After analyzing the temperature data from 2023, NASA has concluded that it was the hottest year on record. This will surprise almost nobody. If you live in one of the regions stricken by drought, forest fires, or unusually powerful weather, you don’t need NASA to confirm that the planet is warming.
Continue reading “NASA Confirms that 2023 was the Hottest Year on Record”NASA, NOAA Satellites Track Hurricane Irma’s Path
Record-setting Hurricane Irma barreled over the Caribbean islands of St. Martin, St. Barthelemy and Anguilla early Wednesday, destroying buildings with its sustained winds of 185 mph (297 kph), with rains and storm surges causing major flooding. The US National Hurricane Center listed the Category 5 Irma as the strongest Atlantic hurricane ever recorded north of the Caribbean and east of the Gulf of Mexico. The storm continues to roar on a path toward the U.S. and British Virgin Islands, Puerto Rico and possibly Florida, or along the southeast coast of the US.
This animation of NOAA’s GOES East satellite imagery from Sept. 3 at 8:15 a.m. EDT (1215 UTC) to Sept. 6 ending at 8:15 a.m. EDT (1215 UTC) shows Category 5 Hurricane Irma as it moved west and track over St. Martin by 8 a.m. EDT on Sept. 6:
Different models have Irma traveling on slightly different paths and officials from all the areas that might possibly be hit are telling people to prepare and follow evacuation orders. National Hurricane Center scientist Eric Blake said via twitter that some models had the storm going one way, and some another. But he cautioned everyone in a potential path should take precautions. “Model trends can be quite misleading- could just change right back. It is all probabilistic at this point. It could still miss [one particular area]. But chances of an extreme event is rising.”
Never seen a #hurricane this strong last so long in the Atlantic basin. #Irma is more like an unwelcome western Pacific supertyphoon ?? pic.twitter.com/55tFsbYWz1
— Eric Blake ? (@EricBlake12) September 6, 2017
Saint-Martin and Anguilla appear to have taken a direct hit by cat 5 Hurricane #Irma. #GOES16 pic.twitter.com/1CN1JL0GEC
— NASA SPoRT (@NASA_SPoRT) September 6, 2017
The fleet of Earth-observing satellites are providing incredible views of this monster storm, and even astronauts on board the International Space Station are capturing views:
The International Space Station’s external cameras captured a dramatic view of Hurricane Irma as it moved across the Atlantic Ocean Sept. 5. pic.twitter.com/mc61pt2G8O
— Intl. Space Station (@Space_Station) September 5, 2017
#GOES16 captured this geocolor image of Hurricane #Irma approaching Anguilla at about 7:00 am (EDT). Latest info @ https://t.co/cSGOfrM0lG pic.twitter.com/R24P0Q1EPm
— NOAA Satellites (@NOAASatellites) September 6, 2017
GOES-16 view of #HurricaneIrma at 30-second intervals covering 5-hour period ending at 352 AM CDT (9/6), including its passage over Barbuda. pic.twitter.com/WL6l6klPKw
— NWS Twin Cities (@NWSTwinCities) September 6, 2017
The eye of a category 5 hurricane. #Irma #GOES16 pic.twitter.com/eATVZspJZx
— NASA SPoRT (@NASA_SPoRT) September 5, 2017
While satellite views provide the most comprehensive view of Irma’s potential track, there’s also a more ‘hands-on’ approach to getting data on hurricanes. NOAA hurricane hunter Nick Underwood posted this video while his plane flew into Hurricane Irma yesterday. The plane’s specialized instruments can take readings on the storm that forecasters can’t get anywhere else:
My day at the office. #HurricaneIrma @NOAA_HurrHunter pic.twitter.com/wpH83NIc6m
— Nick Underwood (@TheAstroNick) September 5, 2017
But Irma isn’t the only storm to keep an eye on. Tropical storms Katia and Jose are also on the horizon:
An overview of the active tropics: 24-hour animation of TS #Katia (left), Hurricane #Irma (center), and TS #Jose (right). #GOES16 pic.twitter.com/DiuhZP4f6y
— NASA SPoRT (@NASA_SPoRT) September 6, 2017
In the meantime, a launch is scheduled from Cape Canaveral on Thursday, September 7. SpaceX is hoping to launch the US Air Force’s X-37B reusable spaceplane, but current forecasts put only a 50% chance of weather suitable enough on Thursday, and only 40% on Friday. We’ll keep you posted.
