This Hot Jupiter is Leaving a Swirling Tail of Helium in its Wake

Image from the computer simulation of HAT-P-32 b (bright dot left of star) leaving a trail of helium during its 2.2-day, clockwise orbit (dashed line). (Credit: M. MacLeod (Harvard-Smithsonian Center for Astrophysics) and A. Oklopčić (Anton Pannekoek Institute for Astronomy, University of Amsterdam)

In a recent study published in Science Advances, a team of researchers commissioned the Hobby-Eberly Telescope (HET), which is designed to study exoplanetary atmospheres, to examine how a “hot Jupiter” exoplanet is losing its helium atmosphere as it orbits its parent star, leaving tails of helium that extend approximately 25 times the diameter of the planet itself.

Continue reading “This Hot Jupiter is Leaving a Swirling Tail of Helium in its Wake”

Supermassive Black Holes can Turn Star Formation On and Off in a Large Galaxy

Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole. Credit: ESO/NASA/CXC/CfA/WFI/MPIfR/APEX/A.Weiss et al./R.Kraft et al.

In the 1970s, astronomers discovered that a particularly large black hole (Sagittarius A*) existed at the center of our galaxy. In time, they came to understand that similar Supermassive Black Holes (SMBHs) existed in the center of most massive galaxies. The presence of these black holes was also what differentiated galaxies that had particularly luminous cores – aka. Active Galactic Nuclei (AGN) – from those that didn’t.

Since that time, astronomers and cosmologists have pondered what role SMBHs have on galactic evolution, with some venturing that they have a profound impact on star formation. And thanks to a recent study by an international team of astronomers, there is now direct evidence for a correlation between and SMBH and a galaxy’s star formation. In fact, the team demonstrated that a black hole’s mass could determine when star formation in a galaxy will end.

The study, titled “Black-Hole-Regulated Star Formation in Massive Galaxies“, recently appeared in the scientific journal Nature. Led by Ignacio Martín-Navarro, a Marie Curie Fellow at the University of California Observatories, the study team also consisted of members from the Max-Planck Institute for Astronomy and the Instituto de Astrofísica de Canarias.

The primary mirror of the Hobby-Eberly Telescope (HET) at McDonald Observatory. The mirror is made up of 91 segments, and has an effective aperture of 9.2 meters. Credit: Marty Harris/McDonald Observatory

For the sake of their study, the team relied on data gathered the Hobby-Eberle Telescope Massive Galaxy Survey in 2015. This systematic survey used the 10m Hobby-Eberly Telescope (HET) at the McDonald Observatory to conduct an optical long-slit spectroscopic survey of over 1000 galaxies. This survey not only provided spectra for these galaxies, but also produced direct mass measurements of the central black holes for 74 of these galaxies.

Using this data, Martín-Navarro and his colleagues found the first observational evidence for a direct correlation between the mass of a galaxy’s central black hole and its history of star formation. While astrophysicists have been operating under this assumption for decades, the proof was missing until now. As Jean Brodie, professor of astronomy and astrophysics at UC Santa Cruz and a coauthor of the paper, said in a UCSC press release:

“We’ve been dialing in the feedback to make the simulations work out, without really knowing how it happens. This is the first direct observational evidence where we can see the effect of the black hole on the star formation history of the galaxy.”

Roughly 15 years ago, the correlation between a SMBHs mass and the total mass of a galaxy’s stars was discovered, which led to a major unresolved question in astrophysical circles. While this correlation appeared to be a central feature of galaxies, it was unclear as to what could have caused it. How could the mass of a comparatively small and central black hole be related to the mass of billions of stars distributed throughout a galaxy?

The galaxy NGC 660 – in this and other galaxies, the rate at which new stars are formed appears to be linked to the evolution of the galaxy’s central black hole. Credit: ESA/Hubble/NASA

One possible explanation was that more massive galaxies collected larger amounts of gas, thus resulting in more stars and a more massive central black hole. However, astrophysicists also believed their was a feedback mechanism at work, where growing black holes inhibited the formation of stars in their vicinity. In short, when matter accretes on a central black hole, it sends out a tremendous amount of energy in the form of radiation and particle jets.

If this energy is transferred to gas and dust surrounding the core of the galaxy, stars will be less likely to form in this region since gas and dust need to be cold in order to undergo areas of collapse. For years, feedback of this kind has been included in cosmological simulations to explain the observed star-formation rates in galaxies. According to these same simulations, minus this mechanism, galaxies would form far more stars than have been observed.

