientists are unsure why this image (released in December 2014) shows two wavelengths of ripples. Credit: NASA/JPL-Caltech/University of Arizona
These transverse aeolian ridges seen by the Mars Reconnaissance Orbiter are caused by wind, but scientists are unsure why this image (released in December 2014) shows two wavelengths of ripples. Credit: NASA/JPL-Caltech/University of Arizona
This area south of Coprates Chasma is an example of sulfate and clay deposits on Mars, showing water once flowed readily in this region. Why the water evaporated from the Red Planet is one question scientists are hoping to answer with missions such as the Mars Reconnaissance Orbiter, which took this image (released in December 2014). Credit: NASA/JPL-Caltech/University of Arizona
This area south of Coprates Chasma is an example of sulfate and clay deposits on Mars, showing water once flowed readily in this region. Why the water evaporated from the Red Planet is one question scientists are hoping to answer with missions such as the Mars Reconnaissance Orbiter, which took this image (released in December 2014). Credit: NASA/JPL-Caltech/University of Arizona
Arabia Terra, one of the dustiest regions on Mars, is filled with dunes such as this one captured by the Mars Reconnaissance Orbiter and released in December 2014. Credit: NASA/JPL/University of Arizona
Arabia Terra, one of the dustiest regions on Mars, is filled with dunes such as this one captured by the Mars Reconnaissance Orbiter and released in December 2014. Credit: NASA/JPL/University of Arizona

Mars Needs You! Help Scientists Track Spring Thaw On Red Planet

Carbon dioxide ice begins to feel the heat in the south pole region every spring. In this image of 'Inca City' taken in August 2014, you can see a few fans coming out from channels (araneiforms) that are created when pressurized gas escapes from the melting ice. Picture taken by the Mars Reconnaissance Orbiter's HiRISE camera. Credit: NASA/JPL/University of Arizona

We’ve been watching Mars with spacecraft for about 50 years, but there’s still so little we know about the Red Planet. Take this sequence of images in this post recently taken by a powerful camera on NASA’s Mars Reconnaissance Orbiter. Spring arrives in the southern hemisphere and produces a bunch of mysteries, such as gray-blue streaks you can see in a picture below.

That’s where citizen scientists can come in, according to a recent post for the University of Arizona’s High Resolution Imaging Science Experiment (HiRISE) camera that took these pictures. They’re asking people with a little spare time to sign up for Planet Four (a Zooniverse project) to look at mysterious Mars features. With amateurs and professionals working together, maybe we’ll learn more about these strange changes you see below.

On Aug. 20, 2014, Martian dust mounds are on top of the araneiforms in 'Inca City', as well as dark areas on the terrain showing where the ice cap in the southern hemisphere burst and sent gas and dust into the surroundings. Fans in the area are pointing in multiple directions, showing how the wind has changed. Image taken by the Mars Reconnaissance Orbiter's HiRISE camera. Credit: NASA/JPL/University of Arizona
On Aug. 20, 2014, Martian dust mounds are on top of the araneiforms in ‘Inca City’, as well as dark areas on the terrain showing where the ice cap in the southern hemisphere burst and sent gas and dust into the surroundings. Fans in the area are pointing in multiple directions, showing how the wind has changed. Image taken by the Mars Reconnaissance Orbiter’s HiRISE camera. Credit: NASA/JPL/University of Arizona
On Aug. 25, 2014, more fans and blotches appear on the Martian landscape around "Inca City", a location in the southern polar region, as the ice bursts in the springtime sun. Image obtained by the Mars Reconnaissance Orbiter's HiRISE camera. Credit: NASA/JPL/University of Arizona
On Aug. 25, 2014, more fans and blotches appear on the Martian landscape around “Inca City”, a location in the southern polar region, as the ice bursts in the springtime sun. Image obtained by the Mars Reconnaissance Orbiter’s HiRISE camera. Credit: NASA/JPL/University of Arizona
As of Sept. 6, 2014, fans in "Inca City" in the Martian southern hemisphere are now blue-gray. Why this color appears in the spring is unknown. It could be because of particles falling into ice underneath, or gas bursting from the ice condensing and falling as frost. It could even be a combination of the two. Image taken by the Mars Reconnaissance Orbiter's HiRISE orbiter. Credit: NASA/JPL/University of Arizona
As of Sept. 6, 2014, fans in “Inca City” in the Martian southern hemisphere are now blue-gray. Why this color appears in the spring is unknown. It could be because of particles falling into ice underneath, or gas bursting from the ice condensing and falling as frost. It could even be a combination of the two. Image taken by the Mars Reconnaissance Orbiter’s HiRISE orbiter. Credit: NASA/JPL/University of Arizona
As spring takes hold in the southern polar region of Mars on Sept. 27, 2014, cracks are now developing in the ice at "Inca City" with multiple new dust fans appearing. Cracks develop when the ice does not have a path to easily rupture and release gas. Picture taken by the Mars Reconnaissance Orbiter's HiRISE camera. Credit: NASA/JPL/University of Arizona
As spring takes hold in the southern polar region of Mars on Sept. 27, 2014, cracks are now developing in the ice at “Inca City” with multiple new dust fans appearing. Cracks develop when the ice does not have a path to easily rupture and release gas. Picture taken by the Mars Reconnaissance Orbiter’s HiRISE camera. Credit: NASA/JPL/University of Arizona

