An Epic Collaboration Between Hubble and JWST

This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from the NASA/ESA/CSA James Webb Space Telescope with visible-light data from the NASA/ESA Hubble Space Telescope. Credit: NASA/ESA/CSA/STScI

In 2012, as part of the MAssive Cluster Survey (MACS), the Hubble Space Telescope (HST) discovered a pair of colliding galaxy clusters (MACS0416) that will eventually combine to form an even bigger cluster. Located about 4.3 billion light-years from Earth, the MACS0416 cluster contains multiple gravitational lenses that allow astronomers to look back in time and view galaxies as they appeared when the Universe was young. In a new collaboration that symbolizes the passing of the torch, the venerable Hubble and the James Webb Space Telescope (JWST) teamed up to conduct an extremely detailed study of MACS0416.

Continue reading “An Epic Collaboration Between Hubble and JWST”

Juno Spots Salts and Organic Molecules on Ganymede’s Surface

Enhanced image of Ganymede taken by the JunoCam during the mission's flyby on June 7th, 2021. Credit: NASA/JPL-Caltech/SwRI/MSSS/Kalleheikki Kannisto

NASA’s Juno mission continues to orbit Jupiter, gathering data on its atmosphere, composition, gravitational field, magnetic field, and radiation environment. This data is helping scientists to learn more about the planet’s formation, internal structure, mass distribution, and what is driving its powerful winds. Periodically, the spacecraft also performs flybys of Jupiter’s largest satellites (the Galilean Moons), acquiring stunning images and vital data on their surfaces. These include optical and thermal images of Io’s many active volcanoes, Europa’s icy terrain, and infrared images of Ganymede.

During its last flyby of Ganymede (June 7th, 2021), Juno collected infrared images and spectra on the moon’s surface using its Jovian InfraRed Auroral Mapper (JIRAM) instrument. According to a recent study by an international team of researchers, this data revealed the presence of salt minerals and organic molecules on the icy moon’s surface. The findings could help scientists better understand the origin of Ganymede, the composition of its interior ocean, and the way material is exchanged between the surface and interior. In short, it could help scientists determine if life exists deep inside Ganymede’s ocean.

Continue reading “Juno Spots Salts and Organic Molecules on Ganymede’s Surface”

Feast Your Eyes on this Star-Forming Region, Thanks to the JWST

The JWST cast its infrared gaze at NGC 346, a young open cluster in the Small Magellanic Cloud. It's the largest and brightest star forming region in the SMC. Image Credit: ESA/CSA/NASA N. Habel (JPL), P. Kavanagh (Maynooth University)

Nature is stingy with its secrets. That’s why humans developed the scientific method. Without it, we’d still be ignorant and living in a world dominated by superstitions.

Astrophysicists have made great progress in understanding how stars form, thanks to the scientific method. But there’s a lot they still don’t know. That’s one of the reasons NASA built the James Webb Space Telescope: to coerce Nature into surrendering its deeply-held secrets.

Continue reading “Feast Your Eyes on this Star-Forming Region, Thanks to the JWST”

Hubble Sees a Mysterious Flash in Between Galaxies

Artist’s concept of one of brightest explosions ever seen in space: a Luminous Fast Blue Optical Transient (LFBOT). Credit: NASA

While the night sky may appear tranquil (and incredibly beautiful), the cosmos is filled with constant stellar explosions and collisions. Among the rarest of these transient events are what is known as Luminous Fast Blue Optical (LFBOTs), which shine intensely bright in blue light and fade after a few days. These transient events are only detectable by telescopes that continually monitor the sky. Using the venerable Hubble Space Telescope, an international team of astronomers recently observed an LFBOT far between two galaxies, the last place they expected to see one.

Continue reading “Hubble Sees a Mysterious Flash in Between Galaxies”

Planning is Underway for NASA’s Next Big Flagship Space Telescope

Artist rendition of a starshade being used on a future space telescope. This example shows the proposed Habitable Exoplanet Observatory (HabEx), which the 2020 Astrophysics Decadal Survey decided to combine elements of this with the Large Ultraviolet Optical Infrared Surveyor (LUVOIR) for a new flagship telescope, which is now known as the Habitable Worlds Observatory (HWO). (Credit: NASA)

NASA’s James Webb Space Telescope (JWST) has only been operational for just over a year, but this isn’t stopping the world’s biggest space agency from discussing the next big space telescope that could serve as JWST’s successor sometime in the future. Enter the Habitable Worlds Observatory (HWO), which was first proposed as NASA’s next flagship Astrophysics mission during the National Academy of Sciences’ Decadal Survey on Astronomy and Astrophysics 2020 (Astro2020). While its potential technological capabilities include studying exoplanets, stars, galaxies, and a myriad of other celestial objects for life beyond Earth, there’s a long way to go before HWO will be wowing both scientists and the public with breathtaking images and new datasets.

