Of Course You’ll Want to See InSight’s First Selfie.

InSight's first full selfie on Mars. The selfie was taken on Dec. 6th, and is a mosaic of 11 images taken with its Instrument Deployment Camera on the elbow of its robotic arm. Image Credit: NASA/JPL-Caltech
InSight's first full selfie on Mars. The selfie was taken on Dec. 6th, and is a mosaic of 11 images taken with its Instrument Deployment Camera on the elbow of its robotic arm. Image Credit: NASA/JPL-Caltech

InSight has been on the Martian surface for almost three weeks, prepping itself for all the science it’s going to do. But in the meantime, it’s doing what any self-respecting, modern robotic lander does: Taking pictures of itself. And now NASA has released InSight’s first selfie for all the lander’s adoring fans and Instagram followers.

InSight is on Mars to study the interior of the rocky planet, and provide clues into how rocky planets form, both here in our Solar System, and in distant systems. It’s got a suite of instruments to do that with, including a device that will drill 5m (16 ft.) deep into the planet to measure how heat flows through the core of Mars. But it’s taking a cautious approach to that, using its time wisely to select the perfect spot to deploy its instruments.

In the meantime, holiday snaps!

Continue reading “Of Course You’ll Want to See InSight’s First Selfie.”

InSight’s Robot Arm is Ready to go to Work

This image was taken by the InSight Lander's Instrument Deployment Camera mounted on the lander's robotic arm. The stowed grapple on the end of the arm is folded in, but it will unfold and be used to deploy the lander's science instrument. The copper-colored hexagonal object is the protective cover for the seismometer, and the grey dome behind it is a wind and thermal shield, which will be placed over the seismometer after its deployed. The black cyliner on the left is the heat probe, which will drill up to 5 meters into the Martian surface. Image: NASA/JPL-Caltech
This image was taken by the InSight Lander's Instrument Deployment Camera mounted on the lander's robotic arm. The stowed grapple on the end of the arm is folded in, but it will unfold and be used to deploy the lander's science instrument. The copper-colored hexagonal object is the protective cover for the seismometer, and the grey dome behind it is a wind and thermal shield, which will be placed over the seismometer after its deployed. The black cyliner on the left is the heat probe, which will drill up to 5 meters into the Martian surface. Image: NASA/JPL-Caltech

Some new images sent home by the InSight Lander show the robotic arm and the craft’s instruments waiting on deck, on the surface of Mars. The lander is still having its systems tested, and isn’t quite ready to get to work. It’ll use its arm to deploy its science instruments, including a drill that will penetrate up to 5 meters (16 ft.) deep into the Martian surface.

Continue reading “InSight’s Robot Arm is Ready to go to Work”

InSight Deploys its Solar Cells, Prepared for Surface Operations on Mars!

The Instrument Deployment Camera (IDC), located on the robotic arm of NASA's InSight lander, took this picture of the Martian surface on Nov. 26, 2018. Credit: NASA/JPL-Caltech.

Yesterday, NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander reached Mars after a seven months journey. NASA broadcast the landing live, showing the mission control team eagerly watching as the spacecraft entered the Martian atmosphere and began the nail-biting entry, descent and landing (EDL) process.

At exactly 11:52:29 am PST (2:52:59 pm EST) mission controllers received a signal via the Mars Cube One (MarCO) satellites that the lander had successfully touched down. About a minute later, InSight began to conduct surface operations, which involved the deployment of its solar arrays and prepping its instruments for research.

Continue reading “InSight Deploys its Solar Cells, Prepared for Surface Operations on Mars!”

NASA’s Insight Lander Spreads Its Solar Wings. It’ll Fly To Mars In May, 2018

The Insight lander responds to commands to spread its solar arrays during a January 23, 2018 test at the Lockheed Martin clean room in Littleton, Colorado. Image: Lockheed Martin Space
The Insight lander responds to commands to spread its solar arrays during a January 23, 2018 test at the Lockheed Martin clean room in Littleton, Colorado. Image: Lockheed Martin Space

May 2018 is the launch window for NASA’s next mission to Mars, the InSight Lander. InSight is the next member of what could be called a fleet of human vehicles destined for Mars. But rather than working on the question of Martian habitability or suitability for life, InSight will try to understand the deeper structure of Mars.

InSight stands for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport. InSight will be the first robotic explorer to visit Mars and study the red planet’s deep interior. The work InSight does should answer questions about the formation of Mars, and those answers may apply to the history of the other rocky planets in the Solar System. The lander, (InSight is not a rover) will also measure meteorite impacts and tectonic activity happening on Mars currently.

This video helps explain why Mars is a good candidate to answer questions about how all our rocky planets formed, not just Mars itself.

InSight was conceived as part of NASA’s Discovery Program, which are missions focused on important questions all related to the “content, origin, and evolution of the solar system and the potential for life elsewhere”, according to NASA. Understanding how our Solar System and its planets formed is a key part of the Discovery Program, and is the question InSight was built to answer.

This artist's illustration of InSight on a photo background of Mars shows the lander fully deployed. The solar arrays are open, and in the foreground two of its instruments are shown. On the left is the SEIS instrument, and on the right is the HP3 probe. Image: NASA/Lockheed Martin
This artist’s illustration of InSight on a photo background of Mars shows the lander fully deployed. The solar arrays are open, and in the foreground two of its instruments are shown. On the left is the SEIS instrument, and on the right is the HP3 probe. Image: NASA/Lockheed Martin

To do its work, InSight will deploy three instruments: SEIS, HP³, and RISE.

SEIS

This is InSight’s seismic instrument, designed to take the Martian pulse. It stands for Seismic Experiment for Internal Structure.