Martian Permafrost And Dust-Sculpted Surface Captured By NASA Spacecraft

Frost deposits in Louth Crater appears to remain through the year, as found in Mars Reconnaissance Orbiter HiRISE photos of the region. Credit: NASA/JPL/University of Arizona

Mars was once thought to be a fairly unchanging planet, similar to the Moon. But now we know it is a planet that was shaped by water and other forces in the past — and that these forces still come into play today.

Above is a picture of permafrost deposits just discovered in Louth Crater. This find comes from NASA’s Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE) and you can see some of its latest water- and dust- shaped environments imaged below.

“A still-unexplained feature of this crater is the diffuse dark smudges visible on the crater floor,” read an update on the University of Arizona HiRISE website explaining this image. “These resemble ‘defrosting spots’ which are visible on carbon dioxide ice in the early spring, but they occur on frost-free areas and survive throughout the summer.”

The frost was caught in a HiRISE image early in the summer, and it persisted as controllers watched it through the summer — indicating that it is permanent. Its size did diminish somewhat, however. Scientists are pretty sure that this is water ice, as carbon dioxide can’t survive the summer.

See more new HiRISE photos below.

A close-up of "chaotic terrain" in Valles Marineris imaged by the Mars Reconnaissance Orbiter's HiRISE camera. Wind or fluid may have further shaped this region, which could be related to possible signs of an ancient lake found in other regions of Valles Marineris. Credit: NASA/JPL/University of Arizona
A close-up of “chaotic terrain” in Valles Marineris imaged by the Mars Reconnaissance Orbiter’s HiRISE camera. Wind or fluid may have further shaped this region, which could be related to possible signs of an ancient lake found in other regions of Valles Marineris. Credit: NASA/JPL/University of Arizona
A section of the vast Valles Marineris ravine called Melas Chasma, a spot where sulfates (minerals formed in water) have been found before. The image shows layers of deposits that were formed before and after the formation of VAlles Marineris. Credit: NASA/JPL/University of Arizona
A section of the vast Valles Marineris ravine called Melas Chasma, a spot where sulfates (minerals formed in water) have been found before. The image shows layers of deposits that were formed before and after the formation of Valles Marineris. Credit: NASA/JPL/University of Arizona
A section of Eastern Elysium Planitia imaged by the Mars Reconnaissance Orbiter's HiRISE camera showing a possible old lava field near dust avalanches stirred up more recently. Credit: NASA/JPL/University of Arizona
A section of Eastern Elysium Planitia imaged by the Mars Reconnaissance Orbiter’s HiRISE camera showing a possible old lava field near dust avalanches stirred up more recently. Credit: NASA/JPL/University of Arizona

MRO Spies Tiny, Bright Nucleus During Comet Flyby of Mars

High resolution image pairs made with HiRISE camera on MRO during Comet Siding Spring's closest approach to Mars on October 19. Shown at top are images of the nucleus region and inner coma. Those at bottom were exposed to show the bigger coma beginning of a tail. Credit: NASA/JPL/Univ. of Arizona

Not to be outdone by the feisty Opportunity Rover, the HiRISE camera on NASA’s Mars Reconnaissance Orbiter (MRO) turned in its homework this evening with a fine image of comet C/2013 Siding Spring taken during closest approach on October 19. 

The highest-resolution images were acquired by HiRISE at the minimum distance of 85,750 miles (138,000 km). The image has a scale of 453 feet (138-m) per pixel.