However, no direct evidence of this phenomena had previously been available. The first step to obtaining some was to reproduce the stellar formation histories of the 74 target galaxies used for the study. Martín-Navarro and his colleagues did this by subjecting spectra obtained from each of these galaxies to computational techniques that looked for the best combination of stellar populations to fit the data.

In so doing, the team was able to reconstruct the history of star formation within the target galaxies for the past 12.5 billion years. After examining these histories, they noticed some predictable results, but also some rather significant differences. For starters, as predicted, the regions of around the galaxies’ central black holes demonstrated a clear dampening influence on the rate of star formation.

Artist’s concept of the most distant supermassive black hole ever discovered. It is part of a quasar from just 690 million years after the Big Bang. Credit: Robin Dienel/Carnegie Institution for Science

As predicted, there was also a clear correlation between the mass of the central black holes and stellar mass in these galaxies. However, the team also noted that in cases where stellar mass was slightly smaller than expected (relative to the mass of their central black holes), star formation rates were lower. In some other cases, galaxies had larger-than-expected stellar masses (again, relative to their black holes) and their star formation rates were higher.

This correlation was not only more consistent than that observed between black hole mass and stellar mass, it occurred independently of other factors (such as shape or density). As Martín-Navaro explained:

“For galaxies with the same mass of stars but different black hole mass in the center, those galaxies with bigger black holes were quenched earlier and faster than those with smaller black holes. So star formation lasted longer in those galaxies with smaller central black holes.”

They also noted that this correlation extends into the deep past, where the galaxies with supermassive central black holes have been consistently producing a comparatively low rate of stars for the past 12.5 billion years. This constitutes the first strong evidence for a direct, long-term connection between star formation and the existence of a central black hole in a galaxy.

Close-up of star near a supermassive black hole (artist’s impression). Credit: ESA/Hubble, ESO, M. Kornmesser

Another interesting takeaway from the study was the way it addressed possible correlations between AGN luminosity and star formation. In the past, other researchers have sought to find evidence of a link between the two, but without success. According to Martín-Navarro and his team, this may be because the time scales are incredibly different. Whereas star formation occurs over the course of eons, outbursts from AGNs occur over shorter intervals.

What’s more, AGNs are highly variable and their properties are dependent on a number of factors relating to their black holes – i.e. size, mass, rate of accretion, etc. We used black hole mass as a proxy for the energy put into the galaxy by the AGN, because accretion onto more massive black holes leads to more energetic feedback from active galactic nuclei, which would quench star formation faster,” said Martin-Navarro.

Looking ahead, the team hopes to conduct further research and determine exactly how central black holes arrest star formation. At present, the possibility that it could be due to radiation or jets of gas heating up surrounding matter are not definitive. As Aaron Romanowsky, an astronomer at San Jose State University and UC Observatories, indicated:

“There are different ways a black hole can put energy out into the galaxy, and theorists have all kinds of ideas about how quenching happens, but there’s more work to be done to fit these new observations into the models.”

Part of determining how the Universe came to be is knowing what mechanisms were at play and the extent of their roles. With this latest study, astrophysicists and cosmologists can take comfort in the knowledge that they’ve been getting it right – at least in this case!

Further Reading: UCSC, MPIA, Nature

Wild and Crazy Multi-Planetary System Surprises Astronomers

Epsilon Andromedae. Illustration Credit: NASA, ESA, and A. Feild (STScI) Science Credit: NASA, ESA, and B. McArthur, University of Texas at Austin, McDonald Observatory.

[/caption]

Astronomers are finding that not only are there a wide range of different extrasolar planets, but there are different types of planetary systems, as well. “We’re not in Kansas anymore as far as solar systems go,” said Barbara McDonald from the University of Texas’ McDonald Observatory, at the American Astronomical Society meeting in Miami, Florida today. “The exciting thing is, we found another multi-planet system that is not at all like our own.”

A close look at the Upsilon Andromedae system with the Hubble Space Telescope, the Hobby-Eberly Telescope and other ground-based telescopes shows a whacky system where planets are out of tilt and have highly inclined orbits. The astronomers also found another planet, and also another star – this is likely a binary star system.

Even with Pluto’s inclined orbit, our solar system looks like an ocean of calm compared to Upsilon Andromedae.