In this image, InSight's Instrument Deployment Arm is practicing placing SEIS on the surface. Image: NASA/Lockheed Martin
In this image, InSight’s Instrument Deployment Arm is practicing placing SEIS on the surface. Image: NASA/Lockheed Martin

SEIS sits patiently under its dome, which protects it from Martian wind and thermal effects, and waits for something to happen. What’s it waiting for? For seismic waves caused by Marsquakes, meteorite impacts, or by the churning of magma deep in the Martian interior. These waves will help scientists understand the nature of the material that first formed Mars and the other rocky planets.

HP³

HP³ is InSight’s heat probe. It stands for Heat Flow and Physical Properties Probe. Upon deployment on the Martian surface, HP³ will burrow 5 meters (16 ft.) into Mars. No other instrument has ever pierced Mars this deeply. Once there, it will measure the heat flowing deeply within Mars.

In this image, the Heat Flow and Physical Properties Probe is shown inserted into Mars. Image: NASA
In this image, the Heat Flow and Physical Properties Probe is shown inserted into Mars. Image: NASA

Scientists hope that the heat measured by HP³ will help them understand whether or not Mars formed from the same material that Earth and the Moon formed from. It should also help them understand how Mars evolved after it was formed.

RISE

RISE stands for Rotation and Interior Structure Experiment. RISE will measure the Martian wobble as it orbits the Sun, by precisely tracking InSight’s position on the surface. This will tell scientists a lot about the deep inner core of Mars. The idea is to determine the depth at which the Martian core is solid. It will also tell us which elements are present in the core. Basically, RISE will tell us how Mars responds to the Sun’s gravity as it orbits the Sun. RISE consists of two antennae on top of InSight.

The two RISE antennae are shown in this image. RISE will reveal information about the Martian core by tracking InSight's position while Mars orbits the Sun. Image: NASA/Lockheed Martin
The two RISE antennae are shown in this image. RISE will reveal information about the Martian core by tracking InSight’s position while Mars orbits the Sun. Image: NASA/Lockheed Martin

InSight will land at Elysium Planitia which is a flat and smooth plain just north of the Martian equator. This is considered a perfect location or InSight to study the Martian interior. The landing sight is not far from where Curiosity landed at Gale Crater in 2012.

InSight will land at Elysium Planitia, just north of the Martian equator. Image: NASA/JPL-CalTech
InSight will land at Elysium Planitia, just north of the Martian equator. Image: NASA/JPL-CalTech

InSight will be launched to Mars from Vandenberg Air Force Base in California by an Atlas V-401 rocket. The trip to Mars will take about 6 months. Once on the Martian surface, InSight’s mission will have a duration of about 728 Earth days, or just over 1 Martian year.

InSight won’t be launching alone. The Atlas that launches the lander will also launch another NASA technology experiment. MarCO, or Mars Cube One, is two suitcase-size CubeSats that will travel to Mars behind InSight. Once in orbit around Mars, their job is to relay InSight data as the lander enters the Martian atmosphere and lands. This will be the first time that miniaturized CubeSat technology will be tested at another planet.

One of the MarCO Cubesats that will be launched with InSight. This will be the first time that CubeSat technology will be tested at another planet. Image: NASA/JPL-CalTech
One of the MarCO Cubesats that will be launched with InSight. This will be the first time that CubeSat technology will be tested at another planet. Image: NASA/JPL-CalTech

If the MarCO experiment is successful, it could be a new way of relaying mission data to Earth. MarCO will relay news of a successful landing, or of any problems, much sooner. However, the success of the InSight lander is not dependent on a successful MarCO experiment.

Preparations for Deployment of InSight Lander to Mars are Ramping Up!

Artist's conception of the NASA InSight Mars lander. Credit: NASA/JPL-Caltech

This summer has been a busy time for NASA. At present, the agency is making the final preparations for the Cassini mission‘s plunge into Saturn’s atmosphere, monitoring the large Near-Earth Asteroid that recently made a flyby of Earth, marking the 40th anniversary of the historic Voyager missions, and hosting the Summer of Mars at the Kennedy Space Center.

In addition to all that, engineers at the Jet Propulsion Laboratory in Pasadena, California, are busy preparing the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) Lander for its scheduled launch in 2018. Once deployed to Mars, the lander will reveal things about Mars’ interior geology and composition, shedding new light on the history of the Red Planet’s formation and evolution.

Originally scheduled for launch in 2016, the lander’s deployment was delayed due to the failure of a key component – a chamber that housed the Seismic Experiment for Interior Structure (SEIS). Having finished work on a new vacuum enclosure for this instrument, the technicians at Lockheed Martin Space Systems are back at work, assembling and testing the spacecraft in a clean room facility outside of Denver, Colorado.

This artist’s concept from August 2015 depicts NASA’s InSight Mars lander fully deployed for studying the deep interior of Mars. Credit: NASA/JPL-Caltech

As Stu Spath, the spacecraft program manager at Lockheed Martin, said in a NASA press statement:

“Our team resumed system-level integration and test activities last month. The lander is completed and instruments have been integrated onto it so that we can complete the final spacecraft testing including acoustics, instrument deployments and thermal balance tests.”

Beyond the exploration of Mars, the InSight mission is also expected to reveal information about how all terrestrial (i.e. rocky) planets in the Solar System formed over four billion years ago. Mars is an especially opportune target for this type of research since it has been relatively inactive for the past three billion years. However, when the planet was still young, it underwent geological processes that were analogous to Earth’s.

