Approximately 4.1 to 3.8 billion years ago, the planets of the inner Solar System experienced many impacts from comets and asteroids that originated in the outer Solar System. This is known as the Late Heavy Bombardment (LHB) period when (according to theory) the migration of the giant planets kicked asteroids and comets out of their regular orbits, sending them hurtling towards Mercury, Venus, Earth, and Mars. This bombardment is believed to have distributed water to the inner Solar System and maybe the building blocks of life itself.
According to new research from the University of Cambridge, comets must travel slowly – below 15 km/s (9.32 mi/s) – to deliver organic material onto other planets. Otherwise, the essential molecules would not survive the high speed and temperatures generated by atmospheric entry and impact. As the researchers found, such comets are only likely to occur in tightly bound systems where planets orbit closely to each other. Their results show that these systems would be a good place to look for evidence of life (biosignatures) beyond the Solar System.
NASA has announced the discovery of hydrogen in the plumes on Enceladus. This is huge news, and Cassini scientists have looked forward to this day. What it means is that there is a potential source of energy for microbes in the oceans of Enceladus, and that energy from the Sun is not required to support life.
We’ve known about the plumes on Enceladus for a while now, and Cassini has even flown through those plumes to determine their content. But hydrogen was never discovered until now. What it means is that there is a geochemical source for hydrogen in Enceladus’ ocean, coming from the interaction between warm water and rocks.
“This is the closest we’ve come, so far, to identifying a place with some of the ingredients needed for a habitable environment.” – Thomas Zurbuchen, NASA.
This is a capstone finding, according to NASA. As far as we know, life needs three things to exist: water, energy, and the right chemicals. We know it has the necessary chemicals, we know it has water, and we now know it has a source of energy.
On Earth, hydrothermal vents deep in the ocean floor provide the energy for a web of life reliant on those vents. Bacteria live there, forming the base of a food chain that can include tube worms, shrimp, and other life forms. This discovery points to the possibility that similar communities might exist in the sub-surface ocean of Enceladus.
“This is the closest we’ve come, so far, to identifying a place with some of the ingredients needed for a habitable environment,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at Headquarters in Washington.
Microbes in Enceladus’ ocean could use the hydrogen in a process called methanogenesis. They obtain energy by combining hydrogen with dissolved carbon dioxide in the water. This process produces a methane by-product. Methanogenesis is a bedrock process at the root of life here on Earth.
“Confirmation that the chemical energy for life exists within the ocean of a small moon of Saturn is an important milestone in our search for habitable worlds beyond Earth,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.
Hubble Confirms Plumes On Europa
NASA has also announced that the Hubble Space Telescope has confirmed the presence of plumes on another of our Solar System’s icy moons, Europa.
These plumes were first seen by the Hubble in 2014, but were never seen again. Since repeatability is key in science, those findings were put on the back burner. But in 2016, NASA announced today, Hubble spotted them again, in the same place. This is the same spot that the Galileo probe noticed a thermal hot spot.
We don’t know if Europa has hydrogen in its oceans, but it’s easy to see where this is going. NASA’s excitement is palpable.
What’s Next?
NASA’s Europa Clipper mission will visit Europa and determine the thickness of its ice layer, as well as the depth and salinity of its ocean. It will also analyze the atmosphere and the composition of the plumes. Europa Clipper will fill in a lot of gaps in our understanding.
Europa Clipper will be launched around 2022, but a mission to Enceladus will have to wait a little longer. One mission under consideration in NASA’s Discovery program is ELF, Enceladus Life Finder. ELF would fly through Enceladus’ plumes 8 or 10 times, taking more detailed samples of their content.
The discovery of hydrogen in the plumes of Enceladus is huge news any way you look at it. But that discovery begs the question: Are we doing it all wrong? Are we looking for life in the wrong places?
The search for life elsewhere in the Universe, so far, has mostly revolved around exoplanets. And then refining that search to identify exoplanets that are in the habitable zones of their stars. We’re searching for other Earths, basically.
But maybe we should be changing our focus. Maybe it’s the ice worlds, including icy exomoons, that are the most likely targets for our search. This new evidence from NASA’s Cassini mission, and from the Hubble Space Telescope, suggests that in our Solar System at least, they are the best place to search.
One Final Ingredient Needed?
There’s a fourth ingredient needed for life. Once there is water, energy, and the necessary chemicals, life needs time to get going. How much time, we’re not exactly certain. But this is where Enceladus and Europa are different.
Europa is about 4 billion years old, or so we think. That’s only half a billion years younger than Earth, and we think life started on Earth about 3.5 billion years ago. This hints that, if conditions on Europa are favorable, life has had a long time to get going. Of course, that doesn’t mean it has.
On the other hand, Enceladus is probably much younger. A study of the orbits of Saturn’s moons suggests that Enceladus may only be 100 million years old. If that’s true, it’s not very much time for life to get going.
The hydrogen discovery is huge news. There are still a lot of questions, of course, and lots to be debated. But confirming a source of energy on Enceladus builds the case for the same type of hydrothermal vent life that we see on Earth.