Ceres Bright Spots Sharpen But Questions Remain

Latest image released by NASA of the spatter of white spots in the 57-mile-wide crater on the dwarf planet Ceres. Scientists with the Dawn mission believe they're highly reflective material, likely ice. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The latest views of Ceres’ enigmatic white spots are sharper and clearer, but it’s obvious that Dawn will have to descend much lower before we’ll see crucial details hidden in this overexposed splatter of white dots. Still, there are hints of interesting things going on here.

Comparison of the most recent photos of the white spots taken Dawn's current 4,500 miles vs. 8,400 miles on May 3. Credit:
Comparison of the most recent photos of the white spots taken Dawn’s current 4,500 miles vs. 8,400 miles on May 4. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The latest photo is part of a sequence of images shot for navigation purposes on May 16, when the spacecraft orbited 4,500 miles (7,200 km) over the dwarf planet. Of special interest are a series of troughs or cracks in Ceres crust that appear on either side of the crater housing the spots.

While the exact nature of the spots continues to baffle scientists, Christopher Russell, principal investigator for the Dawn mission, has narrowed the possibilities: “Dawn scientists can now conclude that the intense brightness of these spots is due to the reflection of sunlight by highly reflective material on the surface, possibly ice.”

Two views of an impact exposing water ice on Mars. The bright material conspicuous in this image was excavated from below the surface and deposited nearby by a 2008 impact that dug a crater about 8 meters (26 feet) in diameter. The extent of the bright patch was large enough for the Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA's Mars Reconnaissance Orbiter, to obtain information confirming the material to be water ice. Credit: NASA/JPL-Caltech/University of Arizona
The bright material in both photos was excavated from below the surface and deposited nearby by a 2008 impact that dug a crater about 26 feet (8 meters) in diameter. The extent of the bright patch was large enough for the Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA’s Mars Reconnaissance Orbiter, to obtain information confirming it as water ice. Credit: NASA/JPL-Caltech/University of Arizona

We’ve seen ice exposed by meteorite / asteroid impact before on Mars where recent impacts have exposed fresh ice below the surface long hidden by dust. In most cases the ice gradually sublimates away or covered by dust over time. But if Ceres’ white spots are ice, then we can reasonably assume they must be relatively new features otherwise they would have vaporized or sublimated into space like the Martian variety.

NASA's Hubble Space Telescope took these images of the asteroid 1 Ceres over a 2-hour and 20-minute span, the time it takes the Texas-sized object to complete one quarter of a rotation.
NASA’s Hubble Space Telescope took these images of the asteroid 1 Ceres over a 2-hour and 20-minute span, the time it takes the Texas-sized object to complete one quarter of a rotation. The observations were made in visible and in ultraviolet light. Hubble took the snapshots between December 2003 and January 2004. Credit: NASA, ESA, J. Parker, P. Thomas and L. McFadden

Much has been written – including here – that these spots are the same as those photographed in much lower resolution by the Hubble Space Telescope in 2004. But according the Phil Plait, who writes the Bad Astronomy blog, that’s false. He spoke to Joe Parker, who was part of the team that made the 2004 photos, and Parker says the Dawn spots and Hubble spots are not the same.

Could the spots have formed post-2004 or were they simply too small for Hubble to resolve them? That seems unlikely. The chances are slim we’d just happen to be there shortly after such a rare event occurred? And what happened to Hubble’s spot – did it sublimate away?


Video compiled from Dawn’s still frames of Ceres by Tom Ruen. Watch as the spots continue to reflect light even at local sunset.

Watching the still images of Ceres during rotation, it’s clear that sunlight still reflects from the spots when the crater fills with shadow at sunset and sunrise. This implies they’re elevated, and as far as I can tell from the sunrise photo (see below), the brightest spots appear to shine from along the the side of  a hill or mountain. Could we be seeing relatively fresh ice or salts after recent landslides related to impact or tectonic forces exposed them to view?

 The crater with white spots shortly after sunrise. The bright spots appear to be on a central mountain. It's unclear if the pair of spots below the bright pair are situated on a rise or the flat floor. Credit: NASA
Single from from the video shows the white spots shortly after sunrise. The brightest appear to be located on a central mountain peak.  It’s unclear if the pair of spots below the bright pair are situated on a rise or the flat floor. Credit: NASA

Let’s visit another place in the Solar System with an enigmatic white spot, or should I say, white arc. It’s Wunda Crater on Uranus’ crater-blasted moon Umbriel. The 131-mile-wide crater, situated on the moon’s equator, is named for Wunda, a dark spirit in Aboriginal mythology. But on its floor is a bright feature about 6 miles (10 km) wide. We still don’t know what that one is either!