In other words, because the interior of Mars has been subject to less convection over the past three billion years, it has likely preserved evidence about its early geological history better than Earth has. InSight will study this preserved history through a series of instruments that will measure the planet’s seismology, heat loss, and the state and nature of its core.

Once it reaches Mars, the stationary lander will set down near Mars’ equator and deploy its two fold-out solar cells, which kind of resemble large fans. Within a few weeks of making its landing, it will use a robotic arm to place its two main instruments onto the Martian surface – the aforementioned Seismic Experiment for Interior Structure (SEIS) and the Heat Flow and Physical Properties Probe (HP³).

Artist’s impression of the interior of Mars. Credit: NASA/JPL

The SEIS instrument – which was developed by France’s National Center for Space Studies (CNES) in collaboration with NASA and several European scientific institutions – has a sensitivity comparable to the best research seismometers here on Earth. This instrument will record seismic waves from “marsquakes” and meteor impacts, which will reveal things about the planet’s interior layers.

The HP³ probe, supplied by the German Aerospace Center (DLR), will use a Polish-made self-hammering mechanism to bury itself to a depth of 3 meters (10 feet) or more. As it descends, the probe will extend a tether that contains temperature sensors every ~10 cm, which measure the temperature profile of the subsurface. Combined with surface measurements, the instrument will determine the amount of heat escaping from the planet’s interior.

A third experiment, known as Rotation and Interior Structure Experiment (RISE), will also come into play. This instrument will use the lander’s X-band radio link to conduct Doppler tracking of the lander’s location, which will also allow it to measure variations in Mars’ rotation axis. Since these variations are primarily related to the size and state of Mars’ core, this experiment will shed light on one of Mars’ greatest mysteries.

Thanks to multiple missions that have studies Mars’ surface and atmosphere, scientists now know that roughly 4.2 billions of years ago, Mars lost its magnetic field. Because of this, Mars’ atmosphere was stripped away by solar wind during the next 500 million years. It is believed that it was this process that allowed the planet to go from being a warmer, wetter environment in the past to the cold, desiccated and irradiated place it is today.

NASA’s InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. Credit: NASA/JPL-Caltech/Lockheed Martin

As such, determining the state of Mars’ core – i.e. whether it is solid or liquid, or differentiated between a solid outer core and liquid inner core – will allow scientists to gain a more comprehensive understanding of the planet’s geological history. It will also allow them to answer with a fair degree of certainty how and when Mars lost its magnetic field (and hence, its denser, warmer atmosphere).

The spacecraft’s science payload is also on track for next year’s launch. At present, the mission is scheduled to launch on May 5th, 2018, though this window could be moved to anytime within a five-week period. Regardless of what day it launches, mission planners indicate that the flight will reach Mars on November 26th, 2018 (the Monday after Thanksgiving).

As noted, the mission was originally planned to launch in March of 2016, but was canceled due to the presence of a leak in the special metal container designed to maintain near-vacuum conditions around the SEIS’s main sensors. Now that a redesigned vacuum vessel has been built and tested (and integrated with the SEIS) the spacecraft is ready for its new launch date.

Back in 2010, the InSight mission was selected from a total of 28 proposals, which were made as part of the twelfth round of selections for NASA’s Discovery Program. In contrast to New Frontiers or Flagship programs, Discovery missions are small-budget enterprises that aid in larger scientific pursuits. Along with two other finalists – the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper) – InSight was awarded funding for further development.

Bruce Banerdt of NASA’s Jet Propulsion Laboratory is the Principle Investigator (PI) for the InSight mission.

Be sure to check out this video of the InSight mission (courtesy of NASA JPL) as well:

Further Reading: NASA JPL

Some Earth Life is Ready to Live on Mars, Right Now

An artist’s impression of what Mars might have looked like with water. Credit: ESO/M. Kornmesser

For some time, scientists have suspected that life may have existed on Mars in the deep past. Owing to the presence of a thicker atmosphere and liquid water on its surface, it is entirely possible that the simplest of organisms might have begun to evolve there. And for those looking to make Mars a home for humanity someday, it is hoped that these conditions (i.e favorable to life) could be recreated again someday.

But as it turns out, there are some terrestrial organisms that could survive on Mars as it is today. According to a recent study by a team of researchers from the Arkansas Center for Space and Planetary Sciences (ACSPS) at the University of Arkansas, four species of methanogenic microorganisms have shown that they could withstand one of the most severe conditions on Mars, which is its low-pressure atmosphere.

The study, titled “Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars,” was recently published in the journal Origins of Life and Evolution of Biospheres. According to the study, the team tested the survivability of four different types of methanogens to see how they would survive in an environment analogous to the subsurface of Mars.

Methanogenic organisms that were found in samples of deep volcanic rocks along the Columbia River and in Idaho Falls. Credit: NASA

To put it simply, Methanogens are ancient group of organisms that are classified as archaea, a species of microorganism that do not require oxygen and can therefore survive in what we consider to be “extreme environments”. On Earth, methanogens are common in wetlands, ocean environments, and even in the digestive tracts of animals, where they consume hydrogen and carbon dioxide to produce methane as a metabolic byproduct.

And as several NASA missions have shown, methane has also been found in the atmosphere of Mars. While the source of this methane has not yet been determined, it has been argued that it could be produced by methanogens living beneath the surface. As Rebecca Mickol, an astrobiologist at the ACSPS and the lead author of the study, explained:

“One of the exciting moments for me was the detection of methane in the Martian atmosphere. On Earth, most methane is produced biologically by past or present organisms. The same could possibly be true for Mars. Of course, there are a lot of possible alternatives to the methane on Mars and it is still considered controversial. But that just adds to the excitement.”