The top set of photos uses the full dynamic range of the camera to accurately depict brightness and detail in the nuclear region and inner coma. Prior to its arrival near Mars astronomers estimated the nucleus or comet’s core diameter at around 0.6 mile (1 km). Based on these images, where the brightest feature is only 2-3 pixels across, its true size is shy of 1/3 mile or 0.5 km. The bottom photos overexpose the comet’s innards but reveal an extended coma and the beginning of a tail extending to the right.

Annotated photo of Comet Siding Spring taken by the Opportunity Rover on October 19 when near closest approach. Credit: NASA/JPL-Caltech/Cornell Univ./ASU/TAMU
Annotated photo of Comet Siding Spring taken by the Opportunity Rover on October 19 when near closest approach. Credit: NASA/JPL-Caltech/Cornell Univ./ASU/TAMU

To photograph a fast-moving target from orbit, engineers at Lockheed-Martin in Denver precisely pointed and slewed the spacecraft based on comet position calculations by engineers at JPL. To make sure they knew exactly where the comet was, the team photographed the comet 12 days in advance when it was barely bright enough to register above the detector’s noise level. To their surprise, it was not exactly where orbital calculations had predicted it to be. Using the new positions, MRO succeeded in locking onto the comet during the flyby. Without this “double check” its cameras may have missed seeing Siding Spring altogether!

Meanwhile, the Jet Propulsion Lab has released an annotated image showing the stars around the comet in the photo taken by NASA’s Opportunity Rover during closest approach. From Mars’ perspective the comet passed near Alpha Ceti in the constellation Cetus, but here on Earth we see it in southern Ophiuchus not far from Sagittarius.

Comet Siding Spring continues on its way today past the planet Mars in this photo taken on October 20. Copyright: Rolando Ligustri
Comet Siding Spring continues on its way today past the planet Mars in this photo taken on October 20. Copyright: Rolando Ligustri

“It’s excitingly fortunate that this comet came so close to Mars to give us a chance to study it with the instruments we’re using to study Mars,” said Opportunity science team member Mark Lemmon of Texas A&M University, who coordinated the camera pointing. “The views from Mars rovers, in particular, give us a human perspective, because they are about as sensitive to light as our eyes would be.”

After seeing photos from both Earth and Mars I swear I’m that close to picturing this comet in 3D in my mind’s eye. NASA engineers and scientists deserve a huge thanks for their amazing and successful effort to turn rovers and spacecraft, intended for other purposes, into comet observatories in a pinch and then deliver results within 24 hours. Nice work!

Sandy Ridges Pose A Mystery For Future Martian Beach Vacations

A September 2014 image from the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter showing transverse aeolian ridges. Credit: NASA/JPL/University of Arizona

What are these thick dune-like features on Mars, and how were they formed? Scientists are still trying to puzzle out these ridges, which you can see above in a more tropical region of the Red Planet called Iapygia, which is south of Syrtis Major. The thick ridges were captured from orbit by the Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE), and we’ve included some more intriguing pictures below the jump.

“Called transverse aeolian ridges, or TARs, the features stand up to 6 meters tall and are spaced a few tens of meters apart. They are typically oriented transverse to modern day wind directions, and often found in channels and crater interiors,” read an update on the University of Arizona’s HiRISE blog.

“The physical process that produces these features is still mysterious. Most TARs display no evidence of internal structure, so it is difficult to discern exactly how they were formed.”

A wider view of the Iapygia region on Mars, where transverse aeolian ridges (TARs) -- dune-like features -- were spotted in 2014. PIcture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
A wider view of the Iapygia region on Mars, where transverse aeolian ridges (TARs) — dune-like features — were spotted in 2014. PIcture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona

This picture from the NASA spacecraft was taken in Iapygia, which is south of Syrtis Major. While scientists say these look similar to TARs in other parts of the Red Planet, the features have layers on the northwest faces and a paucity on the southern side.

Scientists suggest it’s because these TARs may have had wedge-shaped layers, which hints that they would have gotten taller as material was added to the ridges. They hope to do further studies to learn more about how TARs formed in other regions on Mars.

We’ve included other recent releases from the HiRISE catalog below, so enjoy the Martian vistas!