The moon Umbriel,  727 miles in diameter, with Wunda Crater and its bright internal ring of unknown origin. The moon's equator is vertical in this photo. Credit: NASA
The moon Umbriel, 727 miles in diameter, with Wunda Crater and its bright internal ring of unknown origin. The moon’s equator is vertical in this photo. Credit: NASA

Andromeda and Milky Way Might Collide Sooner Than We Think

Andromeda's halo is gargantuan. Extending millions of light years, if we could see in our night sky it would be 100 times the diameter of the Moon or 50 degrees across! Credit: NASA

The merger of the Milky Way and Andromeda galaxy won’t happen for another 4 billion years, but the recent discovery of a massive halo of hot gas around Andromeda may mean our galaxies are already touching. University of Notre Dame astrophysicist Nicholas Lehner led a team of scientists using the Hubble Space Telescope to identify an enormous halo of hot, ionized gas at least 2 million light years in diameter surrounding the galaxy.

The Andromeda Galaxy is the largest member of a ragtag collection of some 54 galaxies, including the Milky Way, called the Local Group. With a trillion stars — twice as many as the Milky Way — it shines 25% brighter and can easily be seen with the naked eye from suburban and rural skies.

Quasars are distant, brilliant sources of light, believed to occur when a massive black hole in the center of a galaxy feeds on gas and stars. As the black hole consumes the material, it emits intense radiation, which is then detected as a quasar. These photos, taken by Hubble, show them as brilliant "stars" in the cores of six different galaxies. Credit: NASA/ESA
Six examples of quasars photographed with the Hubble. Quasars are distant, brilliant sources of light, believed to occur when a massive black hole in the center of a galaxy feeds on gas and stars. As the black hole consumes the material, it emits intense radiation, which is then detected as a quasar. Lehner and team measured Andromeda’s halo by studying how its gas affected the light from 18 different quasars.  Credit: NASA/ESA

Think about this for a moment. If the halo extends at least a million light years in our direction, our two galaxies are MUCH closer to touching that previously thought. Granted, we’re only talking halo interactions at first, but the two may be mingling molecules even now if our galaxy is similarly cocooned.

Lehner describes halos as the “gaseous atmospheres of galaxies”.  Despite its enormous size, Andromeda’s nimbus is virtually invisible. To find and study the halo, the team sought out quasars, distant star-like objects that radiate tremendous amounts of energy as matter funnels into the supermassive black holes in their cores. The brightest quasar, 3C273 in Virgo, can be seen in a 6-inch telescope! Their brilliant, pinpoint nature make them perfect probes.

To detect Andromeda's halo, Lehner and team studied how the light of 18 quasars (five shown here) was absorbed by the galaxy's gas. Credit: NASA
To detect Andromeda’s halo, Lehner and team studied how the light of 18 quasars (five shown here) was absorbed by the galaxy’s gas. Credit: NASA

“As the light from the quasars travels toward Hubble, the halo’s gas will absorb some of that light and make the quasar appear a little darker in just a very small wavelength range,” said J. Christopher Howk , associate professor of physics at Notre Dame and co-investigator. “By measuring the dip in brightness, we can tell how much halo gas from M31 there is between us and that quasar.”

Astronomers have observed halos around 44 other galaxies but never one as massive as Andromeda where so many quasars are available to clearly define its extent. The previous 44 were all extremely distant galaxies, with only a single quasar or data point to determine halo size and structure.

Andromeda’s close and huge with lots of quasars peppering its periphery. The team drew from about five years’ worth of observations of archived Hubble data to find many of the 18 objects needed for a good sample.

This illustration shows a stage in the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy, as it will unfold over the next several billion years. In this image, representing Earth's night sky in 3.75 billion years, Andromeda (left) fills the field of view and begins to distort the Milky Way with tidal pull. (Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger)
This illustration shows a stage in the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy, as it will unfold over the next several billion years. In this image, representing Earth’s night sky in 3.75 billion years, Andromeda (left) fills the field of view and begins to distort the Milky Way with tidal pull. Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger

The halo is estimated to contain half the mass of the stars in the Andromeda galaxy itself, in the form of a hot, diffuse gas. Simulations suggest that it formed at the same time as the rest of the galaxy. Although mostly composed of ionized hydrogen — naked protons and electrons —  Andromeda’s aura is also rich in heavier elements, probably supplied by supernovae. They erupt within the visible galaxy and violently blow good stuff like iron, silicon, oxygen and other familiar elements far into space. Over Andromeda’s lifetime, nearly half of all the heavy elements made by its stars have been expelled far beyond the galaxy’s 200,000-light-year-diameter stellar disk.

