The hunt for exoplanets has turned up many fascinating case studies. For example, surveys have turned up many “Hot Jupiters”, gas giants that are similar in size to Jupiter but orbit very close to their suns. This particular type of exoplanet has been a source of interest to astronomers, mainly because their existence challenges conventional thinking about where gas giants can exist in a star system.
Hence why an international team led by researchers from the European Southern Observatory (ESO) used the Very Large Telescope (VLT) to get a better look at WASP-19b, a Hot Jupiter located 815 light-years from Earth. In the course of these observations, they noticed that the planet’s atmosphere contained traces of titanium oxide, making this the first time that this compound has been detected in the atmosphere of a gas giant.
Like all Hot Jupiters, WASP-19b has about the same mass as Jupiter and orbits very close to its sun. In fact, its orbital period is so short – just 19 hours – that temperatures in its atmosphere are estimated to reach as high as 2273 K (2000 °C; 3632 °F). That’s over four times as hot as Venus, where temperatures are hot enough to melt lead! In fact, temperatures on WASP-19b are hot enough to melt silicate minerals and platinum!
The study relied on the FOcal Reducer/low dispersion Spectrograph 2 (FORS2) instrument on the VLT, a multi-mode optical instrument capable of conducting imaging, spectroscopy and the study of polarized light (polarimetry). Using FORS2, the team observing the planet as it passed in front of its star (aka. made a transit), which revealed valuable spectra from its atmosphere.
After carefully analyzing the light that passed through its hazy clouds, the team was surprised to find trace amounts of titanium oxide (as well as sodium and water). As Elyar Sedaghati, who spent 2 years as a student with the ESO to work on this project, said of the discovery in an ES press release:
“Detecting such molecules is, however, no simple feat. Not only do we need data of exceptional quality, but we also need to perform a sophisticated analysis. We used an algorithm that explores many millions of spectra spanning a wide range of chemical compositions, temperatures, and cloud or haze properties in order to draw our conclusions.”
Titanium oxide is a very rare compound which is known to exist in the atmospheres of cool stars. In small quantities, it acts as a heat absorber, and is therefore likely to be partly responsible for WASP-19b experiencing such high temperatures. In large enough quantities, it can prevent heat from entering or escaping an atmosphere, causing what is known as thermal inversion.
This is a phenomena where temperatures are higher in the upper atmosphere and lower further down. On Earth, ozone plays a similar role, causing an inversion of temperatures in the stratosphere. But on gas giants, this is the opposite of what usually happens. Whereas Jupiter, Saturn, Uranus and Neptune experience colder temperatures in their upper atmospheres, temperatures are much hotter closer to the core due to increases in pressure.
The team believes that the presence of this compound could have a substantial effect on the atmosphere’s temperature, structure and circulation. What’s more, the fact that the team was able to detect this compound (a first for exoplanet researchers) is an indication of how exoplanet studies are achieving new levels of detail. All of this is likely to have a profound impact on future studies of exoplanet atmospheres.
The study would also have not been possible were it not for the FORS2 instrument, which was added to the VLT array in recent years. As Henri Boffin, the instrument scientist who led the refurbishment project, commented:
“This important discovery is the outcome of a refurbishment of the FORS2 instrument that was done exactly for this purpose. Since then, FORS2 has become the best instrument to perform this kind of study from the ground.”
Looking ahead, it is clear that the detection of metal oxides and other similar substances in exoplanet atmospheres will also allow for the creation of better atmospheric models. With these in hand, astronomers will be able to conduct far more detailed and accurate studies on exoplanet atmospheres, which will allow them to gauge with greater certainty whether or not any of them are habitable.
So while this latest planet has no chance of supporting life – you’d have better luck finding ice cubes in the Gobi desert! – its discovery could help point the way towards habitable exoplanets in the future. On step closer to finding a world that could support life, or possibly that elusive Earth 2.0!
Beyond our Solar System’s “Frost Line” – the region where volatiles like water, ammonia and methane begin to freeze – four massive planets reside. Though these planets – Jupiter, Saturn, Uranus and Neptune – vary in terms of size, mass, and composition, they all share certain characteristics that cause them to differ greatly from the terrestrial planets located in the inner Solar System.
