Hieroglyphic-like Features Point to Past Subsurface Water on Mars

These unusual shapes on Mars surface are actually cones and inflated lava flows, Credit: NASA/JPL/University of Arizona.

Although these strange features on Mars look a bit like hieroglyphics or geoglyphs such as the mysterious Nazca lines on Earth, they are completely natural features, ones that are found on Earth too.

This is one of the latest images from the HiRISE camera on the Mars Reconnaissance Orbiter.

Called ‘rootless cones,’ they form on lava flows that interact with subsurface water or ice. Their formation comes from an explosive interaction of lava with ground ice or water contained within the regolith beneath the flow. Vaporization of the water or ice when the hot lava comes in contact causes an explosive expansion of the water vapor, causing the lava to shoot upward, creating a rootless cone.

Dr. Alfred McEwen, HiRISE Principal Investigator, described the ancient lava flow as ‘inflated.’ “Lava inflation is a process where liquid is injected beneath the solid (thickening) crust and raises the whole surface, often raising it higher than the topography that controlled the initial lava emplacement,” he wrote on the HiRISE website.

The scene above is located in Amazonis Planitia on Mars, a vast region covered by flood lava. McEwen said if this image were in color, we’e see the surface is coated by a thin layer of reddish dust, which avalanches down steep slopes to make dark streaks.

Similar features are found in Iceland, where flowing lava encountered water-saturated substrates.

Rootless cones (a) on Mars and (b) in Iceland. The scale of the Martian and terrestrial cones are comparable. Credit: University of Hawaii/Mars Orbiter Camera/MSSS.
Rootless cones (a) on Mars and (b) in Iceland. The scale of the Martian and terrestrial cones are comparable. Credit: University of Hawaii/Mars Orbiter Camera/MSSS.

Just how big are these strange features on Mars and how old are they? “The cones are on the order of a hundred meters across and ten meters high,” Colin Dundas from the US Geological Survey told Universe Today. “The age of these specific cones isn’t known. They are on a mid- to late-Amazonian geologic unit, which means that they are young by Martian standards but could be as much as a few hundred million to over a billion years old.”

If subsurface water or ice was part of their formation, could it still be there, underground?

“The water or ice that led to the formation of these cones was likely within a few meters (or less) of the surface, and so it’s probably not there anymore,” Dundas said. “At this low latitude (22 degrees north), shallow ground ice is currently unstable, and should sublimate on timescales much less than the likely age of the cones.”

Dundas added that since ice stability varies as the obliquity changes, it’s even possible that ice has come and gone repeatedly since the lava erupted.

See more views of this region on Mars on the HiRISE website

First Color Image of Curiosity’s Tracks from Orbit

HiRISE image of Curiosity’s tracks, landing zone and the MSL rover at John Klein outcrop (NASA/JPL/University of Arizona)

As Curiosity prepares for the historic first drilling operation on Mars, the HiRISE camera aboard the Mars Reconnaissance Orbiter captured an image of it from 271 km (169 miles) up, along with twin lines of tracks and the blast marks from the dramatic rocket-powered descent back on August 6 (UTC).

The image here was acquired on Jan. 13, Sol 157 of the MSL mission, as part of a dual HiRISE/CRISM observation of the landing site. According to The University of Arizona’s HiRISE site it’s the first time the rover’s tracks have been imaged in color.

Her original landing site can be seen at the right edge. (Wait… did I just say “her?”)

The pair of bright white spots in the HiRISE image show the area immediately below where sky crane’s rockets were pointed. Those areas were “blasted clean” and therefore show brightest. The larger dark scour zone is dark because the fine dust has been blown away from the area leaving darker materials.

– Ross A. Beyer, UofA HiRISE team

Curiosity can be seen as she (yes, it was confirmed today during ScienceOnline2013 that the rover — like all exploration vehicles — is a girl) was preparing for drilling into a rock outcrop called John Klein within the “Yellowknife” region in Gale Crater. Drilling is expected to begin today, Jan. 31.

MSL detail hirise

Orbital view (detail) of Curiosity at her drilling site in Yellowknife. Image was rotated so north is up. (NASA/JPL/University of Arizona)

Read more about the first drilling to be performed on Mars in this article by Ken Kremer, and see more news from the MSL mission here.