You might wonder if galactic halos might account for some or much of the still-mysterious dark matter. Probably not. While dark matter still makes up the bulk of the solid material in the universe, astronomers have been trying to account for the lack of visible matter in galaxies as well. Halos now seem a likely contributor.

The next clear night you look up to spy Andromeda, know this: It’s closer than you think!

For more on the topic, here are links to Lehner’s paper in the Astrophysical Journal and the Hubble release.

Am I Being Watched From Space?

Am I Being Watched From Space?

Look up, way up. It’s entirely possible that you’re looking right at a satellite, which is watching you right back. What kind of Earth Observation technology is possible?

Feel like somebody’s watching you? Well buckle up Rockwell, because somebody totally is. From space, definitely. And by the spiders. Oh, how the spiders love to watch. Right now, there are hundreds of satellites directing their creepy magic eyes and space nostrils towards the Earth.

Watching every… move… you make? Well, not your every move. Probably not any of your moves. At least not enough to warrant bringing in Thriller Pepsi-hair-on-fire Michael Jackson for backing vocals.

There’s a flock of Earth Observation satellites orbiting the planet right now. NASA alone has more than a dozen satellites in its imaginatively titled Earth Observing System program. Some image the land while others measure the atmosphere, oceans, ice, even the planet’s gravity and magnetosphere.

There’s also Landsat satellites. The first launched in 1972 to begin photographing Earth for SCIENCE. Many of the most famous images of Earth were taken by this program, and the missions are still going.

Landsat 8 launched in 2013, and preliminary plans are being made for Landsat 9. Landsat 8 images the entire planet every 16 days. They can’t see what you put in your coffee, at a 15-meter resolution.

NASA isn’t watching you right now, but they are pouring over photos from the last 16 days. Really, they’re dwelling on you from the past. They keep meaning to send you flowers and tell you you’re really pretty, but first they’ve got to get up the courage to dig through your garbage and spend a whole day waiting in their car outside your favorite restaurant.

Want to see what they’re tracking exactly and what secrets they’ve uncovered? Go to this url here – and you can browse the image archives in almost real time from the Landsat satellites. You can see all kinds of government and personal secrets like the seasons changes from Spring to Summer, or possibly a time that lake froze over.

You’re probably wondering about the higher resolution images, like the ones you’ve been looking at on Google Maps. Most likely you’ve been duped. The crazy high resolution images you see of cities are actually photographs taken from airplanes flying a few hundred meters up.

Satellite view of the White House. Image credit: Google Maps
Satellite view of the White House. Image credit: Google Maps

If you can see an airplane or black helicopters flying around you suspiciously, you might be under surveillance. Otherwise, you’re probably safe.

Ah, who am I kidding. We’ve all watched John Oliver. The least of our concerns is cameras. Nobody should be even thinking about a tiny little fly robot that attaches itself to your nosehairs.

What we were talking about? Oh right! How about images from space? The best commercially available satellite images have a resolution of 41 cm. That’s about… this big.

Your tinfoil hat, seen from above only takes up a single pixel. Rest comfortably, as this isn’t a technological problem, it’s actually a legal issue. That’s the highest resolution satellites were allowed to provide.

That’s right, I said “were”. A revision to the law allows the next generation of satellites, such as the recently launched Worldview-3 satellite, to get down to 31 cm – as small as 25 will be permitted.

As the press officer of Digital Globe noted, they’ll be able to tell if your vehicle is a car, truck or SUV. That’s all fine and dandy, but will they call me when I can’t remember where I parked?

Of course, we have no idea what resolution the most powerful satellites are, because they’re super double secret unimaginably classified. We don’t know how many there are, and what they’re capable of, but they’re launched aboard some of the most powerful rockets available in the US, like the Atlas 4.

A defense satellite quietly going about its business in low Earth  (credit: US Air Force)
A defense satellite quietly going about its business in low Earth (credit: US Air Force)

What do they look like? Let’s go with the Hubble Space Telescope, pointing down. What kind of resolution do they have? Nobody knows. You can google “Hubble pointed at earth” and read up on all the messy complications with resolution and speed.