For the latest satellite views, the Twitter accounts above are posting regular updates.
Hydraulic Pump Glitch Aborts NASA’s Hurricane MicroSat Fleet Launch to Dec. 15 – Live Coverage
KENNEDY SPACE CENTER, FL – Monday’s (Dec. 12) planned launch of NASA’s innovative Cyclone Global Navigation Satellite System (CYGNSS) hurricane microsatellite fleet was aborted when a pump in the hydraulic system that releases the Pegasus air-launch booster from its L-1011 carrier aircraft failed in flight. UPDATE: launch delayed to Dec 15, story revised
NASA and Orbital ATK confirmed this afternoon that the launch of the Orbital ATK commercial Pegasus-XL rocket carrying the CYGNSS small satellite constellation has been rescheduled again to Thursday, Dec. 15 at 8:26 a.m. EST from a drop point over the Atlantic Ocean.
Late last night the launch was postponed another day from Dec. 14 to Dec. 15 to solve a flight parameter issue on the CYGNSS spacecraft. New software was uploaded to the spacecraft that corrected the issue, NASA officials said.
“NASA’s launch of CYGNSS spacecraft is targeted for Thursday, Dec. 15,” NASA announced.
“We are go for launch of our #Pegasus rocket carrying #CYGNSS tomorrow, December 15 from Cape Canaveral Air Force Station,” Orbital ATK announced.
“The CYGNSS constellation consists of eight microsatellite observatories that will measure surface winds in and near a hurricane’s inner core, including regions beneath the eyewall and intense inner rainbands that previously could not be measured from space,” according to a NASA factsheet.
Despite valiant efforts by the flight crew to restore the hydraulic pump release system to operation as the L-1011 flew aloft near the Pegasus drop zone, they were unsuccessful before the launch window ended and the mission had to be scrubbed for the day by NASA Launch Director Tim Dunn.
The Pegasus/CYGNSS vehicle is attached to the bottom of the Orbital ATK L-1011 Stargazer carrier aircraft.
The hydraulic release system passed its pre-flight checks before takeoff of the Stargazer.
“Launch of the Pegasus rocket was aborted due to an issue with the launch vehicle release on the L-1011 Stargazer. The hydraulic release system operates the mechanism that releases the Pegasus rocket from the carrier aircraft. The hydraulic system functioned properly during the pre-flight checks of the airplane,” said NASA.
A replacement hydraulic pump system component was flown in from Mojave, California, and successfully installed and checked out. Required crew rest requirements were also met.
The one-hour launch window opens at 8:20 a.m and the actual deployment of the rocket from the L-1011 Tristar is timed to occur 5 minutes into the window at 8:26 a.m.
NASA’s Pegasus/CYGNUS launch coverage and commentary will be carried live on NASA TV – beginning at 7 a.m. EDT
You can watch the launch live on NASA TV at – http://www.nasa.gov/nasatv
Live countdown coverage on NASA’s Launch Blog begins at 6:30 a.m. Dec. 15.
Coverage will include live updates as countdown milestones occur, as well as video clips highlighting launch preparations and the flight.
A prelaunch program by NASA EDGE will begin at 6 a.m.
NASA’s Kennedy Space Center is also providing live coverage on social media at:
http://www.twitter.com/NASAKennedy
https://www.facebook.com/NASAKennedy
Orbital ATK is also providing launch and mission update at:
twitter.com/OrbitalATK
The weather forecast from the Air Force’s 45th Weather Squadron at Cape Canaveral has significantly increased to predicting a 90% chance of favorable conditions on Thursday, Dec. 15.
The primary weather concerns are for flight cumulus clouds.
The Pegasus rocket cannot fly through rain or clouds due to a negative impact and possible damage on the rocket’s thermal protection system (TPS).
In the event of a delay, the range is also reserved for Friday, Dec. 16 where the daily outlook remains at a 90% chance of favorable weather conditions.