Dry Ice Drives Dramatic Changes on Mars

Mars may not be tectonically active but that doesn’t mean there’s nothing happening on the Red Planet’s surface. This video from NASA’s Jet Propulsion Laboratory shows the dramatic seasonal changes that take place in Mars’ polar regions when the frozen carbon dioxide — called “dry ice”  — coating the basalt sand dunes begins to thaw and cracks, releasing jets of sublimating CO2 gas that carry dark material upwards and outwards, staining the frozen surface of the dunes. Imagine what it would be like to be standing nearby when these jets erupt!

This process occurs around the upper latitudes of Mars every spring and is responsible for the dark (and sometimes light) mottled discolorations observed across sandy and dune-covered terrain.

Bright fans are created when surface conditions cause escaping CO2 gas to condense back onto the surface. (NASA/JPL/University of Arizona)

If a prevailing wind happens to be blowing when the gases are escaping the cracks in the ice, whatever material they are carrying will be spread by the wind across the dunes in long streaks and fans. Read more about this process here.

“It’s an amazingly dynamic process. We had this old paradigm that all the action on Mars was billions of years ago. Thanks to the ability to monitor changes with the Mars Reconnaissance Orbiter, one of the new paradigms is that Mars has many active processes today.”

– Candice Hansen, Planetary Science Institute

The images in the video were acquired by the HiRISE camera aboard the Mars Reconnaissance Orbiter, which has been orbiting and observing Mars in unprecedented detail for over six years. See more HiRISE images of the Martian surface here.

Video: NASA/JPL

Giant Spiders on Mars!

Eek, spiders! All right, so it’s not actually little green arachnids we’re talking about here, but they are definitely spidery features. Called araneiform terrain, these clusters of radially-branching cracks in Mars’ south polar surface are the result of the progressing spring season, when warmer temperatures thaw subsurface CO2 ice.

As dry ice below the surface warms it can sublimate rapidly and burst through the frozen ground above, creating long cracks. If the material below is dark it can be carried upwards by the escaping gas, staining the surface.

Each dark splotch is around 100 meters wide.

This image was acquired by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter on September 26, from a distance of 262 km (163.8 miles). See the full-size scan here, and check out more recent HiRISE images in the November PDS release here.

Credit: NASA/JPL/University of Arizona

What Curiosity Looks Like From 200 Kilometers Up

Here’s a look down at Curiosity from the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter, orbiting approximately  200 km (125 miles) above the surface of Mars. This new image, released today, shows the rover inside Gale Crater surrounded by a skirt of blue-tinted material, including several bright radiating marks –the  result of the descent stage rockets clearing layers of dust from the surface.

In this exaggerated-color view the blue indicates material of a different texture and composition than the surrounding area. HiRISE captures images in visible light wavelengths as well as near-infrared, which we can’t see. To us, the blue material would look grey.

North is up, and Curiosity’s ultimate exploration target, Gale Crater’s central peak, Mount Sharp, is off frame to the lower right.

Click here for a full-size version of the HiRISE image scan, showing the scene above plus some areas further north and south — including portions of the dark dune fields visible in recent images from Curiosity.

It’s nice to know that Curiosity has friends in high places!

Image: NASA/JPL/University of Arizona

 

Rover, Sky Crane, Heat Shield and Parachute Located from Orbit by HiRISE

More awesomeness from HiRISE! A new orbital image shows the Curiosity rover sitting on Mars’ surface, along with all the accoutrements needed to get it there safely: the heat shield, backshell, parachute, and the Sky Crane. The High-Resolution Imaging Science Experiment (HiRISE) camera captured this image just 24 hours after MSL’s landing.

“This is like the crime scene photo here,” HiRISE team member Sarah Milkovich said during a press conference on Aug. 7.

Of course, yesterday the HiRISE team revealed they had captured MSL in the act of landing.

In re-inacting the scene of the crime, er… incredible landing, the heat shield, lower right, was the first piece to hit the ground, followed by the back shell attached to the parachute, then the rover itself touched down. Then, and finally, after cables were cut, the sky crane flew away to the northwest and crashed.
The heat shield is about 1,220 meters (4,000 feet) from Curiosity, the backshell and parachute are about 610 meters (2,000 feet) away from the rover, and the Sky Crane is about 620 meters (2,100 feet) away.

The relatively dark areas in all four spots are from disturbances of the bright surface dust, revealing darker soil underneath. If you look closely, even visible are the black streaks where the sky crane thrusters kicked up dust. Malkovich said scientists have looked at the streak patterns to verify Curiosity’s orientation — which confirms the information from the rover’s first pictures from surface.