The rumor mill seems to think that it’s around 15 cm, significantly better than the commercially available options. Not enough count sugar spoonfuls, but it could target you in your tinfoil hat with ordinance.

Are you being watched from space? Probably. There are several satellites overhead right now, and other satellites capturing low resolution images of your region every few days.

The most powerful satellites are classified military reconnaissance spacecraft, and we have no idea what they’re capable of.

Holy Snowden, that does sound creepy in realm of “stop reading snapchats over my shoulder, heavy breather.”

What configuration of tinfoil hat do you like best to protect your thoughts from orbital mind control lasers?

Weekly Space Hangout – April 17, 2015: Amy Shira Teitel and “Breaking the Chains of Gravity”

Host: Fraser Cain (@fcain)
Special Guest: Amy Shira Teitel (@astVintageSpace) discussing space history and her new book Breaking the Chains of Gravity
Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )

This Week’s Stories:
Falcon 9 launch and (almost!) landing
NASA Invites ESA to Build Europa Piggyback Probe
Bouncing Philae Reveals Comet is Not Magnetised
Astronomers Watch Starbirth in Real Time
SpaceX Conducts Tanking Test on In-Flight Abort Falcon 9
Rosetta Team Completely Rethinking Comet Close Encounter Strategy
Apollo 13 Custom LEGO Minifigures Mark Mission’s 45th Anniversary
LEGO Launching Awesome Spaceport Shuttle Sets in August
New Horizons Closes in on Pluto
Work Platform to be Installed in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida.
Watching the Sunsets of Mars Through Robot Eyes: Photos
NASA Invites ESA to Build Europa Piggyback Probe
ULA Plans to Introduce New Rocket One Piece at a Time
Two Mysterious Bright Spots on Dwarf Planet Ceres Are Not Alike
18 Image Montage Show Off Comet 67/P Activity
ULA’s Next Rocket To Be Named Vulcan
NASA Posts Huge Library of Space Sounds And You’re Free to Use Them
Explaining the Great 2011 Saturn Storm
Liquid Salt Water May Exist on Mars
Color Map Suggests a Once-Active Ceres
Diverse Destinations Considered for New Interplanetary Probe
Paul Allen Asserts Rights to “Vulcan” Trademark, Challenging Name of New Rocket
First New Horizons Color Picture of Pluto and Charon
NASA’s Spitzer Spots Planet Deep Within Our Galaxy
Icy Tendrils Reaching into Saturn Ring Traced to Their Source
First Signs of Self-Interacting Dark Matter?
Anomaly Delays Launch of THOR 7 and SICRAL 2
Nearby Exoplanet’s Hellish Atmosphere Measured
The Universe Isn’t Accelerating As Fast As We Thought
Glitter Cloud May Serve As Space Mirror
Cassini Spots the Sombrero Galaxy from Saturn
EM-1 Orion Crew Module Set for First Weld Milestone in May
Special Delivery: NASA Marshall Receives 3D-Printed Tools from Space
The Roomba for Lawns is Really Pissing Off Astronomers
Giant Galaxies Die from the Inside Out
ALMA Reveals Intense Magnetic Field Close to Supermassive Black Hole
Dawn Glimpses Ceres’ North Pole
Lapcat A2 Concept Sup-Orbital Spaceplane SABRE Engine Passed Feasibility Test by USAF Research Lab
50 Years Since the First Full Saturn V Test Fire
ULA CEO Outlines BE-4 Engine Reuse Economic Case
Certification Process Begins for Vulcan to Carry Military Payloads
Major Advance in Artificial Photosynthesis Poses Win/Win for the Environment
45th Anniversary [TODAY] of Apollo 13’s Safe Return to Earth
Hubble’s Having A Party in Washington Next Week (25th Anniversary of Hubble)

Don’t forget, the Cosmoquest Hangoutathon is coming soon!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+, and suggest your ideas for stories we can discuss each week!

Nobody Knows What These Mysterious Plumes are on Mars

In the Journal Nature, astronomers deliver an exhaustive study of limited albeit high quality ground-based observations of Mars and come up short. A Martian mystery remains. What caused the extremely high-altitude plumes on Mars? (Credit: Nature, Sánchez-Lavega, A. et al. Feb 16, 2015, Figures 1a, 2)

In March 2012, amateur astronomers began observing unusual clouds or plumes along the western limb of the red planet Mars. The plumes, in the southern hemisphere rose to over 200 kilometers altitude persisting for several days and then reappeared weeks later.