As part of the ongoing effort to understand the Martian environment, scientists have spent the past 20 years studying if four specific strains of methanogen – Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis – can survive on Mars. While it is clear that they could endure the low-oxygen and radiation (if underground), there is still the matter of the extremely low air-pressure.

Graduate students Rebecca Mickol and Navita Sinha prepare to load methanogens into the Pegasus Chamber housed in W.M. Keck Laboratory. Credit: University of Arkansas

With help from the NASA Exobiology & Evolutionary Biology Program (part of NASA’s Astrobiology Program), which issued them a three-year grant back in 2012, Mickol and her team took a new approach to testing these methanogens. This included placing them in a series of test tubes and adding dirt and fluids to simulate underground aquifers. They then fed the samples hydrogen as a fuel source and deprived them of oxygen.

The next step was subjecting the microorganisms to pressure conditions analogues to Mars to see how they might hold up. For this, they relied on the Pegasus Chamber, an instrument operated by the ACSPS in their W.M. Keck Laboratory for Planetary Simulations. What they found was that the methanogens all survived exposure to pressures of 6 to 143 millibars for periods of between 3 and 21 days.

This study shows that certain species of microorganisms are not dependent on a the presence of a dense atmosphere for their survival. It also shows that these particular species of methanogens could withstand periodic contact with the Martian atmosphere. This all bodes well for the theories that Martian methane is being produced organically – possibly in subsurface, wet environments.

This is especially good news in light of evidence provided by NASA’s HiRISE instrument concerning Mars’ recurring slope lineae, which pointed towards a possible connection between liquid water columns on the surface and deeper levels in the subsurface. If this should prove to be the case, then organisms being transported in the water column would be able to withstand the changing pressures during transport.

The possible ways methane might get into Mars’ atmosphere, ranging from subsurface microbes and weathering of rock and stored methane ice called a clathrate. Ultraviolet light can work on surface materials to produce methane as well as break it apart into other molecules (. Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan

The next step, according to Mickol is to see how these organisms can stand up to temperature. “Mars is very, very cold,” she said, “often getting down to -100ºC (-212ºF) at night, and sometimes, on the warmest day of the year, at noon, the temperature can rise above freezing. We’d run our experiments just above freezing, but the cold temperature would limit evaporation of the liquid media and it would create a more Mars-like environment.”

Scientists have suspected for some time that life may still be found on Mars, hiding in recesses and holes that we have yet to peek into. Research that confirms that it can indeed exist under Mars’ present (and severe) conditions is most helpful, in that it allows us to narrow down that search considerably.

In the coming years, and with the deployment of additional Mars missions – like NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander, which is scheduled for launch in May of next year – we will be able to probe deeper into the Red Planet. And with sample return missions on the horizon – like the Mars 2020 rover – we may at last find some direct evidence of life on Mars!

Further Reading: Astrobiology Magazine, Origins of Life and Evolution of Biospheres

What are CubeSats?

NanoRacks CubeSats photographed after deployment from the ISS by an Expedition 38 crew member. Credit: NASA

One of the defining characteristics of the modern era of space exploration is the open nature of it. In the past, space was a frontier that was accessible only to two federal space agencies – NASA and the Soviet space program. But thanks to the emergence of new technologies and cost-cutting measures, the private sector is now capable of providing their own launch services.

In addition, academic institutions and small countries are now capable of building their own satellites for the purposes of conducting atmospheric research, making observations of Earth, and testing new space technologies. It’s what is known as the CubeSat, a miniaturized satellite that is allowing for cost-effective space research.

Structure and Design:

Also known as nanosatellites, CubeSats are built to standard dimensions of 10 x 10 x 11 cm (1 U) and are shaped like cubes (hence the name). They are scalable, coming in versions that measure 1U, 2Us, 3Us, or 6Us on a side, and typically weigh less than 1.33 kg (3 lbs) per U. CubSats of 3Us or more are the largest, being composed of three units stacked lengthwise with a cylinder encasing them all.

A cubesat structure, 1U in size. Credit: Wikipedia Commons/Svobodat
A cubesat structure, 1U in size, without the outer skin. Credit: Wikipedia Commons/Svobodat

In recent years larger CubeSat platforms have been proposed, which include a 12U model (20 x 20 x 30 cm or 24 x 24 x 36 cm), that would extend the capabilities of CubeSats beyond academic research and testing new technologies, incorporating more complex science and national defense goals.

The main reason for miniaturizing satellites is to reduce the cost of deployment, and because they can be deployed in the excess capacity of a launch vehicle. This reduces the risks associated with missions where additional cargo has to be piggybacked to the launcher, and also allows for cargo changes on short notice.

They can also be made using commercial off-the-shelf (COTS) electronics components, which makes them comparably easy to create. Since CubeSats missions are often made to very Low Earth Orbits (LEO), and experience atmospheric reentry after just days or weeks, radiation can largely be ignored and standard consumer-grade electronics may be used.

CubeSats are built from four specific types of aluminum alloy to ensure that they have the same coefficient of thermal expansion as the launch vehicle. The satellites are also coated with a protective oxide layer along any surface that comes into contact with the launch vehicle to prevent them from being cold welded into place by extreme stress.

Components:

CubeSats often carry multiple on-board computers for the sake of carrying out research, as well providing for attitude control, thrusters, and communications. Typically, other on-board computers are included to ensure that the main computer is not overburdened by multiple data streams, but all other on-board computers must be capable of interfacing with it.

