First Hyperloop Technology Demo A Success

After a successful demonstration on their test track, Hyperloop One is one step closer to making Musk's "fifth mode of transportation" a reality. Credit: cbc.ca

Back in 2012, Tesla Motors, Paypal and SpaceX founder Elon Musk made headlines when he announced his idea for a “fifth form of transportation“. Known as the Hyperloop, the concept called for the creation of a high-speed train that would use a low-pressure steel tube and a series of aluminum pod cars to whisk passengers from San Francisco to Los Angeles in just 35 minutes. At the time, Musk claimed he was simply too busy with other projects to build such a system, but that others were free to take a crack at it.

Since then, two startups have emerged that are attempting to do just that. And just yesterday, the startup known as Hyperloop One (formerly Hyperloop Technologies) conducted a test on their full-scale test track located in the Nevada Desert. In what they referred to as a “Propulsion Open Air Test” (POAT), this startup passed a major developmental milestone, bringing them one step closer to making the dream of the Hyperloop a reality.

Using the same linear-accelerator motor that will one day propel podcars through a series of semi-pressurized tubes, the Hyperloop One’s engineers managed to accelerate their test vehicle down a rail track at speeds of up to 483 km/h (300 mph) before plowing it into a sand berm. While this is not quite the 1125 km/h (700 mph) that Hyperloop One hopes to get their pods up to (and there are still matter to work out, such as passenger safety) it is a major step forward.

For one, the test provided some valuable returns that showed that the startup’s eventual goal is realizable. Before it slammed into a pile of sand (on a count of the fact that they have yet to design a braking system) the engineers were able to confirm that the test car had managed to accelerate from 0 to 160 km/h (100 mph) in one second. Within a second and a half, the pod had reached 193 km/h (120 mph), reportedly pulling 2.5 Gs in the process.

Hyperloop's One future test track, which will consist of aluminum tubes under low air pressure. Credit: Hyperloop One
Hyperloop One prototype tube, which is currently under construction in the Nevada Desert. Credit: Hyperloop One

As Josh Giegel, Hyperloop One’s chief engineer, explained in a recent interview with Mashable, the test addressed their system’s linear electric motor-based propulsion. Their design is distinguished from other motors in that it has no moving parts, relying instead on a series of “blades” that measure roughly 60 centimeters long and 15 wide (24 by 6 inches). When powered, these blades create electromagnetic energy that reacts with the pod to propel it along.

Hyperloop One CEO Rob Lloyd was on hand to comment. By 2020, he hopes to sees three lines in operation, with one likely running between San Fransisco and LA and another potentially in Russia. “This was a major technology milestone,” he said. “Hyperloop is faster, greener, safer, and cheaper than any other mode of transportation… We’re building this thing.”

Lloyd also took the occasion to announce new partnerships that the company is entering into – which include architecture, engineering, finance,  freight and tunneling firms – as well as the $80 million in Series B funding they have received. But perhaps the most interesting development to coincide with the test was the decision to change their name. While the reason for this was not explained, the smart money is on it being intended to clear up confusion surrounding the company’s immediate competition.

At present, there are two major companies competing to bring Musk’s vision to life. On the one hand, there is Hyperloop One (formerly Hyperloop Technologies), while the other is Hyperloop Transportation Technologies (or HTT). This little naming scheme has caused quite a bit of confusion in the past, and it is clear at this point that Hyperloop One wants to distinguish itself as being the preeminent leader in the field.

A sled speeds down a track during the test of a Hyperloop One propulsion system Wednesday in North Las Vegas, Nev. Credit: John Locher/The Associated Press)
The test car speeds down the track during the open-air test of the Hyperloop One propulsion system in the Nevada Desert. Credit: John Locher/The Associated Press

But of course, the competition is far from over. In the past few years, HTT has announced some lucrative partnerships as well, which included signing with international engineering giant Aecom and Oerlikon, the world’s oldest vacuum technology company. Earlier this year, HTT also announced an agreement with the Slovakian government to build two Hyperloops that will connect major cities in Central Europe.

One of these lines will run between Vienna, Austria and Bratislava, Slovakia, while the other will connect Bratislava to Budapest, Hungary. The project is expected to cost $200 – $300 million, and is expected to reach an annual capacity of 10 million passengers.

Last, but not least, it is important to note that Hyperloop One’s test comes not long after the Hyperloop Pod Competition, a design competition sponsored by SpaceX that saw 100 university teams compete to create a design for a Hyperloop podcar. The winning team, which hails from MIT, will be testing their final prototype podcar on the one-mile Hyperloop Test Track at SpaceX’s headquarters in California next month.