Comparison of solar systems. Credit: HubbleSite

McDonald said these surprising findings will impact theories of how multi-planet systems evolve, and it shows that some violent events can happen to disrupt planets’ orbits after a planetary system forms.

“The findings mean that future studies of exoplanetary systems will be more complicated,” she said. “Astronomers can no longer assume all planets orbit their parent star in a single plane.” says Barbara McArthur of The University of Texas at Austin’s McDonald Observatory.

Similar to our Sun in its properties, Upsilon Andromedae lies about 44 light-years away. It’s a little younger, more massive, and brighter than the Sun. For just over a decade, astronomers have known that three Jupiter-type planets orbit the yellow-white star Upsilon Andromedae.

But after over a thousand combined observations, McDonald and her team uncovered hints that a fourth planet, e, orbits the star much farther out. They were also able to determine the exact masses of two of the three previously known planets, Upsilon Andromedae c and d. Much more startling, though, is that not all planets orbit this star in the same plane. The orbits of planets c and d are inclined by 30 degrees with respect to each other. This research marks the first time that the “mutual inclination” of two planets orbiting another star has been measured.

“Most probably Upsilon Andromedae had the same formation process as our own solar system, although there could have been differences in the late formation that seeded this divergent evolution,” McArthur said. “The premise of planetary evolution so far has been that planetary systems form in the disk and remain relatively co-planar, like our own system, but now we have measured a significant angle between these planets that indicates this isn’t always the case.”

Until now the conventional wisdom has been that a big cloud of gas collapses down to form a star, and planets are a natural byproduct of leftover material that forms a disk. In our solar system, there’s a fossil of that creation event because all of the eight major planets orbit in nearly the same plane. The outermost dwarf planets like Pluto are in inclined orbits, but these have been modified by Neptune’s gravity and are not embedded deep inside the Sun’s gravitational field.

So what knocked the Upsilon Andromedae system around?

“Possibilities include interactions occurring from the inward migration of planets, the ejection of other planets from the system through planet-planet scattering, or disruption from the parent star’s binary companion star, Upsilon Andromedae B,” McArthur said.

Or, the companion star – a red dwarf less massive and much dimmer than the Sun — could be the culprit. is.

“We don’t have any idea what its orbit is,” said team member Fritz Benedict. “It could be very eccentric. Maybe it comes in very close every once in a while. It may take 10,000 years.” Such a close pass by the secondary star could gravitationally perturb the orbits of the planets.”

The two different types of data combined in this research were astrometry from the Hubble Space Telescope and radial velocity from ground-based telescopes.

Astrometry is the measurement of the positions and motions of celestial bodies. McArthur’s group used one of the Fine Guidance Sensors (FGSs) on the Hubble telescope for the task. The FGSs are so precise that they can measure the width of a quarter in Denver from the vantage point of Miami. It was this precision that was used to trace the star’s motion on the sky caused by its surrounding — and unseen — planets.

Radial velocity makes measurements of the star’s motion on the sky toward and away from Earth. These measurements were made over a period of 14 years using ground-based telescopes, including two at McDonald Observatory and others at Lick, Haute-Provence, and Whipple Observatories. The radial velocity provides a long baseline of foundation observations, which enabled the shorter duration, but more precise and complete, Hubble observations to better define the orbital motions.

The fact that the team determined the orbital inclinations of planets c and d allowed them to calculate the exact masses of the two planets. The new information told us that our view as to which planet is heavier has to be changed. Previous minimum masses for the planets given by radial velocity studies put the minimum mass for planet c at 2 Jupiters and for planet d at 4 Jupiters. The new, exact masses, found by astrometry are 14 Jupiters for planet c and 10 Jupiters for planet d.

“The Hubble data show that radial velocity isn’t the whole story,” Benedict said. “The fact that the planets actually flipped in mass was really cute.”

The fourth planet is so far out, that its signal does not reveal the curvature of its orbit.

The 14 years of radial velocity information compiled by the team uncovered hints that a fourth, long-period planet may orbit beyond the three now known. There are only hints about that planet because it’s so far out that the signal it creates does not yet reveal the curvature of an orbit. Another missing piece of the puzzle is the inclination of the innermost planet, b, which would require precision astrometry 1,000 times greater than Hubble’s, a goal attainable by a future space mission optimized for interferometry.

Sources: HubbleSite, AAS Press conference