A Black Hole Switched On in the Blink of an Eye

This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. This thin disc of rotating material consists of the leftovers of a Sun-like star which was ripped apart by the tidal forces of the black hole. Shocks in the colliding debris as well as heat generated in accretion led to a burst of light, resembling a supernova explosion. Credit: ESO, ESA/Hubble, M. Kornmesser

In 2019, a team of astronomers led by Dr. Samantha Oates of the University of Birmingham discovered one of the most powerful transients ever seen – where astronomical objects change their brightness over a short period. Oates and her colleagues found this object, known as J221951-484240 (or J221951), using the Ultra-Violet and Optical Telescope (UVOT) on NASA’s Neil Gehrels Swift Observatory while searching for the source of a gravitational wave (GW) that was thought to be caused by two massive objects merging in our galaxy.

Multiple follow-up observations were made using the UVOT and Swift’s other instruments – the Burst Alert Telescope (BAT) and X-Ray Telescope (XRT), the Hubble Space Telescope, the South African Large Telescope (SALT), the Wide-field Infrared Survey Explorer (WISE), the ESO’s Very Large Telescope (VLT), the Australia Telescope Compact Array (ATCA), and more. The combined observations and spectra revealed that the source was a supermassive black hole (SMBH) in a distant galaxy that mysteriously “switched on,” becoming one of the most dramatic bursts of brightness ever seen with a black hole.

Continue reading “A Black Hole Switched On in the Blink of an Eye”

Hubble Sees Two Quasars Side by Side in the Early Universe

When it comes to the brightest, most powerful objects in the Universe, not much can beat a Quasar. A Gamma Ray Burst from a supernova might be more energetic, but doesn’t last very long. Quasars, by comparison, can churn out 1000 times the radiation of the Milky Way, and keep doing it for hundreds of millions of years.

They get all this energy from the supermassive black holes that live at the center of galaxies. As material falls towards the black hole, an accretion disk forms around it: a swirling cloud of energetic material which heats up through friction and releases electromagnetic radiation. The resulting Quasar can be so bright it drowns out the light from the rest of its galaxy from our perspective.

On April 5th, researchers announced the discovery of a rare double quasar in the early Universe. The two quasars are gravitationally bound, spiraling in towards each other. Their host galaxies are in the process of merging, and the supermassive black holes generating the quasars will also eventually collide and merge.

Continue reading “Hubble Sees Two Quasars Side by Side in the Early Universe”

A new Hubble Image Reveals a Shredded Star in a Nearby Galaxy

The latest composite image of supernova remnant DEM L 190, released in November 2022. Credit: ESA/Hubble & NASA, S. Kulkarni, Y. Chu

The Hubble Space Telescope, to which we owe our current estimates for the age of the universe and the first detection of organic matter on an exoplanet, is very much doing science and still alive. It’s latest masterpiece remixes an old hit – apparently a growing trend in space science as well as space music.

Continue reading “A new Hubble Image Reveals a Shredded Star in a Nearby Galaxy”

By Looking Back Through Hubble Data, Astronomers Have Identified six Massive Stars Before They Exploded as Core-Collapse Supernovae

Hubble Space Telescope
NASA's Hubble Space Telescope flies with Earth in the background after a 2002 servicing mission. Credit: NASA.

The venerable Hubble Space Telescope has given us so much during the history of its service (32 years, 7 months, 6 days, and counting!) Even after all these years, the versatile and sophisticated observatory is still pulling its weight alongside more recent addition, like the James Webb Space Telescope (JWST) and other members of NASA’s Great Observatories family. In addition to how it is still conducting observation campaigns, astronomers and astrophysicists are combing through the volumes of data Hubble accumulated over the years to find even more hidden gems.

A team led by Caltech’s recently made some very interesting finds in the Hubble archives, where they observed the sites of six supernovae to learn more about their progenitor stars. Their observations were part of the Hubble Space Telescope Snapshot program, where astronomers use HST images to chart the life cycle and evolution of stars, galaxies, and other celestial objects. From this, they were able to place constraints on the size, mass, and other key characteristics of the progenitor stars and what they experienced before experiencing core collapse.

Continue reading “By Looking Back Through Hubble Data, Astronomers Have Identified six Massive Stars Before They Exploded as Core-Collapse Supernovae”

Hubble saw Multiple Light Echoes Reflecting off Rings of Dust From a Supernova Explosion

Artist view of a supernova explosion. Credit: NASA

When stars reach the end of their life cycle, they experience gravitational collapse at their centers and explode in a fiery burst (a supernova). This causes them to shed their outer layers and sends an intense burst of light and high-energy short-wavelength radiation (like X-rays and gamma-rays) out in all directions. This process also creates cosmic rays, which consist of protons and atomic nuclei that are accelerated to close to the speed of light. And on rare occasions, supernovae can also create “light echoes,” rings of light that spread out from the site of the original explosion.