After Stargazer takes off from the Skid Strip early Thursday around 6:30 a.m. EST, it will fly north to a designated drop point box about 126 miles east of Daytona Beach, Florida over the Atlantic Ocean. The crew can search for a favorable launch point if needed, just as they did Monday morning.
The drop box point measures about 40-miles by 10-miles (64-kilometers by 16-kilometers). The flight crew flew through the drop box twice on Monday, about a half an hour apart, as they tried to repair the hydraulic system by repeatedly cycling it on and off and sending commands.
“It was not meeting the prescribed launch release pressures, indicating a problem with the hydraulic pump,” said NASA CYGNSS launch director Tim Dunn.
“Fortunately, we had a little bit of launch window to work with, so we did a lot of valiant troubleshooting in the air. As you can imagine, everyone wanted to preserve every opportunity to have another launch attempt today, so we did circle around the race once, resetting breakers on-board the aircraft, doing what we could in flight to try to get that system back into function again.”
The rocket will be dropped for a short freefall of about 5 seconds to initiate the launch sewuence. It launches horizontally in midair with ignition of the first stage engine burn, and then tilts up to space to begin the trek to LEO.
Here’s a schematic of key launch events:
The $157 million fleet of eight identical spacecraft comprising the Cyclone Global Navigation Satellite System (CYGNSS) system will be delivered to low Earth orbit by the Orbital ATK Pegasus XL rocket.
The nominal mission lifetime for CYGNSS is two years but the team says they could potentially last as long as five years or more if the spacecraft continue functioning.
Pegasus launches from the Florida Space Coast are infrequent. The last once took place over 13 years ago in April 2003 for the GALEX mission.
Typically they take place from Vandenberg Air Force Base in California or the Reagan Test Range on the Kwajalein Atoll.
CYGNSS counts as the 20th Pegasus mission for NASA.
The CYGNSS spacecraft were built by Southwest Research Institute in San Antonio, Texas. Each one weighs approx 29 kg. The deployed solar panels measure 1.65 meters in length.
The solar panels measure 5 feet in length and will be deployed within about 15 minutes of launch.
The Space Physics Research Laboratory at the University of Michigan College of Engineering in Ann Arbor leads overall mission execution in partnership with the Southwest Research Institute in San Antonio, Texas.
The Climate and Space Sciences and Engineering Department at the University of Michigan leads the science investigation, and the Earth Science Division of NASA’s Science Mission Directorate oversees the mission.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Satellite Views Show Hurricane Matthew Moving Towards U.S.
As Hurricane Matthew approaches the east coast of Florida, the evacuation of hundreds of thousands of people is taking place in Florida and South Carolina. Forecasters say the conditions appear to be favorable for the storm to restrengthen after it caused major damage to western Haiti and eastern Cuba. Matthew is now heading toward Florida, bringing with it the potential for heavy rain, storm surges and hurricane-force winds. The expected maximum sustained winds could be 130 mph (210 km/hr), and it could be the strongest hurricane to hit the region in 11 years
The National Hurricane Center said “Matthew is moving toward the northwest near 12 mph (19 kph), and this motion is expected to continue during the next 24 to 48 hours. On this track, Matthew will be moving across the Bahamas through Thursday, and is expected to be very near the east coast of Florida by Thursday evening, Oct. 6.”
The image above was taken by NASA’s Terra satellite on October 4, 2016, showing the hurricane over the eastern tip of Cuba and the eastern-most extent over Puerto Rico. Reports say it was the strongest storm to hit the Caribbean nation in more than 50 years.
Cameras on board the International Space Station captured these views of Hurricane Matthew today (October 5) as the now Category 3 storm moved to the north of Cuba:
NASA’s Kennedy Space Center released a statement that they closed at 1 p.m. today due to the approach of the hurricane, with essential personnel preparing facilities for the storm’s arrival.
Stu Ostro, a senior meteorologist at The Weather Channel, tweeted a satellite image of the hurricane, which has gone viral, which some say shows a face with a fiery eye, teeth and a sinister smile.