Much is happening on the Hyperloop front! Who knows where it will all lead? One thing is clear though. Since Musk released the white paper for his concept in 2013 and companies began picking it up, this project has had no shortage of enthusiasts, skeptics and detractors. With every passing milestone, partnership and test, more and more people are beginning to seriously ask, “can it be done?”

Musk Says Hyperloop Could Work On Mars… Maybe Even Better!

At the recent ceremony for the Hyperloop Pod Competition, Musk announced that his concept for a high-speed train might work better on Mars. Credit: HTT

Elon Musk has always been up-front about his desire to see humans settle on the Red Planet. In the past few years, he has said that one of his main reasons for establishing SpaceX was to see humanity colonize Mars. He has also stated that he believes that using Mars as a “backup location” for humanity might be necessary for our survival, and even suggested we use nukes to terraform it.

And in his latest speech extolling the virtues of colonizing Mars, Musk listed another reason. The Hyperloop – his concept for a high-speed train that relies steel tubes, aluminum cars and maglev technology to go really fast – might actually work better in a Martian environment. The announcement came as part of the award ceremony for the Hyperloop Pod Competition, which saw 100 university teams compete to create a design for a Hyperloop podcar.

It was the first time that Musk has addressed the issue of transportation on Mars. In the past, he has spoken about establishing a colony with 80,000 people, and has also discussed his plans to build a Mars Colonial Transporter to transport 100 metric tons (220,462 lbs) of cargo or 100 people to the surface of Mars at a time (for a fee of $50,000 apiece). He has also discussed communications, saying that he would like to bring the internet to Mars once a colony was established.

Artist's concept of what a Hyperloop pod car might look like. Credit: Tesla
Artist’s concept of what a Hyperloop pod car’s interior might look like. Credit: Tesla

But in addressing transportation, Musk was able to incorporate another important concept that he has come up with, and which is also currently in development. Here on Earth, the Hyperloop would rely on low-pressure steel tubes and a series of aluminum pod cars to whisk passengers between major cities at speeds of up to 1280 km/h (800 mph). But on Mars, according to Musk, you wouldn’t even need tubes.

As Musk said during the course of the ceremony: “On Mars you basically just need a track. You might be able to just have a road, honestly. [It would] go pretty fast… It would obviously have to be electric because there’s no oxygen. You have to have really fast electric cars or trains or things.”

Essentially, Musk was referring to the fact that since Mars has only 1% the air pressure of Earth, air resistance would not be a factor. Whereas his high-speed train concept requires tubes with very low air pressure to reach the speed of sound here on Earth, on Mars they could reach those speeds out in the open. One might say, it actually makes more sense to build this train on Mars rather than on Earth!

The Hyperloop Pod Competition, which was hosted by SpaceX, took place between Jan 27th and 29th. The winning entry came from MIT, who’s design was selected from 100 different entries. Their pod car, which is roughly 2.5 meters long and 1 meter wide (8.2 by 3.2 feet), would weight 250 kg (551 lbs) and be able to achieve an estimated cruise speed of 110 m/s (396 km/h; 246 mph). While this is slightly less than a third of the speed called for in Musk’s original proposal, this figure representing cruising speed (not maximum speed), and is certainly a step in that direction.

Team MIT's Hyperloop pod car design. Credit: MIT/Twitter
Team MIT’s Hyperloop pod car design. Credit: MIT/Twitter

And while Musk’s original idea proposed that the pod be lifted off the ground using air bearings, the MIT team’s design called for the use of electrodynamic suspension to keep itself off the ground. The reason for this, they claimed, is because it is “massively simpler and more scalable.” In addition, compared to the other designs’ levitation systems, theirs had one of the lowest drag coefficients.

The team – which consists of 25 students with backgrounds in aeronautics, mechanical engineering, electrical engineering, and business management – will spend the next five months building and testing their pod. The final prototype will participate in a trial run this June, where it will run on the one-mile Hyperloop Test Track at SpaceX’s headquarters in California.

Since he first unveiled it back in 2013, Musk’s Hyperloop concept has been the subject of considerable interest and skepticism. However, in the past few years, two companies – Hyperloop Transportation Technologies (HTT) and Hyperloop Technologies – have emerged with the intention of seeing the concept through to fruition. Both of these companies have secured lucrative partnerships since their inception, and are even breaking ground on their own test tracks in California and Nevada.

And with a design for a podcar now secured, and tests schedules to take place this summer, the dream of a “fifth mode of transportation” is one step closer to becoming a reality! The only question is, which will come first – Hyperloops connecting major cities here on Earth, or running passengers and freight between domed settlements on Mars?

Only time will tell! And be sure to check out Team MIT’s video:

Further Reading: SpaceXhyperloop.it.edu