An example of a 3U cubesat - 3 1U cubes stacked. This cubesat size could function as the telescope of a two cubesat telescope system. It could be a simple 10 cm diameter optic system or use fancier folding optics to improve its resolving power. (Credit: LLNL)
An example of a 3U cubesat – 3 1U cubes stacked. This cubesat size could function as the telescope of a two cubesat telescope system. It could be a simple 10 cm diameter optic system or use fancier folding optics to improve its resolving power. Credit: LLNL

Typically, a primary computer is responsible for delegating tasks to other computers – such as attitude control, calculations for orbital maneuvers, and scheduling tasks. Still, the primary computer may be used for payload-related tasks, like image processing, data analysis, and data compression.

Miniaturized components provide attitude control, usually consisting of reaction wheels, magnetorquers, thrusters, star trackers, Sun and Earth sensors, angular rate sensors, and GPS receivers and antennas. Many of these systems are often used in combination in order to compensate for shortcomings, and to provide levels of redundancy.

Sun and star sensors are used to provide directional pointing, while sensing the Earth and its horizon is essential for conducting Earth and atmospheric studies. Sun sensors are also useful in ensuring that the CubsSat is able to maximize its access to solar energy, which is the primary means of powering a CubeSat – where solar panels are incorporated into the satellites outer casing.

Meanwhile, propulsion can come in a number of forms, all of which involve miniaturized thrusters providing small amounts of specific impulse. Satellites are also subject to radiative heating from the Sun, Earth, and reflected sunlight, not to mention the heat generated by their components.

Will cubesats develop a new technological branch of astronomy? Goddard engineers are taking the necessary steps to make cubesat sized telescopes a reality. (Credit: NASA, UniverseToday/TRR)
Will cubesats develop a new technological branch of astronomy? Goddard engineers are taking the necessary steps to make cubesat sized telescopes a reality. (Credit: NASA, UniverseToday/TRR)

As such, CubeSat’s also come with insulation layers and heaters to ensure that their components do not exceed their temperature ranges, and that excess heat can be dissipated. Temperature sensors are often included to monitor for dangerous temperature increases or drops.

For communications, CubeSat’s can rely on antennae that work in the VHF, UHF, or L-, S-, C- and X-bands. These are mostly limited to 2W of power due to the CubeSat’s small size and limited capacity. They can be helical, dipole, or monodirection monopole antennas, though more sophisticated models are being developed.

Propulsion:

CubeSats rely on many different methods of propulsion, which has in turn led to advancements in many technologies. The most common methods includes cold gas, chemical, electrical propulsion, and solar sails. A cold gas thruster relies on inert gas (like nitrogen) which is stored in a tank and released through a nozzle to generate thrust.

As propulsion methods go, it is the simplest and most useful system a CubeSat can use. It is also one of the safest too, since most cold gases are neither volatile nor corrosive. However, they have limited performance and cannot achieve high impulse maneuvers. Hence why they are generally used in attitude control systems, and not as main thrusters.

This prototype 13-kilowatt Hall thruster was tested at NASA's Glenn Research Center in Cleveland and will be used by industry to develop high-power solar electric propulsion into a flight-qualified system. Credits: NASA
Miniaturized ion engines are a method of choice for providing thrust control for CubeSats. Credits: NASA

Chemical propulsion systems rely on chemical reactions to produce high-pressure, high-temperature gas which is then directed through a nozzle to create thrust. They can be liquid, solid, or a hybrid, and usually come down to the combination of chemicals combined with a catalysts or an oxidizer. These thrusters are simple (and can therefore be miniaturized easily), have low power requirements, and are very reliable.

Electric propulsion relies on electrical energy to accelerate charged particles to high speeds – aka. Hall-effect thrusters, ion thrusters, pulsed plasma thrusters, etc. This method is beneficial since it combines high specific-impulse with high-efficiency, and the components can be easily miniaturized. A disadvantage is that they require additional power, which means either larger solar cells, larger batteries, and more complex power systems.

Solar sails are also used as a method for propulsion, which is beneficial because it requires no propellant. Solar sails can also be scaled to the CubSat’s own dimensions, and the satellite’s small mass results in the greater acceleration for a given solar sail’s area.

However, solar sails still need to be quite large compared to the satellite, which makes mechanical complexity an added source of potential failure. At this time, few CubeSats have employed a solar sail, but it remains an area of potential development since it is the only method that needs no propellant or involves hazardous materials.

The Planetary Society's LightSail-1 solar sailing spacecraft is scheduled to ride a SpaceX Falcon Heavy rocket to orbit in 2016 with its parent satellite, Prox-1. Credit: Josh Spradling/The Planetary Society.
The Planetary Society’s LightSail-1 is one of the few concepts where a CubeSat relied on a solar sail. Credit: Josh Spradling/The Planetary Society.

Because the thrusters are miniaturized, they create several technical challenges and limitations. For instance, thrust vectoring (i.e. gimbals) is impossible with smaller thrusters. As such, vectoring must instead be achieved by using multiple nozzles to thrust asymmetrically or using actuated components to change the center of mass relative to the CubeSat’s geometry.

History:

Beginning in 1999, California Polytechnic State University and Stanford University developed  the CubeSat specifications to help universities worldwide to perform space science and exploration. The term “CubeSat” was coined to denote nano-satellites that adhere to the standards described in the CubeSat design specifications.

These were laid out by aerospace engineering professor Jordi Puig-Suari and Bob Twiggs, from the Department of Aeronautics & Astronautics at Stanford University. It has since grown to become an international partnership of over 40 institutes that are developing nano-satellites containing scientific payloads.

Initially, despite their small size, academic institutions were limited in that they were forced to wait, sometimes years, for a launch opportunity. This was remedied to an extent by the development of the Poly-PicoSatellite Orbital Deployer (otherwise known as the P-POD), by California Polytechnic. P-PODs are mounted to a launch vehicle and carry CubeSats into orbit and deploy them once the proper signal is received from the launch vehicle.