Close-up of Curiosity sitting on Mars’ surface. Credit: NASA/JPL/University of Arizona

The darkened radial jets from the sky crane are downrange from the point of oblique impact, much like the oblique impacts of asteroids. In fact, NASA said, they make an arrow pointing to Curiosity.


Close-up of the Sky Crane. Credit: NASA/JPL/University of Arizona

HiRISE’s image of MSL’s landing site shows the rover and the hardware doing their jobs exactly as they were designed to do.

The image was acquired from a special 41-degree roll of MRO, larger than the normal 30-degree limit. It rolled towards the west and towards the Sun, which increases visible scattering by atmospheric dust as well as the amount of atmosphere the orbiter has to look through, thereby reducing the contrast of surface features. Malkovich said that future images taken from a higher angle will show the hardware in greater detail.


Close-up of the parachute and backshell. Credit: NASA/JPL/University of Arizona


Close-up of the heat shield. Credit: NASA/JPL/University of Arizona

See larger versions and additional info at the HiRISE website.

“Nailed It!” HiRISE Captures Incredible Image of Curiosity’s Descent to Mars

The HiRISE team has outdone themselves this time. Using their incredible instrument, the High Resolution Imaging Science Experiment, they have captured an absolutely amazing image of the Curiosity rover, descending on a parachute through Mars’ atmosphere.

“Nailed it!” Tweeted Christian Schaller of the HiRISE team. “My goodness, @MarsCuriosity you look pretty.”

Wow!

Full image below.

Link to original image (2.7 MB)

Schaller told Universe Today that the MSL Navigation team, the MRO Navigation team and the MRO FET (flight engineering team) “seriously rock. Seriously.”

The planning by those teams made this image possible.

Schaller is the software developer responsible for the primary planning tools the MRO and HiRISE targeting specialists and science team members use to plan their images.

“The Mars background looks a little blurry or smeared because we set up the timing to capture Curiosity, not the Martian surface,” Schaller said via email after the image was released at the press conference from JPL on Monday morning.

The image was set up so that as MSL was descending, MRO “slewed” the HiRISE field of view across the expected descent path. But obviously, MRO didn’t have to slew too much. “We were almost directly overhead, and had a very, very small angle to take the image,” said HiRISE team member Sarah Malkovich at the press conference. “MRO was essentially overhead.”

HiRISE Principal Investigator Alfred McEwen said before the landing that they expected only a 60% chance of success.

McEwen wrote the HiRISE website of the image:

The parachute appears fully inflated and performing perfectly. Details in the parachute such as the band gap at the edges and the central hole are clearly visible. The cords connecting the parachute to the backshell cannot be seen, although they were seen in the image of Phoenix descending, perhaps due to the difference in lighting angles.

The bright spot on the backshell containing MSL might be a specular reflection off of a shiny area. MSL was released from the backshell sometime after this image was acquired.

This view is one product from an observation made by HiRISE targeted to the expected location of MSL about 1 minute prior to landing. It was captured in HiRISE CCD RED1, near the eastern edge of the swath width (there is a RED0 at the very edge). This means that MSL was a bit further east or downrange than predicted.

The image scale is 33.6 cm/pixel.

MRO was 340 km away from Curiosity when the image was taken, and that is line of sight distance, said Malkovich. “HiRISE has taken over 120 pictures of Gale Crater in preparation for MSL’s mission, but I think this is the coolest one,” she said.

McEwen said more details and image products will be available and we will post them as soon as they are available.

This animation shows how HiRISE planned to capture MSL’s descent:

Malkovich said that the HiRISE team already has plans to take images of Curiosity sitting on the surface of Mars later this week that will be of higher resolution than the descent image.

Weird Swirly Features Found on Mars

Cooling lava on Mars can form patterns like snail shells when the lava is pulled in two directions at once. Such patterns, rare on Earth, have never before been seen on Mars. This image, with more than a dozen lava coils visible, shows an area in a volcanic region named Cerberus Palus that is about 500 meters (1640 feet) wide. Credit: NASA

[/caption]

Strange coiling spiral patterns have been found on Mars surface by a graduate student who was doing what many of us enjoy: looking through the high-resolution images from the HiRISE camera on the Mars Reconnaissance Orbiter. Similar features have been seen on Earth, but this is the first time they have been identified on Mars. However, on Mars, these features, called lava coils, are supersized. “On Mars the largest lava coil is 30 meters across – that’s 100 feet,” said Andrew Ryan from Arizona State University. “That’s bigger than any known lava coils on Earth.”

