Host: Fraser Cain (@fcain) Special Guest:Andy Weir , author of “The Martian”
Andy was first hired as a programmer for a national laboratory at age fifteen and has been working as a software engineer ever since. He is also a lifelong space nerd and a devoted hobbyist of subjects like relativistic physics, orbital mechanics, and the history of manned spaceflight. “The Martian” is his first novel.
If NASA is so advanced, why are their pictures in black and white?
It’s a question that I’ve heard, in one form or another, for almost as long as I’ve been talking with the public about space. And, to be fair, it’s not a terrible inquiry. After all, the smartphone in my pocket can shoot something like ten high-resolution color images every second. It can automatically stitch them into a panorama, correct their color, and adjust their sharpness. All that for just a few hundred bucks, so why can’t our billion-dollar robots do the same?
The answer, it turns out, brings us to the intersection of science and the laws of nature. Let’s take a peek into what it takes to make a great space image…
Perhaps the one thing that people most underestimate about space exploration is the time it takes to execute a mission. Take Cassini, for example. It arrived at Saturn back in 2004 for a planned four-year mission. The journey to Saturn, however, is about seven years, meaning that the spacecraft launched way back in 1997. And planning for it? Instrument designs were being developed in the mid-1980s! So, when you next see an astonishing image of Titan or the rings here at Universe Today, remember that the camera taking those shots is using technology that’s almost 30 years old. That’s pretty amazing, if you ask me.
But even back in the 1980s, the technology to create color cameras had been developed. Mission designers simply choose not to use it, and they had a couple of great reasons for making that decision.
Perhaps the most practical reason is that color cameras simply don’t collect as much light. Each “pixel” on your smartphone sensor is really made up of four individual detectors: one red, one blue, two green (human eyes are more sensitive to green!). The camera’s software combines the values of those detectors into the final color value for a given pixel. But, what happens when a green photon hits a red detector? Nothing, and therein lies the problem. Color sensors only collect a fraction of the incoming light; the rest is simply lost information. That’s fine here on Earth, where light is more or less spewing everywhere at all times. But, the intensity of light follows one of those pesky inverse-square laws in physics, meaning that doubling your distance from a light source results in it looking only a quarter as bright.
That means that spacecraft orbiting Jupiter, which is about five times farther from the Sun than is the Earth, see only four percent as much light as we do. And Cassini at Saturn sees the Sun as one hundred times fainter than you or I. To make a good, clear image, space cameras need to make use of all the little light available to them, which means making do without those fancy color pixels.
The darkness of the solar system isn’t the only reason to avoid using a color camera. To the astronomer, light is everything. It’s essentially our only tool for understanding vast tracts of the Universe and so we must treat it carefully and glean from it every possible scrap of information. A red-blue-green color scheme like the one used in most cameras today is a blunt tool, splitting light up into just those three categories. What astronomers want is a scalpel, capable of discerning just how red, green, or blue the light is. But we can’t build a camera that has red, orange, yellow, green, blue, and violet pixels – that would do even worse in low light!
Instead, we use filters to test for light of very particular colors that are of interest scientifically. Some colors are so important that astronomers have given them particular names; H-alpha, for example, is a brilliant hue of red that marks the location of hydrogen throughout the galaxy. By placing an H-alpha filter in front of the camera, we can see exactly where hydrogen is located in the image – useful! With filters, we can really pack in the colors. The Hubble Space Telescope’s Advanced Camera for Surveys, for example, carries with it 38 different filters for a vast array of tasks. But each image taken still looks grayscale, since we only have one bit of color information.
At this point, you’re probably saying to yourself “but, but, I KNOW I have seen color images from Hubble before!” In fact, you’ve probably never seen a grayscale Hubble image, so what’s up? It all comes from what’s called post-processing. Just like a color camera can combine color information from three detectors to make the image look true-to-life, astronomers can take three (or more!) images through different filters and combine them later to make a color picture. There are two main approaches to doing this, known colloquially as “true color” and “false color.”