The BisonSat is one example of a CubeSat mission launched by NASA’s CubeSat Launch Initiative on Oct. 8, 2015. The BisonSat is an Earth science mission that will demonstrate the acquisition of 100-meter or better resolution visible light imagery of Earth using passive magnetic stabilization from a CubeSat. The science data, 69-by-52 kilometer color images with a resolution of 43 meters per pixel, a few of which will be images of the Flathead Indian Reservation in northwest Montana, will be used primarily for engaging tribal college students and tribal communities in NASA’s mission. BisonSat is the first CubeSat designed, built, tested, and operated by tribal college students. Credits: Salish Kootenai College
The BisonSat is one example of a CubeSat mission launched by NASA’s CubeSat Launch Initiative on Oct. 8, 2015. Credits: Salish Kootenai College

The purpose of this, according to JordiPuig-Suari, was “to reduce the satellite development time to the time frame of a college student’s career and leverage launch opportunities with a large number of satellites.” In short, P-PODs ensure that many CubeSats can be launched at any given time.

Several companies have built CubeSats, including large-satellite-maker Boeing. However, the majority of development comes from academia, with a mixed record of successfully orbited CubeSats and failed missions. Since their inception, CubeSats have been used for countless applications.

For example, they have been used to deploy Automatic Identification Systems (AIS) to monitor marine vessels, deploy Earth remote sensors, to test the long term viability of space tethers, as well as conducting biological and radiological experiments.

Within the academic and scientific community, these results are shared and resources are made available by communicating directly with other developers and attending CubeSat workshops. In addition, the CubeSat program benefits private firms and governments by providing a low-cost way of flying payloads in space.

An artist's rendering of MarCO A and B during the descent of InSight. NASA/JPL-Caltech
An artist’s rendering of MarCO A and B during the descent of InSight. NASA/JPL-Caltech

In 2010, NASA created the “CubeSat Launch Initiative“, which aims to provide launch services for educational institutions and non-profit organizations so they can get their CubeSats into space. In 2015, NASA initiated its Cube Quest Challenge as part of their Centennial Challenges Programs.

With a prize purse of $5 million, this incentive-competition aimed to foster the creation of small satellites capable of operating beyond low Earth orbit – specifically in lunar orbit or deep space. At the end of the competition, up to three teams will be selected to launch their CubeSat design aboard the SLS-EM1 mission in 2018.

NASA’s InSight lander mission (scheduled to launch in 2018), will also include two CubeSats. These will conduct a flyby of Mars and provide additional relay communications to Earth during the lander’s entry and landing.

Designated Mars Cube One (MarCO), this experimental 6U-sized CubeSat will will be the first deep-space mission to rely on CubeSat technology. It will use a high-gain, flat-paneled X-band antenna to transmit data to NASA’s Mars Reconnaissance Orbiter (MRO) – which will then relay it to Earth.

Engineers for NASA's MarCO technology demonstration check out a full-scale mechanical mock-up of the small craft in development as part of NASA's next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the team at NASA's Jet Propulsion Laboratory. Image credit: NASA/JPL-Caltech
NASA engineers Joel Steinkraus and Farah Alibay demonstrate a full-scale mechanical mock-up of a MarCo CubeSat. Credit: NASA/JPL-Caltech

Making space systems smaller and more affordable is one of the hallmarks of the era of renewed space exploration. It’s also one of the main reasons the NewSpace industry has been growing by leaps and bounds in recent years. And with greater levels of participation, we are seeing greater returns when it comes to research, development and exploration.

We have written many articles about CubeSat for Universe Today. Here’s Planetary Society to Launch Three Separate Solar Sails, First Interplanetary CubeSats to Launch on NASA’s 2016 InSight Mars Lander, Making CubeSats do Astronomy, What Can You Do With a Cubesat?, These Cubesats Could Use Plasma Thrusters to Leave Our Solar System.

If you’d like more info on the CubeSat, check out CubeSat’s official homepage.

We’ve recorded an episode of Astronomy Cast all about the Space Shuttle. Listen here, Episode 127: The US Space Shuttle.

Sources:

NASA’s InSight Lander Approved for 2018 Mars Launch

This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018. Credits: NASA/JPL-Caltech
This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018.  Credits: NASA/JPL-Caltech
This artist’s concept depicts the InSight lander on Mars after the lander’s robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018. Credits: NASA/JPL-Caltech

Top NASA managers have formally approved the launch of the agency’s InSight Lander to the Red Planet in the spring of 2018 following a postponement from this spring due to the discovery of a vacuum leak in a prime science instrument supplied by France.

The InSight missions goal is to accomplish an unprecedented study of the deep interior of the most Earth-like planet in our solar system.

NASA is now targeting a new launch window that begins May 5, 2018, for the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight). mission aimed at studying the deep interior of Mars. The Mars landing is now scheduled for Nov. 26, 2018.

InSight had originally been slated for blastoff on March 4, 2016 atop a United Launch Alliance (ULA) Atlas V rocket from Vandenberg Air Force Base, California.

But the finding of a vacuum leak in its prime science instrument, the French-built Seismic Experiment for Interior Structure (SEIS), in December 2015 forced an unavoidable two year launch postponement. Because of the immutable laws of orbital mechanics, launch opportunities to the Red Planet only occur approximately every 26 months.

InSight’s purpose is to help us understand how rocky planets – including Earth – formed and evolved. The science goal is totally unique – to “listen to the heart of Mars to find the beat of rocky planet formation.”