Officially designated as gas (and/or ice) giants, these worlds also go by the name of “Jovian planets”. Used interchangeably with terms like gas giant and giant planet, the name describes worlds that are essentially “Jupiter-like”. And while the Solar System contains four such planets, extra-solar surveys have discovered hundreds of Jovian planets, and that’s just so far…
Definition:
The term Jovian is derived from Jupiter, the largest of the Outer Planets and the first to be observed using a telescope – by Galileo Galilei in 1610. Taking its name from the Roman king of the gods – Jupiter, or Jove – the adjective Jovian has come to mean anything associated with Jupiter; and by extension, a Jupiter-like planet.
Within the Solar System, four Jovian planets exist – Jupiter, Saturn, Uranus and Neptune. A planet designated as Jovian is hence a gas giant, composed primarily of hydrogen and helium gas with varying degrees of heavier elements. In addition to having large systems of moons, these planets each have their own ring systems as well.
Another common feature of gas giants is their lack of a surface, at least when compared to terrestrial planets. In all cases, scientists define the “surface” of a gas giant (for the sake of defining temperatures and air pressure) as being the region where the atmospheric pressure exceeds one bar (the pressure found on Earth at sea level).
Structure and Composition:
In all cases, the gas giants of our Solar System are composed primarily of hydrogen and helium with the remainder being taken up by heavier elements. These elements correspond to a structure that is differentiated between an outer layer of molecular hydrogen and helium that surrounds a layer of liquid (or metallic) hydrogen or volatile elements, and a probable molten core with a rocky composition.
Due to difference in their structure and composition, the four gas giants are often differentiated, with Jupiter and Saturn being classified as “gas giants” while Uranus and Neptune are “ice giants”. This is due to the fact that Neptune and Uranus have higher concentrations of methane and heavier elements – like oxygen, carbon, nitrogen, and sulfur – in their interior.
In stark contrast to the terrestrial planets, the density of the gas giants is slightly greater than that of water (1 g/cm³). The one exception to this is Saturn, where the mean density is actually lower than water (0.687 g/cm3). In all cases, temperature and pressure increase dramatically the closer one ventures into the core.
Atmospheric Conditions:
Much like their structures and compositions, the atmospheres and weather patterns of the four gas/ice giants are quite similar. The primary difference is that the atmospheres get progressively cooler the farther away they are from Sun. As a result, each Jovian planet has distinct cloud layers who’s altitudes are determined by their temperatures, such that the gases can condense into liquid and solid states.
In short, since Saturn is colder than Jupiter at any particular altitude, its cloud layers occur deeper within it’s atmosphere. Uranus and Neptune, due to their even lower temperatures, are able to hold condensed methane in their very cold tropospheres, whereas Jupiter and Saturn cannot.
The presence of this methane is what gives Uranus and Neptune their hazy blue color, where Jupiter is orange-white in appearance due to the intermingling of hydrogen (which gives off a red appearance), while the upwelling of phosphorus, sulfur, and hydrocarbons yield spotted patches areas and ammonia crystals create white bands.
The atmosphere of Jupiter is classified into four layers based on increasing altitude: the troposphere, stratosphere, thermosphere and exosphere. Temperature and pressure increase with depth, which leads to rising convection cells emerging that carry with them the phosphorus, sulfur, and hydrocarbons that interact with UV radiation to give the upper atmosphere its spotted appearance.
Saturn’s atmosphere is similar in composition to Jupiter’s. Hence why it is similarly colored, though its bands are much fainter and are much wider near the equator (resulting in a pale gold color). As with Jupiter’s cloud layers, they are divided into the upper and lower layers, which vary in composition based on depth and pressure. Both planets also have clouds composed of ammonia crystals in their upper atmospheres, with a possible thin layer of water clouds underlying them.
Uranus’ atmosphere can be divided into three sections – the innermost stratosphere, the troposphere, and the outer thermosphere. The troposphere is the densest layer, and also happens to be the coldest in the solar system. Within the troposphere are layers of clouds, with methane clouds on top, ammonium hydrosulfide clouds, ammonia and hydrogen sulfide clouds, and water clouds at the lowest pressures.
Next is the stratosphere, which contains ethane smog, acetylene and methane, and these hazes help warm this layer of the atmosphere. Here, temperatures increase considerably, largely due to solar radiation. The outermost layer (the thermosphere and corona) has a uniform temperature of 800-850 (577 °C/1,070 °F), though scientists are unsure as to the reason.
This is something that Uranus shares with Neptune, which also experiences unusually high temperatures in its thermosphere (about 750 K (476.85 °C/890 °F). Like Uranus, Neptune is too far from the Sun for this heat to be generated through the absorption of ultraviolet radiation, which means another heating mechanism is involved.