Sinister-looking face of #HurricaneMatthew at landfall in #Haiti [Un-doctored #weather #satellite image] pic.twitter.com/hrviDVuJ3R
— Stu Ostro (@StuOstro) October 4, 2016
WeatherUnderground is tracking the storm and as of 6:00 pm ET on October 5, this was the projected path of the storm. You can click the image (or this link) to get the current tracking data on WeatherUnderground.
This animation of NOAA’s GOES-East satellite imagery from Oct. 3 to Oct. 5 shows Hurricane Matthew make landfall on Oct. 4 in western Haiti and move toward the Bahamas on Oct. 5.
NOAA said tropical storm or hurricane conditions could affect South Carolina and North Carolina later this week or this weekend, even if the center of Matthew remains offshore, adding that “it is too soon to determine what, if any, land areas might be directly affected by Matthew next week. At a minimum, dangerous beach and boating conditions are
likely along much of the U.S. east coast during the next several days.”
For additional information see:
NASA’s page on Hurricane Matthew
NASA’s Earth Observatory website
National Hurricane Center
Monster Cat 5 Hurricane Patricia Strongest Ever Recorded Menaces Millions in Mexico; Seen from ISS
“Hurricane #Patricia approaches #Mexico. It’s massive. Be careful” in this image taken by NASA astronaut Scott Kelly aboard the ISS on Oct. 23, 2015. Credit: NASA/Scott Kelly
More images and videos below[/caption]
Hurricane Patricia, the strongest storm in recorded history with winds exceeding 190 mph (305 km/h) is right now menacing millions in Mexico after suddenly intensifying with little warning over the past day, threatening widespread catastrophic destruction as it barrels towards frightened residents along the nations Pacific coast and makes landfall this evening, Friday, Oct. 23.
NASA astronaut Scott Kelly captured striking photos, above and below, of Hurricane Patricia this afternoon from aboard the International Space Station (ISS).
Other NASA and NOAA weather satellites are actively monitoring and measuring the strongest storm on the planet right now.
“Hurricane #Patricia approaches #Mexico. It’s massive. Be careful,” Kelly wrote on his twitter account with a pair of images taken from the ISS.
Patricia unexpectedly intensified quite rapidly to a Category 5 storm from a tropical storm in the space of just 24 hours from yesterday to today with the significant potential for loss of life and likely widespread catastrophic damage.
This morning Patricia had sustained winds of 190 mph (305 km/h) , on the Saffir-Simpson Hurricane Wind Scale, with gusts up to 235 mph. That’s comparable to an EF-4 tornado, but its much wider.
Weather forecasters say that unusually warm waters, possibly from the current El Niño weather pattern may be causing the rapid intensification of the storm to unprecedented power never before seen.
“Hurricane #Patricia looks menacing from @space_station. Stay safe below,” tweeted Kelly, who just broke the American record for most time spent in space.
Patricia is making landfall near the tourist resort of Puerto Vallarta, the town of Cuixmala and the city of Manzanillo along Mexico’s Pacific coast, as it slightly weakens to 165 mph (265 km/h) with destructive force.
Here is the latest Hurricane Patricia animation from NOAA:
Patricia is the most powerful storm ever to make landfall and many millions live in its path that is expected to track eastwards across inland areas of Mexico and then move up into the United States at Texas with flooding rains.
The Mexican government has warned millions to take shelter to evacuate. Over 15000 tourists have been evacuated from Puerto Vallarta to other regions. But the effort was hampered since the airport has been closed.
Catastrophic destruction to homes, businesses and infrastructure is feared.
Some 10 to 20 inches of rain is expected along the coast, causing mudslides across Mexico.
Waves heights exceeding 30 feet are also expected.
Heavy rains and flash flooding will continue into the US with the heaviest downpours expected in Texas and Louisiana.
Here’s the 7 PM CDT advisory from the National Hurricane Center:
“EXTREMELY DANGEROUS HURRICANE PATRICIA MOVING FARTHER INLAND OVER SOUTHWESTERN MEXICO”
“The center of Hurricane Patricia was located near latitude 19.5 North, longitude 104.9 West. Patricia ismoving toward the north-northeast near 15 mph (24 km/h) and this motion is expected to continue with some increase in forward speed tonight and Saturday. On the forecast track, the center of Patricia should continue to move inland over southwestern Mexico.