So a group of astronomers from Spain, the Netherlands, France, UK and USA have now reported their analysis of the phenomena. Their conclusions are inconclusive but they present two possible explanations.

Was dust lofted to extreme altitudes or ice crystals transported into space.? Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubbble)
Was dust lofted to extreme altitudes or ice crystals transported into space.? Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubbble)

Mars and mystery are synonymous. Among Martian mysteries, this one has persisted for three years. Our own planet, much more dynamic than Mars, continues to raise new questions and mysteries but Mars is a frozen desert. Frozen in time are features unchanged for billions of years.

An animated sequence of images taken by Wayne Jaeschke on March 20, 2012 showing the mystery plume over the western limb of the red planet (upper right). South is up in the photo. (Credit: W. Jaeschke)

In March 2012, the news of the observations caught the attention of Universe Today contributing writer Bob King. Reported on his March 22nd 2012 AstroBob blog page, the plumes or clouds were clear to see. The amateur observer, Wayne Jaeschke used his 14 inch telescope to capture still images which he stitched together into an animation to show the dynamics of the phenomena.

ModernDay_Astrophotographer2Now on February 16 of this year, a team of researchers led by Agustín Sánchez-Lavega of the University of the Basque Country in Bilbao, Spain, published their analysis in the journal Nature of the numerous observations, presenting two possible explanations. Their work is entitled: “An Extremely high-altitude plume seen at Mars morning terminator.”

Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL
Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL

The phenomena occurred over the Terra Cimmeria region centered at 45 degree south latitude. This area includes the tiger stripe array of magnetic fields emanating from concentrations of ferrous (iron) ore deposits on Mars; discovered by the Mars Global Surveyor magnetometer during low altitude aerobraking maneuvers at the beginning of the mission in 1998. Auroral events have been observed over this area from the interaction of the Martian magnetic field with streams of energetic particles streaming from the Sun. Sánchez-Lavega states that if these plumes are auroras, they would have to be over 1000 times brighter than those observed over the Earth.

Auroras photographed from The International Space Station. The distinct Manicouagan impact crater is seen in northern Canada. Terrestial aurora exist at altitudes of 100 km (60 miles) (Credit: NASA)
Auroras photographed from The International Space Station. The distinct Manicouagan impact crater is seen in northern Canada. Terrestial aurora exist at altitudes of 100 km (60 miles) (Credit: NASA)

The researchers also state that another problem with this scenario is the altitude. Auroras over Mars in this region have been observed up to 130 km, only half the height of the features. In the Earth’s field, aurora are confined to ionospheric altitudes – 100 km (60 miles). The Martian atmosphere at 200 km is exceedingly tenuous and the production of persistent and very bright aurora at such an altitude seems highly improbable.

The duration of the plumes – March 12th to 23rd, eleven days (after which observations of the area ended) and April 6th to 16th – is also a problem for this explanation. Auroral arcs on Earth are capable of persisting for hours. The Earth’s magnetic field functions like a capacitor storing charged particles from the Sun and some of these particles are discharged and produced the auroral oval and arcs. Over Mars, there is no equivalent capacitive storage of particles. Auroras over Mars are “WYSIWYG” – what you see is what you get – directly from the Sun. Concentrated solar high energy streams persisting for this long are unheard of.

The second explanation assessed by the astronomers is dust or ice crystals lofted to this high altitude. Again the altitude is the big issue. Martian dust storms will routinely lift dust to 60 km, still only one-third the height of the plumes. Martian dust devils will lift particles to 20 km. However, it is this second explanation involving ice crystals – Carbon Dioxide and Water – that the researchers give the most credence. In either instance, the particles must be concentrated and their reflectivity must account for the total brightness of the plumes. Ice crystals would be more easily transported to these heights, and also would be most highly reflective.

The paper also considered the shape of the plumes. The remarkable quality of modern amateur astrophotography cannot be overemphasized. Also the duration of the plumes was considered. By local noon and thereafter they were not observed. Again, the capabilities tendered by ground-based observations were unique and could not be duplicated by the present set of instruments orbiting Mars.