True color images strive to work just like your smartphone camera. The spacecraft captures images through filters which span the visible spectrum, so that, when combined, the result is similar to what you’d see with your own eyes. The recently released Galileo image of Europa is a gorgeous example of this.
False color images aren’t limited by what our human eyes can see. They assign different colors to different features within an image. Take this famous image of the Crab Nebula, for instance. The red in the image traces oxygen atoms that have had electrons stripped away. Blue traces normal oxygen and green indicates sulfur. The result is a gorgeous image, but not one that we could ever hope to see for ourselves.
So, if we can make color images, why don’t we always? Again, the laws of physics step in to spoil the fun. For one, things in space are constantly moving, usually really, really quickly. Perhaps you saw the first color image of comet 67P/Churyumov-Gerasimenko released recently. It’s kind of blurry, isn’t it? That’s because both the Rosetta spacecraft and the comet moved in the time it took to capture the three separate images. When combined, they don’t line up perfectly and the image blurs. Not great!
But it’s the inverse-square law that is the ultimate challenge here. Radio waves, as a form of light, also rapidly become weaker with distance. When it takes 90 minutes to send back a single HiRISE image from the Mars Reconnaissance Orbiter, every shot counts and spending three on the same target doesn’t always make sense.
Finally, images, even color ones, are only one piece of the space exploration puzzle. Other observations, from measuring the velocity of dust grains to the composition of gases, are no less important to understanding the mysteries of nature. So, next time you see an eye-opening image, don’t mind that it’s in shades of gray. Just imagine everything else that lack of color is letting us learn.
Crazy things can happen when galaxies collide, as they sometimes do. Although individual stars rarely impact each other, the gravitational interactions between galaxies can pull enormous amounts of gas and dust into long streamers, spark the formation of new stars, and even kick objects out into intergalactic space altogether. This is what very well may have happened to SDSS1133, a suspected supermassive black hole found thousands of light-years away from its original home.
Seen above in a near-infrared image acquired with the Keck II telescope in Hawaii, SDSS1133 is the 40-light-year-wide bright source observed 2,300 light-years out from the dwarf galaxy Markarian 177, located 90 million light-years away in the constellation Ursa Major (or, to use the more familiar asterism, inside the bowl of the Big Dipper.)
The two bright spots at the disturbed core of Markarian 177 are thought to indicate recent star formation, which could have occurred in the wake of a previous collision.
“We suspect we’re seeing the aftermath of a merger of two small galaxies and their central black holes,” said Laura Blecha, an Einstein Fellow in the University of Maryland’s Department of Astronomy and a co-author of an international study of SDSS1133. “Astronomers searching for recoiling black holes have been unable to confirm a detection, so finding even one of these sources would be a major discovery.”
Interactions between supermassive black holes during a galactic collision would also result in gravitational waves, elusive phenomena predicted by Einstein that are high on astronomers’ most-wanted list of confirmed detections.
Watch an animation of how the suspected collision and subsequent eviction may have happened:
But besides how it got to where it is, the true nature of SDSS1133 is a mystery as well.
The persistently bright near-infrared source has been detected in observations going back at least 60 years. Whether or not SDSS1133 is indeed a supermassive black hole has yet to be determined, but if it isn’t then it’s a very unusual type of extremely massive star known as an LBV, or Luminous Blue Variable. If that is the case though, it’s peculiar even for an LBV; SDSS1133 would have had to have been continuously pouring out energy in a for over half a century until it exploded as a supernova in 2001.
To help determine exactly what SDSS1133 is, continued observations with Hubble’s Cosmic Origins Spectrograph instrument are planned for Oct. 2015.
“We found in the Pan-STARRS1 imaging that SDSS1133 has been getting significantly brighter at visible wavelengths over the last six months and that bolstered the black hole interpretation and our case to study SDSS1133 now with HST,” said Yanxia Li, a UH Manoa graduate student involved in the research.