The revised launch date was approved by the agency’s Science Mission Directorate.

“Our robotic scientific explorers such as InSight are paving the way toward an ambitious journey to send humans to the Red Planet,” said Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate, in Washington, in a statement.

“It’s gratifying that we are moving forward with this important mission to help us better understand the origins of Mars and all the rocky planets, including Earth.”

NASA's InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.
NASA’s InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.

Since InSight would not have been able to carry out and fulfill its intended research objectives because of the vacuum leak in its defective SEIS seismometer instrument, NASA managers had no choice but to scrub this year’s launch. For a time its outlook for a future revival seemed potentially uncertain in light of today’s constrained budget environment.

The leak, if left uncorrected, would have rendered the flawed probe useless to carry out the unprecedented scientific research foreseen to measure the planets seismic activity and sense for “Marsquakes” to determine the nature of the Red Planet’s deep interior.

“The SEIS instrument — designed to measure ground movements as small as half the radius of a hydrogen atom — requires a perfect vacuum seal around its three main sensors in order to withstand harsh conditions on the Red Planet,” according to NASA.

The SEIS seismometer instrument was provided by the Centre National d’Études Spatiales (CNES) – the French national space agency equivalent to NASA. SEIS is one of the two primary science instruments aboard InSight. The other instrument measuring heat flow from the Martian interior is provided by the German Aerospace Center (DLR) and is named Heat Flow and Physical Properties Package (HP3). The HP3 instrument checked out perfectly.

NASA Jet Propulsion Laboratory (JPL) was assigned lead responsibility for the “replanned” mission and insuring that the SEIS instrument operates properly with no leaks.

JPL is “redesigning, developing and qualifying the instrument’s evacuated container and the electrical feedthroughs that failed previously. France’s space agency, the Centre National d’Études Spatiales (CNES), will focus on developing and delivering the key sensors for SEIS, integration of the sensors into the container, and the final integration of the instrument onto the spacecraft.”

“We’ve concluded that a replanned InSight mission for launch in 2018 is the best approach to fulfill these long-sought, high-priority science objectives,” said Jim Green, director of NASA’s Planetary Science Division.

The cost of the two-year delay and instrument redesign amounts to $153.8 million, on top of the original budget for InSight of $675 million.

NASA says this cost will not force a delay or cancellation to any current missions. However, “there may be fewer opportunities for new missions in future years, from fiscal years 2017-2020.”

Back shell of NASA's InSight spacecraft is being lowered onto the mission's lander, which is folded into its stowed configuration.  The back shell and a heat shield form the aeroshell, which will protect the lander as the spacecraft plunges into the upper atmosphere of Mars.  Launch now rescheduled to May 2018 to fix French-built seismometer.  Credit: NASA/JPL-Caltech/Lockheed Martin
Back shell of NASA’s InSight spacecraft is being lowered onto the mission’s lander, which is folded into its stowed configuration. The back shell and a heat shield form the aeroshell, which will protect the lander as the spacecraft plunges into the upper atmosphere of Mars. Launch now rescheduled to May 2018 to fix French-built seismometer. Credit: NASA/JPL-Caltech/Lockheed Martin

Lockheed Martin is the prime contractor for InSight and placed the spacecraft in storage while SEIS is fixed.

InSight is funded by NASA’s Discovery Program of low cost, focused science missions along with the science instrument funding contributions from France and Germany.

Mars has the same basic internal structure as the Earth and other terrestrial (rocky) planets. It is large enough to have pressures equivalent to those throughout the Earth's upper mantle, and it has a core with a similar fraction of it's mass. In contrast, the pressure even near the center of the Moon barely reach that just below the Earth's crust and it has a tiny, almost negligible core. The size of Mars indicates that it must have undergone many of the same separation and crystallization processes that formed the Earth's crust and core during early planetary formation.  Credit: JPL/NASA
Mars has the same basic internal structure as the Earth and other terrestrial (rocky) planets. It is large enough to have pressures equivalent to those throughout the Earth’s upper mantle, and it has a core with a similar fraction of it’s mass. In contrast, the pressure even near the center of the Moon barely reach that just below the Earth’s crust and it has a tiny, almost negligible core. The size of Mars indicates that it must have undergone many of the same separation and crystallization processes that formed the Earth’s crust and core during early planetary formation. Credit: JPL/NASA

Meanwhile, NASA is preparing to launch its big planetary mission of 2018 on Thursday of this week ! – the OSIRIS-REx asteroid sample return probe blasts off on an Atlas V on Sept 8.

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Air Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about OSIRIS-REx, InSight Mars lander, SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Sep 6-8: “OSIRIS-REx lainch, SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Announces Plan to Launch Private Dragon Mission to Mars in 2018

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018.  Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

SpaceX announced plans today, April 27, for the first ever private mission to Mars which involves sending an uncrewed version of the firms Dragon spacecraft to accomplish a propulsive soft landing – and to launch it as soon as 2018 including certain technical assistance from NASA.

Under a newly signed space act agreement with NASA, the agency will provide technical support to SpaceX with respect to Mars landing technologies for the new spacecraft known as a ‘Red Dragon’ and possibly also for science activities.

“SpaceX is planning to send Dragons to Mars as early as 2018,” the company posted in a brief announcement today on Facebook and other social media about the history making endeavor.

The 2018 commercial Mars mission involves launching the ‘Red Dragon’ – also known as Dragon 2 – on the SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida. It’s a prelude to eventual human missions.

The Red Dragon initiative is a commercial endeavor that’s privately funded by SpaceX and does not include any funding from NASA. The agreement with NASA specifically states there is “no-exchange-of-funds.”