A Martian dust devil roughly 12 miles (20 kilometers) high was captured on Amazonis Planitia region of Mars, March 14, 2012 by the HiRISE camera on NASA's Mars Reconnaissance Orbiter. The plume is little more than three-quarters of a football field wide (70 yards, or 70 meters). (Image credit: NASA/JPL-Caltech/UA)
A Martian dust devil roughly 12 miles (20 kilometers) high was captured on Amazonis Planitia region of Mars, March 14, 2012 by the HiRISE camera on NASA’s Mars Reconnaissance Orbiter. The plume is little more than three-quarters of a football field wide (70 yards, or 70 meters). (Image credit: NASA/JPL-Caltech/UA)

Still too many questions remain and the researchers state that “both explanations defy our present understanding of the Mars’ upper atmosphere.” By March 20th and 21st, the researchers summarized that at least 18 amateur astronomers observed the plume using from 20 to 40 cm telescopes (8 to 16 inch diameter) at wavelengths from blue to red. At Mars, the Mars Color Imager on MRO (MARCI) could not detect the event due to the 2 hour periodic scans that are compiled to make global images.

Of the many ground observations, the researchers utilized two sets from the venerable astrophotographers Don Parker and Daiman Peach. While observations and measurements were limited, the researchers analysis was exhaustive and included modeling assuming CO2, Water and dust particles. The researchers did find a Hubble observation from 1997 that compared favorably with the 2012 events and likewise modeled that event for comparison. However, Hubble results provided a single observation and the height estimate could not be narrowly constrained.

Explanation of these events in 2012 are left open-ended by the research paper. Additional observations are clearly necessary. With increased interest from amateurs and continued quality improvements plus the addition of the Maven spacecraft suite of instruments plus India’s Mars Orbiter mission, observations will eventually be gained and a Martian mystery solved to make way for yet another.

References:

An Extremely High-Altitude Plume seen at Mars’ Morning Terminator, Journal Nature, February 16, 2015

Amateur astronomer photographs curious cloud on Mars, AstroBob, March 22, 2012

Dawn Captures Best Images Ever of “Hipster Planet” Ceres

Animation of Ceres made from images acquired by Dawn on Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

This is the second animation from Dawn this year showing Ceres rotating, and at 43 pixels across the images are officially the best ever obtained!

NASA’s Dawn spacecraft is now on final approach to the 950 km (590 mile) dwarf planet Ceres, the largest world in the main asteroid belt and the biggest object in the inner Solar System that has yet to be explored closely. And, based on what one Dawn mission scientist has said, Ceres could very well be called the Solar System’s “hipster planet.”

“Ceres is a ‘planet’ that you’ve probably never heard of,” said Robert Mase, Dawn project manager at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re excited to learn all about it with Dawn and share our discoveries with the world.”

Originally classified as a planet, Ceres was later categorized as an asteroid and then reclassified as a dwarf planet in 2006 (controversially along with far-flung Pluto.) Ceres was first observed in 1801 by astronomer Giuseppe Piazzi who named the object after the Roman goddess of agriculture, grain crops, fertility and motherly relationships. (Its orbit would later be calculated by German mathematician Carl Gauss.)

“You may not realize that the word ‘cereal’ comes from the name Ceres,” said Marc Rayman, mission director and chief engineer of the Dawn mission at JPL. “Perhaps you already connected with the dwarf planet at breakfast today.”

Ceres: part of this nutritionally-balanced Solar System!

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.

The animation above was made from images taken by Dawn framing camera on January 25, 2015 from a distance of about 237,000 km (147,000 miles). These are now the highest-resolution views to date of the dwarf planet, 30% more detailed than those obtained by Hubble in January 2004.

And there’s that northern white spot again too… seen in observations from earlier this month and in the 2003-04 HST images, scientists still aren’t quite sure what it is. A crater wall? An exposed ice deposit? Something else entirely? We will soon find out.

“We are already seeing areas and details on Ceres popping out that had not been seen before. For instance, there are several dark features in the southern hemisphere that might be craters within a region that is darker overall,” said Carol Raymond, Dawn deputy principal investigator at JPL.

Full-frame image from Dawn of Ceres on approach, acquired Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)
Full-frame image from Dawn of Ceres on approach, acquired Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

From now on, every observation of Ceres by Dawn will be the best we’ve ever seen! This new chapter of the spacecraft’s adventure has only just begun.

Dawn is scheduled to arrive at Ceres on March 6. Follow the progress of the Dawn mission here.

Source: NASA/JPL

*(Does this mean that Ceres has now gone “mainstream?” Hmm… oh well, it’s still cool.)