And, based on data from NASA’s Swift mission the UV emission of SDSS1133 hasn’t changed in ten years, “not something typically seen in a young supernova remnant” according to Michael Koss, who led the study and is now an astronomer at ETH Zurich.
Regardless of what SDSS1133 turns out to be, the idea of such a massive and energetic object soaring through intergalactic space is intriguing, to say the least.
The study will be published in the Nov. 21 edition of Monthly Notices of the Royal Astronomical Society.
We’ve all heard that the Universe is expanding, but why is it expanding? What’s the force pushing everything outwards?
If still you don’t know that we live in an expanding Universe, then I’m clearly not doing my job.
And so once more, with feeling… the Universe is expanding. But that certainly doesn’t answer all the questions that go along with the it.
Like what’s the Universe expanding into? Which we did in another video, which I’ll list at the end of this episode. You might also want to know why is the Universe expanding? What’s making this happen? Did it give up its gym membership? Did it sign up for the gallon of ice cream of the month club? Has it completely embraced the blerch?
Edwin Hubble, the astronomer made famous by being named after a space telescope, provided the definitive evidence that the Universe was expanding. Observing distant galaxies, he observed they were fleeing outwards, in fact he was able to come up with calculations to show just how fast they were moving away from us.
Or to be more precise, he was able to show how fast all the galaxies are moving away from each other. Which was your question! Just like a minute ago! See you’re just as smart as Hubble!
So up until about 15 years ago, the only answer was momentum. The idea was that the Universe received all the energy it needed for its expansion in the first few moments after the Big Bang.
Imagine the beginning of the Universe, BOOM, like an explosion from a gun. And all the rest of the expansion is the Universe coasting outwards. For the longest time, astronomers were trying to figure out what this momentum would mean for the future of the Universe.
Would the mutual gravity of all the objects in the Universe cause it to slow to a halt at some point in the distant future, or maybe even collapse in on itself, leading to a Big Crunch? Or just clump up in piles and stay on the couch all summer because it’s maybe a little lazy and isn’t ready to start going back to the gym yet?
In 1999, astronomers discovered something completely unexpected… dark energy. As they were doing their observations to figure out exactly how the Universe would coast to a stop, they discovered that it’s actually speeding up. It’s as if that bullet is actually a rocket and it’s accelerating.
Now it appears that the Universe will not only expand forever, but the speed of its expansion will continue to accelerate faster and faster. So what’s causing this expansion? Currently, we believe it’s mostly momentum left over from the Big Bang, and the force of dark energy will be accelerating this expansion. Forever.
How do you feel about a rapidly accelerating expanding Universe? Tell us in the comments below.
And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!
On a summer night, high above our heads, where the Northern Crown and Herdsman meet, a titanic new galaxy is being born 4.5 billion light years away. You and I can’t see it, but astronomers using the Hubble Space Telescope released photographs today showing the merger of two enormous elliptical galaxies into a future heavyweight adorned with a dazzling string of super-sized star clusters.
The two giants, each about 330,000 light years across or more than three times the size of the Milky Way, are members of a large cluster of galaxies called SDSS J1531+3414. They’ve strayed into each other’s paths and are now helpless against the attractive force of gravity which pulls them ever closer.
Galactic mergers are violent events that strip gas, dust and stars away from the galaxies involved and can alter their appearances dramatically, forming large gaseous tails, glowing rings, and warped galactic disks. Stars on the other hand, like so many pinpoints in relatively empty space, pass by one another and rarely collide.
Elliptical galaxies get their name from their oval and spheroidal shapes. They lack the spiral arms, rich reserves of dust and gas and pizza-like flatness that give spiral galaxies like Andromeda and the Milky Way their multi-faceted character. Ellipticals, although incredibly rich in stars and globular clusters, generally appear featureless.