The lava coils resemble snail or nautilus shells. Ryan has found about 269 of these lava coils just in one region on Mars, Cerberus Palus. 174 of them swirl in a clockwise-in orientation, 43 are counterclockwise, and 52 of the features remain unclassified due to resolution limits.

A small lava coil on pahoehoe flow, Kilauea Volcano, Hawai`i(see the pocket knife for scale.) Credit: W.W. Chadwick

On Earth, lava coils can be found on the Big Island of Hawaii, mainly on the surface of ropey pahoehoe lava flows. They usually form along slow-moving shear zones in a flow; for example, along the margins of a small channel, and the direction of the flow can be determined from a lava coil.

“The coils form on flows where there’s a shear stress – where flows move past each other at different speeds or in different directions,” said Ryan. “Pieces of rubbery and plastic lava crust can either be peeled away and physically coiled up – or wrinkles in the lava’s thin crust can be twisted around.”

Similarly, Ryan said scientists have documented the formation of rotated pieces of oceanic crust at mid-ocean ridge spreading centers.

Newer lava lying between two older plates of rough, hardened lava was still hot and plastic enough to form coils and spirals when the plates slid past one another. This image shows an area about 360 meters (1200 feet) wide in Cerberus Palus. Credit: NASA

But Ryan and the co-author on the paper, Phil Christiansen, Principal Investigator for the Thermal Emission Imaging Spectrometer on the Mars Odyssey spacecraft, are certain water has nothing to do with the formation of the lava coils on Mars.

“There are no known mechanisms to naturally produce spiral patterns in ice-rich environments on the scale and frequency observed in this area,” they wrote in their paper. “It is also unlikely that ice-rich patterned regolith, which takes decades to centuries to develop, could fracture and drift. The lava coils and drifting polygonal and platy-ridge lava crust described above are therefore most consistent with known volcanic analogs, rather than ice-related processes.”
These features are probably quite young, formed 1.5 to 200 million years ago in Mars’ late Amazonian period when the planet was volcanically active.

The team’s paper presented at the 2012 Lunar and Planetary Science Conference

Ice Sculptures Fill The Deepest Parts of Mars

Credit: NASA/JPL/Arizona State University

[/caption]

One of the “weirdest and least understood” areas of Mars, the enormous Hellas Impact Basin contains strange flowing landforms that bespeak of some specialized and large-scale geologic process having taken place. The HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter recently captured the image above, showing what’s being called “lava lamp terrain” — stretched and contorted surface that looks like overworked modeling clay or pulled taffy… or, with a bit of imagination, the melted, mesmerizing contents of a party light from another era.

At 1,400 miles (2,300 km) across, Mars’ Hellas Basin is one of the largest impact craters in the entire Solar System. Its vast interior sinks to a depth of about 23,000 feet (7152 meters) below Mars’ average surface elevation (Martian “sea level”, if you will) and thus its floor is often shrouded by haze and dust, making visual imaging difficult.

The “lava lamp” terrain is just one of many different types of landforms that are found in the basin, although many of these banded features are found in the northwest area — which is also the deepest part of the basin. If there had been water in the region at some point in the planet’s history, it would have concentrated there.

Although the texture at first appears as if it could be volcanic in origin, it’s thought that flowing water or ice may actually be the source.

Researchers are currently working to determine how the Hellas Basin became so smoothly sculpted. Nicolas Thomas, Professor of Experimental Physics at the University of Bern, Switzerland, told Universe Today:

“There are a lot of very interesting images from this area and we are trying to get more data (including stereo) to understand better what’s going on and to try to establish what process is responsible for the numerous bizarre features we see. We are hoping to make some more progress in the next few months.”

Example of banded terrain. Compare the relatively fresh appearance of the bands with the older terrain seen to the left of this sub-image. (NASA/JPL/University of Arizona/N. Thomas et al.)

This hypothesis is also in line with the possibility of Hellas Basin having once been a giant lake.

“Together with the observations of isolated areas and the lack of obvious caldera(s), it is difficult to envisage a volcanic origin for these features and we currently tend towards a mechanism involving ice,” Thomas stated in an abstract of a presentation given at the Europlanet Conference in 2010.

Read the full abstract here, and see this and more high-resolution images from Mars on the HiRISE website.