Neptune’s atmosphere is also predominantly hydrogen and helium, with a small amount of methane. The presence of methane is part of what gives Neptune its blue hue, although Neptune’s is darker and more vivid. Its atmosphere can be subdivided into two main regions: the lower troposphere (where temperatures decrease with altitude), and the stratosphere (where temperatures increase with altitude).
The lower stratosphere is believed to contain hydrocarbons like ethane and ethyne, which are the result of methane interacting with UV radiation, thus producing Neptune’s atmospheric haze. The stratosphere is also home to trace amounts of carbon monoxide and hydrogen cyanide, which are responsible for Neptune’s stratosphere being warmer than that of Uranus.
Weather Patterns:
Like Earth, Jupiter experiences auroras near its northern and southern poles. But on Jupiter, the auroral activity is much more intense and rarely ever stops. These are the result of Jupiter’s intense radiation, it’s magnetic field, and the abundance of material from Io’s volcanoes that react with Jupiter’s ionosphere.
Jupiter also experiences violent weather patterns. Wind speeds of 100 m/s (360 km/h) are common in zonal jets, and can reach as high as 620 kph (385 mph). Storms form within hours and can become thousands of km in diameter overnight. One storm, the Great Red Spot, has been raging since at least the late 1600s.
The storm has been shrinking and expanding throughout its history; but in 2012, it was suggested that the Giant Red Spot might eventually disappear. Jupiter also periodically experiences flashes of lightning in its atmosphere, which can be up to a thousand times as powerful as those observed here on the Earth.
Saturn’s atmosphere is similar, exhibiting long-lived ovals now and then that can be several thousands of kilometers wide. A good example is the Great White Spot (aka. Great White Oval), a unique but short-lived phenomenon that occurs once every 30 Earth years. Since 2010, a large band of white clouds called the Northern Electrostatic Disturbance have been observed enveloping Saturn, and is believed to be followed by another in 2020.
The winds on Saturn are the second fastest among the Solar System’s planets, which have reached a measured high of 500 m/s (1800 km/h). Saturn’s northern and southern poles have also shown evidence of stormy weather. At the north pole, this takes the form of a persisting hexagonal wave pattern measuring about 13,800 km (8,600 mi) and rotating with a period of 10h 39m 24s.
The south pole vortex apparently takes the form of a jet stream, but not a hexagonal standing wave. These storms are estimated to be generating winds of 550 km/h, are comparable in size to Earth, and believed to have been going on for billions of years. In 2006, the Cassini space probe observed a hurricane-like storm that had a clearly defined eye. Such storms had not been observed on any planet other than Earth – even on Jupiter.
Uranus’s weather follows a similar pattern where systems are broken up into bands that rotate around the planet, which are driven by internal heat rising to the upper atmosphere. Winds on Uranus can reach up to 900 km/h (560 mph), creating massive storms like the one spotted by the Hubble Space Telescope in 2012. Similar to Jupiter’s Great Red Spot, this “Dark Spot” was a giant cloud vortex that measured 1,700 kilometers by 3,000 kilometers (1,100 miles by 1,900 miles).
Because Neptune is not a solid body, its atmosphere undergoes differential rotation, with its wide equatorial zone rotating slower than the planet’s magnetic field (18 hours vs. 16.1 hours). By contrast, the reverse is true for the polar regions where the rotation period is 12 hours. This differential rotation is the most pronounced of any planet in the Solar System, and results in strong latitudinal wind shear and violent storms.
The first to be spotted was a massive anticyclonic storm measuring 13,000 x 6,600 km and resembling the Great Red Spot of Jupiter. Known as the Great Dark Spot, this storm was not spotted five later (Nov. 2nd, 1994) when the Hubble Space Telescope looked for it. Instead, a new storm that was very similar in appearance was found in the planet’s northern hemisphere, suggesting that these storms have a shorter life span than Jupiter’s.
Exoplanets:
Due to the limitations imposed by our current methods, most of the exoplanets discovered so far by surveys like the Kepler space observatory have been comparable in size to the giant planets of the Solar System. Because these large planets are inferred to share more in common with Jupiter than with the other giant planets, the term “Jovian Planet” has been used by many to describe them.
Many of these planets, being greater in mass than Jupiter, have also been dubbed as “Super-Jupiters” by astronomers. Such planets exist at the borderline between planets and brown dwarf stars, the smallest stars known to exist in our Universe. They can be up to 80 times more massive than Jupiter but are still comparable in size, since their stronger gravity compresses the material into an ever denser, more compact sphere.