These echoes will appear months to years after the supernova occurs as light from the explosion interacts with the layers of dust in the vicinity. Using the Hubble Space Telescope (HST), an international team of astronomers was able to document the emergence and evolution of multiple light echoes (LEs). The team traced these echoes to a stripped-envelope supernova (SN 2016adj) located in the central dust lane of Centaurus A, a galaxy located 10 to 16 million light-years away in the constellation of Centaurus.

Continue reading “Hubble saw Multiple Light Echoes Reflecting off Rings of Dust From a Supernova Explosion”

Hubble Checks the Weather on Hot Jupiters. Forecast: 100% Chance of Hellish Conditions

While the Hubble Space Telescope celebrates 32 years in orbit, like a fine wine, it has only gotten better with age as it continues to study the Universe and teach us more about our place in the cosmos. Hubble doesn’t just take breathtaking images of our Universe, but it also studies our own solar system, galaxies, and exoplanets, as well. It is this last subject where Hubble has recently been hard at work, though.

Continue reading “Hubble Checks the Weather on Hot Jupiters. Forecast: 100% Chance of Hellish Conditions”

Hubble Has Been Watching This Planet Form for 13 Years

Researchers were able to directly image newly forming exoplanet AB Aurigae b over a 13-year span using Hubble’s Space Telescope Imaging Spectrograph (STIS) and its Near Infrared Camera and Multi-Object Spectrograph (NICMOS). In the top right, Hubble’s NICMOS image captured in 2007 shows AB Aurigae b in a due south position compared to its host star, which is covered by the instrument’s coronagraph. The image captured in 2021 by STIS shows the protoplanet has moved in a counterclockwise motion over time. Credits: Science: NASA, ESA, Thayne Currie (Subaru Telescope, Eureka Scientific Inc.); Image Processing: Thayne Currie (Subaru Telescope, Eureka Scientific Inc.), Alyssa Pagan (STScI)

Hubble’s most remarkable feature might be its longevity. The Hubble has been operating for almost 32 years and has fed us a consistent diet of science—and eye candy—during that time. For 13 of its 32 years, it’s been checking in on a protoplanet forming in a young solar system about 530 light-years away.

Planet formation is always a messy process. But in this case, the planet’s formation is an “intense and violent process,” according to the authors of a new study.

Continue reading “Hubble Has Been Watching This Planet Form for 13 Years”

NASA’s Roman Mission Might Tell Us if the Universe Will Tear Itself Apart in the Future

The concept of accelerating expansion does get you wondering just how much it can accelerate. Theorists think there still might be a chance of a big crunch, a steady-as-she-goes expansion or a big rip. Or maybe just a little rip?

NASA’s Nancy Gracy Roman Space Telescope won’t launch until 2027, and it won’t start operating until some time after that. But that isn’t stopping excited scientists from dreaming about their new toy and all it will do. Who can blame them?

A new study examines the Roman Space Telescope’s power in detail to see if it can help us answer one of our most significant questions about the Universe. The question?

Will the Universe keep expanding and tear itself apart in a Big Rip?

Continue reading “NASA’s Roman Mission Might Tell Us if the Universe Will Tear Itself Apart in the Future”

Hubble is Fully Operational Once Again

The Hubble Space Telescope hovers at the boundary of Earth and space in this picture, taken after Hubble's second servicing mission in 1997.

In the history of space exploration, a handful of missions have set new records for ruggedness and longevity. On Mars, the undisputed champion is the Opportunity rover, which was slated to run for 90 days but remained in operation for 15 years instead! In orbit around Mars, that honor goes to the 2001 Mars Odyssey, which is still operational 20 years after it arrived around the Red Planet.

In deep space, the title for the longest-running mission goes to the Voyager 1 probe, which has spent the past 44 years exploring the Solar System and what lies beyond. But in Earth orbit, the longevity prize goes to the Hubble Space Telescope (HST), which is once again fully operational after experiencing technical issues. With this latest restoration of operations, Hubble is well on its way to completing 32 years of service.

Continue reading “Hubble is Fully Operational Once Again”

Messier 95 – the NGC 3351 Barred Spiral Galaxy

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the barred spiral galaxy known as Messier 95!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects” while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is Messier 95 (aka. NGC 3351), a barred spiral galaxy located about 33 million light-years away. Measuring over 80,000 light-years, or 24.58 kiloparsecs (kpc) in diameter, this galaxy is one of several that fall into the M96 Group, located in the constellation Leo. This Group consists of between 8 and 24 galaxies in total and three Messier Objects: M95, M96, and M105.

Continue reading “Messier 95 – the NGC 3351 Barred Spiral Galaxy”