Patricia is expected to move quickly north-northeastward across western and northern Mexico through Saturday.
Satellite images indicate that Patricia has continued to weaken, and maximum sustained winds are estimated to be near 160 mph (260 km/h) with higher gusts. Patricia is a category 5 hurricane on the Saffir-Simpson Hurricane Wind Scale. Patricia is forecast to rapidly weaken over the mountains of Mexico and dissipate on Saturday.
Hurricane force winds extend outward up to 35 miles (55 km) from the center and tropical storm force winds extend outward up to 175 miles (280 km).
The estimated minimum central pressure is 924 mb (27.29 inches).”
Here’s a video of Hurricane Patricia from the ISS taken today, Oct 23, 2015.
Video caption: Outside the International Space Station, cameras captured dramatic views of Hurricane Patricia at 12:15 p.m. EDT on October 23, 2015 as the mammoth system moved north at about 10 mph, heading for a potentially catastrophic landfall along the southwest coast of Mexico sometime during the day, according to the National Hurricane Center. Packing winds of 200 miles per hour, Patricia is the strongest in recorded history in the southeastern Pacific Ocean. The National Hurricane Center says that once Patricia crosses the Mexican coast it should weaken quickly and dissipate Oct. 24 due to upper level winds and mountainous terrain, but likely will introduce copious amounts of rainfall to the Texas coast through the weekend. Credit: NASA
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Are Martian Dust Storms Dangerous?
Just how dangerous are the terrifying dust storms that swarm Mars?
Brave explorers trek across the red dunes of Mars when a dangerous dust storm blows in. In moments, our astronauts are blasted by gale force winds and driving sand, reducing visibility to zero. The brave heroes stumble desperately through the driving onslaught, searching in vain for shelter from the catastrophic conditions. One is blown into a ravine, or right to the edge of the cliff, requiring a dramatic rescue and likely a terrible terrible sacrifice and important parting words showing the true mettle of our heroes.
“Tell my Asuka… printed body pillow… I loved her…”
Will they make it? Why the heck would anyone land on that dusty irradiated death trap? Actually, a better question might be “Why do writers lean so hard on this trope?”. I’m looking at you Andy Weir.
Martian dust storms don’t just come from the fevered imagination of the same sci-fi writer who gave us a lush Venusian jungle, Saturnalian lava flats and Moon floor cheese. These dust storms are all too real and they drive at serious windspeeds.
NASA’s Viking landers clocked them at 100 km/h during dust storm season. Which is a thing on Mars. The landers sheltered enough from the big storms that they probably didn’t experience the greatest winds they’re capable of.
Scientists have seen evidence that sand is shifted around on the surface of Mars, and the regolith requires high wind speeds to pick it up and shove it around. Dust devils spin up across the surface, and rotate at hurricane speeds.
When the wind is above 65 km/h, it’s fast enough to pick up dust particles and carry them into the atmosphere encasing the planet in a huge, swirling, shroud. Freaked out yet? Is this dangerous? It sure sounds dangerous.
Apologies to all the fearmongering sci-fi writers, but actually, it’s not that dangerous. Here’s why.
First off, you’re not on Mars. It’s a book. Second, it’s a totally different experience on Earth. Here when you feel the wind blasting you in the face, or watch it dismantle a house during a tornado, it’s the momentum of the air particles hammering into it.
That momentum comes from air particle density and their velocity. Sadly, the density of the atmosphere on Mars is a delicate 1% of what we’re used to. It’s got the velocity, but it just doesn’t have the density.
It’s the difference between getting hit by a garden hose and a firehose with the same nozzle speed. One would gets you soaked, the other can push you down the street and give you bruises.
To feel a slight breeze on Mars similar to Earth, you multiply the wind speed by 10. So, if the wind was going about 15 km/h here, you’d need to be hit by winds going about 150 km/h there to have the same experience.
It’s not impossible for winds to go that fast on Mars, but that’s still not enough wind to fly a kite. To get it off the ground your mission buddy holds the kite, and you run around in the dumb Martian sand like a try-hard ass.
It would fly for a second and then crash down. You’d wonder why you even brought a kite to Mars in the first place because it’s NEVER windy enough.