But these two monster ellipticals appear to be different. Unlike their gas-starved brothers and sisters, they’re rich enough in the stuff needed to induce star formation. Take a look at that string of blue blobs stretching across the center – astronomers call it a great example of ‘beads on a string’ star formation. The knotted rope of gaseous filaments with bright patches of new star clusters stems from the same physics which causes rain or water from a faucet to fall in droplets instead of streams. In the case of water, surface tension makes water ‘snap’ into individual droplets; with clouds of galactic gas, gravity is the great congealer.
Nineteen compact clumps of young stars make up the length of this ‘string’, woven together with narrow filaments of hydrogen gas. The star formation spans 100,000 light years, about the size of our galaxy, the Milky Way. Astronomers still aren’t sure if the gas comes directly from the galaxies or has condensed like rain from X-ray-hot halos of gas surrounding both giants.
The blue arcs framing the merger have to do with the galaxy cluster’s enormous gravity, which warps the fabric of space like a lens, bending and focusing the light of more distant background galaxies into curvy strands of blue light. Each represents a highly distorted image of a real object.
Simulation of the Milky Way-Andromeda collision 4 billion years from now
Four billion years from now, Milky Way residents will experience a merger of our own when the Andromeda Galaxy, which has been heading our direction at 300,000 mph for millions of years, arrives on our doorstep. After a few do-si-dos the two galaxies will swallow one another up to form a much larger whirling dervish that some have already dubbed ‘Milkomeda’. Come that day, perhaps our combined galaxies will don a string a blue pearls too.
It’s one of the most iconic images of the modern Space Age. In 1995, the Hubble Space Telescope team released an image of towering columns of gas and dust that contained newborn stars in the midst of formation. Dubbed the “Pillars of Creation,” these light-years long tendrils captivated the public imagination and now grace everything from screensavers to coffee mugs. This is a cosmic portrait of our possible past, and the essence of the universe giving birth to new stars and worlds in action.
Now, a study out on Thursday from the 2014 National Astronomy Meeting of the Royal Astronomical Society has shed new light on just how these pillars may have formed. The announcement comes out of Cardiff University, where astronomer Scott Balfour has run computer simulations that closely model the evolution and the outcome of what’s been observed by the Hubble Space Telescope.
The ‘Pillars’ lie in the Eagle Nebula, also known as Messier 16 (M16), which is situated in the constellation Serpens about 7,000 light years distant. The pillars themselves have formed as intense radiation from young massive stars just beginning to shine erode and sculpt the immense columns.
But as is often the case in early stellar evolution, having massive siblings nearby is bad news for fledgling stars. Such large stars are of the O-type variety, and are more than 16 times as massive as our own Sun. Alnitak in Orion’s belt and the stars of the Trapezium in the Orion Nebula are examples of large O-type stars that can be found in the night sky. But such stars have a “burn fast and die young” credo when it comes to their take on nuclear fusion, spending mere millions of years along the Main Sequence of the Hertzsprung Russell diagram before promptly going supernova. Contrast this with a main sequence life expectancy of 10 billion years for our Sun, and life spans measured in the trillions of years — longer than the current age of the universe — for tiny red dwarf stars. The larger a star you are, the shorter your life span.
Such O-Type stars also have surface temperatures at a scorching 30,000 degrees Celsius, contrasted with a relatively ‘chilly’ 5,500 degree Celsius surface temperature for our Sun.
This also results in a prodigious output in energetic ultraviolet radiation by O-type stars, along with a blustery solar wind. This carves out massive bubbles in a typical stellar nursery, and while it may be bad news for planets and stars attempting to form nearby any such tempestuous stars, this wind can also compress and energize colder regions of gas and dust farther out and serve to trigger another round of star formation. Ironically, such stars are thus “cradle robbers” when it comes to potential stellar and planetary formation AND promoters of new star birth.
In his study, Scott looked at the way gas and dust would form in a typical proto-solar nebula over the span of 1.6 million years. Running the simulation over the span of several weeks, the model started with a massive O-type star that formed out of an initial collapsing smooth cloud of gas.