Continue reading “Planning is Underway for NASA’s Next Big Flagship Space Telescope”

The Hubble Imaged Some Globular Clusters in an Unusual Place: Near the Milky Way’s Centre

Most globular clusters are found in the Milky Way's halo. But some, like the glittering globular cluster Terzan 12, are near the galactic centre. Image Credit: ESA/Hubble & NASA, R. Cohen (Rutgers University)

Our galaxy has about 200 Globular Clusters (GCs,) and most of them are in the galaxy’s halo. Astronomers think most GCs were taken from dwarf galaxies and merged with the Milky Way due to the galaxy’s powerful gravity. That explains why so many of them are on the outskirts of the galaxy. But they’re not all in the halo. Some are towards the Milky Way’s galactic bulge. What are globular clusters doing there?

Continue reading “The Hubble Imaged Some Globular Clusters in an Unusual Place: Near the Milky Way’s Centre”

Exploring Io’s Volcanic Activity via Hubble and Webb Telescopes

Concept image of the various features within Jupiter’s surrounding environment that this new science campaign will examine, including its massive magnetic field, along with Io’s neutral clouds and plasma torus. (Credit: Southwest Research Institute/John Spencer)

The two most powerful space telescopes ever built, NASA’s James Webb Space Telescope (JWST) and Hubble Space Telescope, are about to gather data about the most volcanically body in the entire solar system, Jupiter’s first Galilean Moon, Io. This data will be used in combination with upcoming flybys of Io by NASA’s Juno spacecraft, which is currently surveying the Jupiter system and is slated to conduct these flybys later this year and early 2024. The purpose of examining this small, volcanic moon with these two powerful telescopes and one orbiting spacecraft is for scientists to gain a better understanding of how Io’s escaping atmosphere interacts with Jupiter’s surrounding magnetic and plasma environment.

Continue reading “Exploring Io’s Volcanic Activity via Hubble and Webb Telescopes”

JWST Plucks One Single Star out of a Galaxy Seen 12.5 Billion Years Ago

The massive gravity of galaxy cluster MACS0647 acts as a cosmic lens to bend and magnify light from the more distant MACS0647-JD system. Credit: NASA/ESA/CSA/STScI

After years of build-up and anticipation, the James Webb Space Telescope finally launched into orbit on December 25th, 2021 (what a Christmas present, huh?). Since then, the stunning images and data it has returned have proven beyond a doubt that it was the best Christmas present ever! After its first year of operations, the JWST has lived up to one of its primary objectives: to observe the first stars and galaxies that populated the Universe. The next-generation observatory has accomplished that by setting new distance records and revealing galaxies that existed less than 1 billion years after the Big Bang!

These studies are essential to charting the evolution of the cosmos and resolving issues with our cosmological models, like the Hubble Tension and the mysteries of Dark Matter and Dark Energy. Well, hang onto your hats because things have reached a new level of awesome! In a recent study, an international team of scientists isolated a well-magnified star candidate in a galaxy that appears as it was almost 12.5 billion years ago. The detection of a star that existed when the Universe was only ~1.2 billion years old showcases the abilities of the JWST and offers a preview of what’s to come!

Continue reading “JWST Plucks One Single Star out of a Galaxy Seen 12.5 Billion Years Ago”

Neptune's Cloud Cover is Linked to the Solar Cycle

This sequence of Hubble Space Telescope images chronicles the waxing and waning of the amount of cloud cover on Neptune. Credits: NASA, ESA, Erandi Chavez (UC Berkeley), Imke de Pater (UC Berkeley)

Whenever Neptune reaches its closest point in the sky to Earth, its portrait is taken by the Hubble Space Telescope and other ground-based observatories. Watching the planet from 1994 to 2020, astronomers have made puzzling discovery.

The clouds in Neptune’s atmosphere appear to be to be linked to the solar cycle and not the planet’s cycle of seasons. The global cloud cover seems to come and go in a cycle that apparently syncs up with the Sun’s 11-year cycle, as it shifts from solar maximum to solar minimum or vice versa. This is surprising since Neptune is so far from the Sun and receives about 0.1% of Earth’s sunlight.

Continue reading “Neptune's Cloud Cover is Linked to the Solar Cycle”

DART Impact Ejected 37 Giant Boulders from Asteroid Dimorphos’ Surface

This NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos was taken on 19 December 2022, nearly four months after the asteroid was impacted by NASA’s DART (Double Asteroid Redirection Test) mission. Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision. These are among the faintest objects Hubble has ever photographed inside the Solar System. Credit: NASA, ESA, D. Jewitt (UCLA).

When the DART (Double Asteroid Redirection Test) spacecraft intentionally slammed into asteroid moonlet Dimorphos on September 26, 2022, telescopes around the world and those in space watched as it happened, and continued to monitor the aftermath.

Of course, the Hubble Space Telescope was focused on the event. In looking at Hubble’s images and data from post-impact, astronomers discovered 37 boulders that were ejected due to the impact. These boulders range in size from 1 meter (3 feet) to 6.7 meters (22 feet).

However, these boulders were not debris created by the spacecraft’s impact. Instead, they were boulders that were already on the surface of Dimorphos, and the impact event “shook” the boulders loose. A team of astronomers, led by David Jewitt and Yoonyoung Kim say in their paper detailing the findings that these boulders are some of the faintest objects ever imaged in the Solar System, only visible because of Hubble’s keen sensitivity. The images here showing the boulders surrounding Dimorphos were taken on December 19, 2022.

Continue reading “DART Impact Ejected 37 Giant Boulders from Asteroid Dimorphos’ Surface”