Boo hoo. Your Mars kite doesn’t work. Good news! You’re on Mars!
Bad news. It was a one way trip. Good news! A wizard has made you immortal!
Bad news. The wizard has brought to life the entire fictional cast of the Twilight series and they’re also there and immortal. Have fun brooding with your new dorky friends, FOR ETERNITY.
What I’m saying is you could stand on the red planet restaurant patio and laugh at anything the weather system could throw at you. That is unless, you’re solar powered.
Mars gets regular dust storms. From time to time, they can get truly global. In 2001, a storm picked up enough dust to shroud the entire planet in a red haze. Temperatures went up as dust helped trap heat in the atmosphere. This storm lasted for 3 months before temperatures cooled, and the dust settled back down again.
During a storm in 2007, dust blocked 99% of the light reaching the solar panels of the Opportunity rover. This severely decreased the energy it had to power its instruments, and most importantly, the heaters. Ultimately, it was possible that the cold could kill the rover, if the dust hadn’t subsided quickly enough.
If you happen to see a movie or read a book about an astronaut on Mars dealing with a dangerous dust storm, don’t worry. They’ll be fine, the wind won’t shred them to pieces. Instead, focus on unbreathably thin atmosphere, the bone chilling cold, or the constant deadly radiation.
That and where’s their food come from again? Well, now you know dust storms aren’t a big issue. Want to travel to Mars? Tell us in the comments below.
If you haven’t checked it out yet, go read “The Martian”. Jay and I loved the pants off it and we can’t wait to see the film version.
Cat 4 Hurricane Gonzalo Threatens Bermuda and Delays Antares Launch to Space Station
Hurricane Gonzalo, the first major Atlantic Ocean basin hurricane in three years, has strengthened to a dangerous Category 4 storm, threatening Bermuda and forcing a postponement of the upcoming launch of the Orbital Sciences Antares rocket to the space station from the Virginia shore to no earlier than Oct. 27.
A hurricane warning is in effect for the entire island of Bermuda.
NASA and Orbital Sciences had no choice but to delay the Antares blastoff from Oct. 24 to no earlier than Oct. 27 because Bermuda is home to an “essential tracking site” that must be operational to ensure public safety in case of a launch emergency situation.
Antares had been slated for an early evening liftoff with the Cygnus cargo carrier on the Orb-3 mission to the International Space Station (ISS).
NASA and Orbital issued the following statement:
“Due to the impending arrival of Hurricane Gonzalo on the island of Bermuda, where an essential tracking site used to ensure public safety during Antares launches is located, the previously announced “no earlier than” (NET) launch date of October 24 for the Orb-3 CRS mission to the International Space Station for NASA is no longer feasible.”
The powerful Gonzalo is currently expected to make a direct hit on Bermuda on Friday afternoon, Oct. 17. It’s packing devastating maximum sustained winds exceeding 145 mph (225 kph).
NASA and NOAA satellites including the Terra, Aqua and GOES-East satellites are providing continuous coverage of Hurricane Gonzalo as it moves toward Bermuda, according to a NASA update today.
The ISS-RapidScat payload tracking ocean winds, that was just attached to the exterior of the ISS, is also designed to help with hurricane monitoring and forecasting.
Tropical storm force winds and 20 to 30 foot wave heights are expected to impact Bermuda throughout Friday and continue through Saturday and into Sunday.
“The National Hurricane Center expects hurricane-force winds, and rainfall totals of 3 to 6 inches in Bermuda. A storm surge with coastal flooding can be expected in Bermuda, with large and destructive waves along the coast. In addition, life-threatening surf and riptide conditions are likely in the Virgin Islands, Puerto Rico, Dominican Republic, Bahamas. Those dangerous conditions are expected along the U.S. East Coast and Bermuda today, Oct. 16,” according to NASA.
After the hurricane passes, a team will be sent to assess the impact of the storm on Bermuda and the tracking station. Further delays are possible if Bermuda’s essential infrastructure systems are damaged, such as power, transportation and communications.
The Antares/Cygnus rocket and cargo ship launch from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility along the eastrn shore of Virginia.