That’s not bad, a simulation where 1 week equals a few hundred million years…
As expected, said massive star did indeed carve out a spherical bubble given the initial conditions. But Scott also found something special: the interactions of the stellar winds with the local gas was much more complex than anticipated, with three basic results: either the bubble continued to expand unimpeded, the front would expand, contract slightly and then become a stationary barrier, or finally, it would expand and then eventually collapse back in on itself back to the source.
The study was notable because it’s only in the second circumstance that the situation is favorable for a new round of star formation that is seen in the Pillars of Creation.
“If I’m right, it means that O-type and other massive stars play a much more complex role than we previously thought in nursing a new generation of stellar siblings to life,” Scott said in a recent press release. “The model neatly produces exactly the same kind of structures seen by astronomers in the classic 1995 image, vindicating the idea that giant O-type stars have a major effect in sculpting their surroundings.”
Such visions as the Pillars of Creation give us a snapshot of a specific stage in stellar evolution and give us a chance to study what we may have looked like, just over four billion years ago. And as simulations such as those announced in this week’s study become more refined, we’ll be able to use them as a predictor and offer a prognosis for a prospective stellar nebula and gain further insight into the secret early lives of stars.
When you look into the night sky, you’re seeing tremendous distances away, even with your bare eyeball. But what’s the most distant object you can see with the unaided eye? And what if you get help with a pair of binoculars, a telescope, or even with the Hubble Space Telescope.
Standing at sea level, your head is at an altitude of 2 meters, and the horizon appears to be about 3 miles, or 5 km away. We’re able to see more distant objects if they’re taller, like buildings or mountains, or when we’re higher up in the air. If you get to an altitude of 20 meters, the horizon stretches out to about 11 km. But we can see objects in space which are even more distant with the naked eye. The Moon is 385,000 km away and the Sun is a whopping 150 million km. Visible all the way down here on Earth, the most distant object in the solar system we can see, without a telescope, is Saturn at 1.5 billion km away.
In the very darkest conditions, the human eye can see stars at magnitude 6.5 or greater. Which works about to about 9,000 individual stars. Sirius, the brightest star in the sky, is 8.6 light years. The most distant bright star, Deneb, is about 1500 light years away from Earth. If someone was looking back at us, right now, they could be seeing the election of the 52nd pope, St. Hormidas, in the 6th Century.
There are even a couple of really bright stars in the 8000 light year range, that we might just barely be able to see without a telescope. If a star detonates, we can see it much further away. The famous 1006 supernova was the brightest in history, recorded in China, Japan and the Middle East.
It was a total of 7,200 light years away and was visible in the daytime. There’s even large structures we can see. Outside the galaxy, the Large Magellanic Cloud is 160,000 light years and the Small Magellanic Cloud is almost 200,000 light years away. Unfortunately for us up North, these are only visible from Southern Hemisphere.The most distant thing we can see with our bare eyeballs is Andromeda at 2.6 million light years, which in dark skies looks like a fuzzy blob.
If we cheat and get a little help, say with binoculars – you can see magnitude 10 – fainter stars and galaxies at more than 10 million light-years away. With a telescope you can see much, much further. A regular 8-inch telescope would let you see the brightest quasars, more than 2 billion light years away. Using gravitational lensing the amazing Hubble space telescope can see galaxies, incredibly far out, where the light had left them just hundreds of millions of years after the Big Bang.
If you could see in other wavelengths, you could see different distances. Fortunately for our precious radiation sensitive organs, Gamma and X rays are blocked by our atmosphere. But if you could see in that spectrum, you could see objects exploding billions of light years away. And if you could see in the radio spectrum, you’d be able to see the cosmic microwave background radiation, surrounding us in all directions and marking the edge of the observable universe.
Wouldn’t that be cool? Well, maybe we can… just a little. Turn on your television, some of the static on the screen is this very background radiation, the afterglow of the Big Bang.
What do you think? If you could see far out in the Universe what would you like a close up view of? Tell us in the comments below.