Those Super-Jupiters that have distant orbits from their parent stars are known as “Cold Jupiters”, whereas those that have close orbits are called “Hot Jupiters”. A surprising number of Hot Jupiters have been observed by exoplanet surveys, due to the fact that they are particularly easy to spot using the Radial Velocity method – which measures the oscillation of parent stars due to the influence of their planets.
In the past, astronomers believed that Jupiter-like planets could only form in the outer reaches of a star system. However, the recent discovery of many Jupiter-sized planets orbiting close to their stars has cast doubt on this. Thanks to the discovery of Jovians beyond our Solar System, astronomers may be forced to rethink our models of planetary formation.
Since Galileo first observed Jupiter through his telescope, Jovian planets have been an endless source of fascination for us. And despite many centuries of research and progress, there are still many things we don’t know about them. Our latest effort to explore Jupiter, the Juno Mission, is expected to produce some rather interesting finds. Here’s hoping they bring us one step closer to understanding those darn Jovians!
Hot young stars are wildly active, emitting huge eruptions of charged particles form their surfaces. But as they age they naturally become less active, their X-ray emission weakens and their rotation slows.
Astronomers have theorized that a hot Jupiter — a sizzling gas giant circling close to its host star — might be able to sustain a young star’s activity, ultimately prolonging its youth. Earlier this year, two astronomers from the Harvard-Smithsonian Center for Astrophysics tested this hypothesis and found it true.
But now, observations of a different system show the opposite effect: a planet that’s causing its star to age much more quickly.
The planet, WASP-18b has a mass roughly 10 times Jupiter’s and circles its host star in less than 23 hours. So it’s not exactly a classic hot Jupiter — a sizzling gas giant whipping around its host star — because it’s characteristics are a little more drastic.
“WASP-18b is an extreme exoplanet,” said lead author Ignazio Pillitteri of the National Institute for Astrophysics in Italy, in a news release. “It is one of the most massive hot Jupiters known and one of the closest to its host star, and these characteristics lead to unexpected behavior.”
The team thinks WASP-18 is 600 million years old, relatively young compared to our 5-billion-year-old Sun. But when Pillitteri and colleagues took a long look with NASA’s Chandra X-ray Observatory at the star, they didn’t see any X-rays — a telltale sign the star is youthful. In fact, the observations show the star is 100 times less active than it should be.
“We think the planet is aging the star by wreaking havoc on its innards,” said co-author Scott Wolk (who also worked on the previous study showing the opposite effect) from the Harvard-Smithsonian Center for Astrophysics.
The researchers argue that tidal forces created by the gravitational pull of the massive planet might have disrupted the star’s magnetic field generated by the motion of conductive plasma deep inside the star. It’s possible the exoplanet significantly interfered with the upper layers of the convective zone, reduced any mixing of stellar material, and effectively canceled out the magnetic activity.
The effect of tidal forces from the planet may also explain an unusually high amount of lithium seen in the star. Lithium is usually abundant in younger stars, but disappears over time as convection carries it further toward the star’s center, where it’s destroyed by nuclear reactions. So if there’s less convection — as seems to be the case for WASP 18 — then the lithium won’t circulate toward the center of the star and instead will survive.
The findings have been published in the July issue of Astronomy and Astrophysics and are available online.
A faraway group of planets is puzzling scientists. Newly reported Kepler-56’s system has three planets — two smaller ones close by, and a much larger one further out. The inner planets are orbiting at a tilt to the equator of the host star.
Scientists have seen that tilt before in other systems, but they thought you would need a “hot Jupiter” — a huge gas giant planet close to the star — to make that happen. Here, that’s not the case. The outer planet’s gravity, distant as it is, is pulling the two planets into their tilted orbits.
“This is a very puzzling result that is sure to challenge our understanding of how solar systems form,” stated co-author Tim Bedding, a physics researcher at the University of Sydney.
Kepler-56 is 3,000 light-years away from Earth and has a mass about 30% greater than that of our Sun. As the name implies, astronomers used the Kepler space telescope to make the discovery.
Determining weather patterns in exoplanet atmospheres – hundreds to thousands of light years away – is extremely difficult. However, given that it may be one of our best ways to truly characterize these alien words, it’s a challenge astronomers have accepted willingly.
Most models have a very simple foundation, necessarily eliminating the complex physics that is difficult to incorporate and analyze. Recently, a team led by Dr. Konstantin Batygin of Harvard University, added one more parameter to their models, drastically changing their results.
The punch line is this: the inclusion of magnetic fields significantly changes, and actually simplifies, the atmospheric circulation of hot Jupiters.
Hot Jupiters orbit dangerously close to their host stars, roasting in stellar radiation. But they are also tidally locked to their host stars – one hemisphere continually faces the star, while one continuously faces away – creating a permanent dayside and a permanent nightside.
One would expect the temperature gradient between the dayside and the nightside to be very high. However, various weather patterns play a role in strongly decreasing this temperature gradient. As an example, we now know that clouds may significantly decrease the temperature of the dayside.
Dr. Batygin’s team analyzed magnetic effects within atmospheric circulation. “The case of hot Jupiters is quite peculiar,” she told Universe Today. “The atmospheres of hot Jupiters have temperatures that reach up to 2000 Kelvin, which is hot enough to ionize trace Alkali metals such as potassium and sodium. So the air on hot Jupiters is actually a weakly conducting plasma.”
Once the alkali metals have been ionized – stripped of their electrons – the upper atmosphere contains all of those charged particles and becomes a plasma. It is then electrically conductive and magnetic effects must be taken into account.
While the underlying physics is pretty complex (with nearly 40 multi-lined equations in the paper alone), the introduction of magnetic effects actually simplified the model’s outcome.
In the absence of magnetic fields, the upper and lower atmospheres feature two distinct patterns of circulation. The upper atmosphere consists of winds blowing away from the dayside in all directions. And the lower atmosphere consists of zonal flows – the bands of color on Jupiter. The zonal flows move parallel to lines of latitude in an east-west fashion. Each moves in a different direction than the one above and below it.
“Upon introducing magnetic fields, fancy dayside-to-nightside flows are quenched and the entire atmosphere circulates in an exclusively east-west fashion,” explains Dr. Batygin. The upper atmosphere resembles the lower atmosphere – zonal flows dominate.
Throughout these models, Dr. Batygin et al. assumed a magnetic field aligned with the rotation axis of the planet. Future work will include a closer look at the effect of a more complicated geometry. The team also intends to extend these results to hotter atmospheres, where magnetic fields will slow the rate of these zonal flows. According to Dr. Batygin, “this has potentially observable consequences and we hope to elucidate them in the future.”
These results will be published in the astrophysical journal (preprint available here).
When it comes to solar systems, chances are good that we’re a lot more special than we thought. According to a German-British team led by Professor Pavel Kroupa of the University of Bonn, our orderly neighborhood of varied planet sizes quietly orbiting in a nearly circular path isn’t a standard affair. Their new models show that habitable planets might just get ejected in a violent scenario where forming solar systems mean highly inclined orbits where hot Jupiters rule.
Some 4600 million years ago, our local planetary system was surmised to have evolved from a blanket of dust surrounding a rather ordinary star. Its planets orbited the same direction as the solar spin and lined up neatly on a plane fairly close to the solar equator. We were good little children… But maybe other systems aren’t so hospitable. There could be systems where the planets cruise around in the opposite direction of their host star’s spin – and have highly inclined orbits. What could cause one protoplanetary disk to take on quiet properties while another is more radical? Try a cosmic crash.
This new study focuses on the theory of a protoplanetary disk colliding with another cloud of material… not unrealistic thinking since most stars form within a cluster. The results could mean the inclusion of up to thirty times the mass of Jupiter. This added “weight” of extra gas and dust could add a tilt to a forming system. Team member Dr Ingo Thies, also of the University of Bonn, has carried out computer simulations to test the new idea. What he has found is that adding extra material can not only incline a forming disk, but cause a reverse spin as well. It may even speed up the planetary formation, leaving the rogues in retrograde orbits. This inhospitable scenario means that smaller planets get ejected systematically, leaving only hot Jupiters to hug in close to the parent star. Thankfully our path was a bit less disturbing.
Says Dr Thies: “Like most stars, the Sun formed in a cluster, so probably did encounter another cloud of gas and dust soon after it formed. Fortunately for us, this was a gentle collision, so the effect on the disk that eventually became the planets was relatively benign. If things had been different, an unstable planetary system may have formed around the Sun, the Earth might have been ejected from the Solar System and none of us would be here to talk about it.”
Professor Kroupa sees the model as a big step forward. “We may be on the cusp of solving the mystery of why some planetary systems are tilted so much and lack places where life could thrive. The model helps to explain why our Solar System looks the way it does, with the Earth in a stable orbit and larger planets further out. Our work should help other scientists refine their search for life elsewhere in the Universe.”