Liftoff is currently target for October 27 at 6:44 p.m. (EDT). The rendezvous and berthing of Cygnus with the ISS remains on November 2, with grapple of the spacecraft by the station’s robotic arm at approximately 4:58 a.m. (EST), according to a NASA update.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Astronauts Keep an Eye on Tropical Storm Arthur from the Space Station
The first storm of the Atlantic hurricane season is easily visible from space. International Space Station astronaut Reid Wiseman tweeted this picture of the storm, saying, “Just flew over Tropical Storm Arthur – hoping it heads to sea. Looks mean.”
Forecasters said the storm is slowly strengthening off Florida’s east coast, but will move up the coast just in time for the July 4th holiday in the US. While Tropical Storm Arthur is likely to stay offshore while it cruises by Florida, it might become a hurricane by Thursday. The National Hurricane Center reported at 2 pm EDT Wednesday that a tropical storm warning is in effect for all of coastal North Carolina with a hurricane watch the for the portion of the state that extends into the Atlantic Ocean. As of the time of the report, Tropical Storm Arthur was about 160 km (100 miles) east of Daytona Beach, Florida and 378 km (235 miles) south of Charleston, South Carolina.
For current information about this storm, see the National Hurricane Center’s website.
Timelapse of Hurricane Sandy, Satellite Views October 23-31, 2012
Here’s a complete animation of Hurricane Sandy from October 23-31, as seen by GOES-13, a geosynchronous satellite that is in orbit nearly 36,000 km (23,000 miles) above Earth. This huge storm was costly in terms of death and destruction. The death toll currently stands at 160 (88 in the U.S., 54 in Haiti, 11 in Cuba), with damage estimates ranging from $10 – $55 billion.
Below is a timelapse animation which shows the full hemisphere view from GOES-13, showing the development of Hurricane Sandy as it begins over Central America and begins its path up through the Caribbean and the east coast of the U.S.
The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite acquired this image of the storm around 3:13 a.m. Eastern Daylight Time (7:13 Universal Time) on October 31. Credit: NASA/NOAA
This image from the Suomi NPP satellite shows remnants of Hurricane Sandy as it moved inland in the early morning hours of October 31, 2012. As the center of the system passed Pennsylvania, its maximum sustained winds were 40 miles (64 kilometers) per hour. This image is from the “day-night band” on VIIRS, which detects light wavelengths from green to near-infrared. The Moon lit the tops of the clouds.
Sandy’s clouds stretched from Hudson Bay to Chicago and Washington. Clusters of lights gave away the locations of some cities throughout the region; but along the East Coast, clouds mostly obscured the lights, many of which were blacked out due to the storm. On October 31, the Wall Street Journal reported that several million customers in multiple states were without electricity.
You can see more satellite images of Sandy’s traverse at the NASA Earth Observatory website.
Satellites Provide 3-D Views and More of Hurricane Sandy
Hurricane Sandy as viewed by the TRMM Precipitation Radar at 2:20 EDT on Oct. 28, 2012. Credit: NASA
Satellite imagery and data has been invaluable in predicting the path and intensity of storms like Hurricane Sandy. Satellites like NASA’s Tropical Rainfall Measuring Mission (TRMM) can measure rainfall rates and cloud heights in tropical cyclones, and was used to create a 3-D image, above, to allow forecasters to look inside the hurricane, and predict fairly spot-on what locations would be affected the worst. There’s even a 3-D video view from the CloudSat satellite, and much more, including a stunning wind map, and this round-up from JPL of various satellite views of the storm. You can also see a slideshow of NASA satellite images and videos on the NASA Goddard Flickr site.
This exemplifies just one reason why space exploration is important, and why people are maybe now starting to realize how our failure to plan ahead and invest in weather satellites may become a problem. Without those eyes in the sky we are blind to the minute-to-minute and hour-to-hour development of storms and weather, not to mention overall study of the climate.
Below is a stunning high-speed satellite view from the GOES-14 satellite:
Focusing just on the area of the storm, the GOES-14 Super Rapid Scan Operation (SRSO) captures infrared and visible data every minute and relays that information to forecasters on the ground. This animation shows the GOES-14 SRSO for October 29, 2012 as Hurricane Sandy approached the U.S. coastline.