An image of Eridania Basin, a southern region of Mars that once could been a lake or inland sea. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
An image of Eridania Basin, a southern region of Mars that once could been a lake or inland sea. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Scientists are still puzzling out the nature and formation of these light-toned deposits in the old Vinogradov Crater on Mars. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Scientists are still puzzling out the nature and formation of these light-toned deposits in the old Vinogradov Crater on Mars. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Older lava flows in Daedalia Planum on Mars. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Older lava flows in Daedalia Planum on Mars. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona

The Latest Pictures From Mars Make Us Feel Spoiled

A HiRISE image called "steep north polar peripheral scarp." Credit: NASA/JPL/University of Arizona

Don’t you love it when close-up pictures come beaming to your computer from another planet? Below are some of the latest images from Mars taken by the High Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter.

And by the way, there’s a way for you to request where HiRISE will be pointing next.

All you need to go to this page (called HiWish) and leave a suggestion for where you’d like the spacecraft to look. For some tips on what to do:

The general consensus seems to be picking a spot that is not over-popular, and trying to find a spot that HiRISE has not looked at before or very frequently. Best of luck!

To see more HiRISE images from the latest release, check out this webpage.

A HiRISE image called "Nili Patera." Credit: NASA/JPL/University of Arizona
A HiRISE image called “Nili Patera.” Credit: NASA/JPL/University of Arizona
A HiRISE image called "scalloped surface in Utopia region." Credit: NASA/JPL/University of Arizona
A HiRISE image called “scalloped surface in Utopia region.” Credit: NASA/JPL/University of Arizona
A HiRISE image called "gullied crater wall." Credit: NASA/JPL/University of Arizona
A HiRISE image called “gullied crater wall.” Credit: NASA/JPL/University of Arizona
A HiRISE image called "active dune gullies in Kaiser crater." Credit: NASA/JPL/University of Arizona
A HiRISE image called “active dune gullies in Kaiser crater.” Credit: NASA/JPL/University of Arizona
A HiRISE image called "dark-capped plain and hills in western Arabia region intercrater terrain." Credit: NASA/JPL/University of Arizona
A HiRISE image called “dark-capped plain and hills in western Arabia region intercrater terrain.” Credit: NASA/JPL/University of Arizona

Captain HiRISE, Space Detective Beams Martian History Album To Earth

A large crater in Meridiani Planum on Mars, about 20 kilometers (12.4 miles) northwest of Opportunity's landing site and 42 kilometers (24.6 miles) northwest of Endeavour Crater, where Opportunity is right now. The crater is older than Victoria Crater (another target of Opportunity's), which is clear because it is more filled in with sediments and eroded. Credit: NASA/JPL/University of Arizona

Mars, that ever-changing and beautiful Red Planet practically next door to us, is one of the most well-studied places humans have in the universe. We’ve sent spacecraft there for about 50 years. Yet there’s still a lot of mysteries out there.

NASA’s Mars Reconnaissance Orbiter is among the investigating spacecraft in the area checking out the planet’s past and looking for any interesting clues to tell us more about how Mars — and the Earth, and the solar system, and planets in general — formed. Mars had a wetter past (as the rovers have showed us), but where the water went and why its atmosphere are so thin are among the things scientists are trying to understand.

Luckily for us, the catalog of the University of Arizona’s High Resolution Imaging Science Experiment (HiRISE) is easily available online for all of us to marvel at. Here are just some of the pictures sent back from across the solar system. To see more, look below and check out this HiRISE web page.

This image from Mars shows a variety of sandy features: ripples, transverse aeolian ridges (which are larger and lighter), dunes (dark) and draa (very large bedforms that are greater than 1 kilometer or 0.62 miles). Credit: NASA/JPL/University of Arizona
This image from Mars shows a variety of sandy features: ripples, transverse aeolian ridges (which are larger and lighter), dunes (dark) and draa (very large bedforms that are greater than 1 kilometer or 0.62 miles). Credit: NASA/JPL/University of Arizona
A Martian alluvial fan on the floor of a 60-kilometer (38-mile) crater near the equator of Mars. Scientists commonly study these features to learn more about the Red Planet's wet past. Credit: NASA/JPL/University of Arizona
A Martian alluvial fan on the floor of a 60-kilometer (38-mile) crater near the equator of Mars. Scientists commonly study these features to learn more about the Red Planet’s wet past. Credit: NASA/JPL/University of Arizona
Shiny dunes on Mars taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Shiny dunes on Mars taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Dunes migrating across the surface of Mars. Picture taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Dunes migrating across the surface of Mars. Picture taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona