Scheduled for launch in 2027, the Nancy Grace Roman Telescope is slowly being readied for operation. This week, NASA announced that they have started to joined the mission’s telescope, instrument carrier and instruments onto the spacecraft. Having completed the construction, they will now move to the testing phase where the instrument will be subjected to more tests. These will include exposure to electromagnetic radiation expected during launch along with vibration and thermal changes too. If it passes these tests, the new space telescope will be on the home straight.
You’re Made of Carbon that Took a Journey into Intergalactic Space
I’ve used this fact a gazillion times; every atom in your body has been through the core of a star! The carbon in our bones formed through fusion like many other elements and was thrown out into space to seed the cosmos with the elements for life. A team of researchers have been exploring this journey, tracking a giant conveyor belt that surrounds the Galaxy and the results are surprising.
Webb Observes Protoplanetary Disks that Contradict Models of Planet Formation
The James Webb Space Telescope (JWST) was specifically intended to address some of the greatest unresolved questions in cosmology. These include all of the major questions scientists have been pondering since the Hubble Space Telescope (HST) took its deepest views of the Universe: the Hubble Tension, how the first stars and galaxies came together, how planetary systems formed, and when the first black holes appeared. In particular, Hubble spotted something very interesting in 2003 when observing a star almost as old as the Universe itself.
Orbiting this ancient star was a massive planet whose very existence contradicted accepted models of planet formation since stars in the early Universe did not have time to produce enough heavy elements for planets to form. Thanks to recent observations by the JWST, an international team of scientists announced that they may have solved this conundrum. By observing stars in the Small Magellanic Cloud (LMC), which lacks large amounts of heavy elements, they found stars with planet-forming disks that are longer-lived than those seen around young stars in our Milky Way galaxy.
Continue reading “Webb Observes Protoplanetary Disks that Contradict Models of Planet Formation”MAUVE: An Ultraviolet Astrophysics Probe Mission Concept
For the past thirty years, NASA’s Great Observatories – the Hubble, Spitzer, Compton, and Chandra space telescopes – have revealed some amazing things about the Universe. In addition to some of the deepest views of the Universe provided by the Hubble Deep Fields campaign, these telescopes have provided insight into the unseen parts of the cosmos – i.e., in the infrared, gamma-ray, and ultraviolet spectrums. With the success of these observatories and the James Webb Space Telescope (JWST), NASA is contemplating future missions that would reveal even more of the “unseen Universe.”
This includes the UltraViolet Explorer (UVEX), a space telescope NASA plans to launch in 2030 as its next Astrophysics Medium-Class Explorer mission. In a recent study, a team comprised of graduate students and postdocs from institutions across the US detailed a concept mission known as the Mission to Analyze the UltraViolet universE (MAUVE). This telescope and its sophisticated instruments were conceived during the inaugural NASA Astrophysics Mission Design School. According to the team’s paper, this mission would hypothetically be ready for launch by 2031.
Continue reading “MAUVE: An Ultraviolet Astrophysics Probe Mission Concept”The Hubble and FU Orionis: a New Look at an Old Mystery
In 1936 astronomers watched as FU Orionis, a dim star in the Orion constellation, brightened dramatically. The star’s brightness increased by a factor of 100 in a matter of months. When it peaked, it was 100 times more luminous than our Sun.
Astronomers had never observed a young star brightening like this.
Continue reading “The Hubble and FU Orionis: a New Look at an Old Mystery”James Webb Confirms Hubble’s Calculation of Hubble’s Constant
We have been spoiled over recent years with first the Hubble Space Telescope (HST) and then the James Webb Space Telescope (JWST.) Both have opened our eyes on the Universe and made amazing discoveries. One subject that has received attention from both is the derivation of the Hubble Constant – a constant relating the velocity of remote galaxies and their distances. A recent paper announces that JWST has just validated the results of previous studies by the Hubble Space Telescope to accurately measure its value.
Continue reading “James Webb Confirms Hubble’s Calculation of Hubble’s Constant”Hubble and Webb are the Dream Team. Don't Break Them Up
Many people think of the James Webb Space Telescope as a sort of Hubble 2. They understand that the Hubble Space Telescope (HST) has served us well but is now old, and overdue for replacement. NASA seems to agree, as they have not sent a maintenance mission in over fifteen years, and are already preparing to wind down operations. But a recent paper argues that this is a mistake. Despite its age, HST still performs extremely well and continues to produce an avalanche of valuable scientific results. And given that JWST was never designed as a replacement for HST — it is an infrared (IR) telescope) — we would best be served by operating both telescopes in tandem, to maximize coverage of all observations.
Continue reading “Hubble and Webb are the Dream Team. Don't Break Them Up”The Webb Discovers a Rich Population of Brown Dwarfs Outside the Milky Way
This stunning image of a star cluster in the Small Magellanic Cloud (SMC) is more than just a pretty picture. It’s part of a scientific effort to understand star formation in an environment different from ours. The young star cluster is called NGC 602, and it’s very young, only about 2 or 3 million years old.
Continue reading “The Webb Discovers a Rich Population of Brown Dwarfs Outside the Milky Way”Jupiter’s Great Red Spot Jiggles
Jupiter is well known for its Great Red Spot, a feature that was discovered by Galileo over 400 years ago! Astronomers have been tracking the size and shape of it for over a century but the most accurate measurements have come from the Hubble Space Telescope. Every time Earth and Jupiter are at their closest, Hubble takes a series of images and it’s these images that have detected that the spot jiggles from day to day. Not only does it change size but length and width too leaving astronomers baffled.
Continue reading “Jupiter’s Great Red Spot Jiggles”Hubble and New Horizons Look at Uranus at the Same Time
Ever since the advent of space exploration we have seen some amazing images of the planets. New technology often brings with it a new perspective and we have been reminded of this again just recently with images from the Hubble Space Telescope (HST) and New Horizons spacecraft. The two objects simultaneously imaged Uranus from different perspectives in an attempt to predict what astronomers would see when they look at exoplanets orbiting other stars.
Continue reading “Hubble and New Horizons Look at Uranus at the Same Time”