As of today, the identity and scope of any potential science payload is undefined and yet to be determined.

Hopefully it will include a diverse suite of exciting research instruments from NASA, or other entities, such as high powered cameras and spectrometers characterizing the Martian surface, atmosphere and environment.

SpaceX CEO and billionaire founder Elon Musk has previously stated his space exploration goals involve helping to create a Mars colony which would ultimately lead to establishing a human ‘City on Mars.’

Musk is also moving full speed ahead with his goal of radically slashing the cost of access to space by recovering a pair of SpaceX Falcon 9 first stage boosters via successful upright propulsive landings on land and at sea – earlier this month and in Dec. 2015.

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018.  Credit: SpaceX
Artists concept for sending uncrewed SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

The 2018 liftoff campaign marks a significant step towards fulfilling Musk’s Red Planet vision. But we’ll have to wait another 5 months for concrete details.

“Red Dragon missions to Mars will also help inform the overall Mars colonization architecture that SpaceX will reveal later this year,” SpaceX noted.

Musk plans to reveal the details of the Mars colonization architecture later this year at the International Astronautical Congress (IAC) being held in Guadalajara, Mexico from September 26 to 30, 2016.

Landing on Mars is not easy. To date only NASA has successfully soft landed probes on Mars that returned significant volumes of useful science data.

In the meantime a few details about the SpaceX Red Dragon have emerged.

The main goal is to propulsively land something 5-10 times the size of anything previously landed before.

“These missions will help demonstrate the technologies needed to land large payloads propulsively on Mars,” SpaceX further posted.

NASA’s 1 ton Curiosity rover is the heaviest spaceship to touchdown on the Red Planet to date.

Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2018.  Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2018. Credit: SpaceX

As part of NASA’s agency wide goal to send American astronauts on a human ‘Journey to Mars’ in the 2030s, NASA will work with SpaceX on some aspects of the Red Dragon initiative to further the agency’s efforts.

According to an amended space act agreement signed yesterday jointly by NASA and SpaceX officials – that originally dates back to November 2014 – this mainly involves technical support from NASA and exchanging entry, descent and landing (EDL) technology, deep space communications, telemetry and navigation support, hardware advice, and interplanetary mission and planetary protection advice and consultation.

“We’re particularly excited about an upcoming SpaceX project that would build upon a current “no-exchange-of-funds” agreement we have with the company,” NASA Deputy Administrator Dava Newman wrote in a NASA blog post today.

“In exchange for Martian entry, descent, and landing data from SpaceX, NASA will offer technical support for the firm’s plan to attempt to land an uncrewed Dragon 2 spacecraft on Mars.”

“This collaboration could provide valuable entry, descent and landing data to NASA for our journey to Mars, while providing support to American industry,” NASA noted in a statement.

The amended agreement with NASA also makes mention of sharing “Mars Science Data.”

As of today, the identity, scope and weight of any potential science payload is undefined and yet to be determined.

Perhaps it could involve a suite of science instruments from NASA, or other entities, such as cameras and spectrometers characterizing various aspects of the Martian environment.

In the case of NASA, the joint agreement states that data collected with NASA assets is to be released within a period not to exceed 6 months and published where practical in scientific journals.

The Red Dragon envisioned for blastoff to the Red Planet as soon as 2018 would launch with no crew on board on a critical path finding test flight that would eventually pave the way for sending humans to Mars – and elsewhere in the solar system.

“Red Dragon Mars mission is the first test flight,” said Musk.

“Dragon 2 is designed to be able to land anywhere in the solar system.”

However, the Dragon 2 alone is far too small for a round trip mission to Mars – lasting some three years or more.

“But wouldn’t recommend transporting astronauts beyond Earth-moon region,” tweeted Musk.

“Wouldn’t be fun for longer journeys. Internal volume ~size of SUV.”

Furthermore, for crewed missions it would also have to be supplemented with additional modules for habitation, propulsion, cargo, science, communications and more. Think ‘The Martian’ movie to get a realistic idea of the complexity and time involved.

Red Dragon’s blastoff from KSC pad 39A is slated to take place during the Mars launch window opening during April and May 2018.

The inaugural liftoff of the Falcon Heavy is currently scheduled for late 2016 after several years postponement.

If all goes well, Red Dragon could travel to Mars at roughly the same time as NASA’s next Mission to Mars – namely the InSight science lander, which will study the planets deep interior with a package of seismometer and heat flow instruments.

InSight’s launch on a United Launch Alliance Atlas V is targeting a launch window that begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018. Liftoff was delayed from this year due to a flaw in the French-built seismometer.

SpaceX Red Dragon spacecraft launches to Mars on SpaceX Falcon Heavy as soon as 2018 in this artists comcept.  Credit: SpaceX
SpaceX Red Dragon spacecraft launches to Mars on SpaceX Falcon Heavy as soon as 2018 in this artists comcept. Credit: SpaceX

Whoever wants to land on Mars also has to factor in the relevant International treaties regarding ‘Planetary Protection’ requirements.

Wherever the possibility for life exists, the worlds space agency’s who are treaty signatories, including NASA, are bound to adhere to protocols limiting contamination by life forms from Earth.

SpaceX intends to take planetary protection seriously. Under the joint agreement, SpaceX is working with relevant NASA officials to ensure proper planetary protection procedures are followed. One of the areas of collaboration with NASA is for them to advise SpaceX in the development a Planetary Protection Plan (PPP) and assist with the implementation of a PPP including identifying existing software/tools.

Red Dragon is derived from the SpaceX crew Dragon vehicle currently being developed under contract for NASA’s Commercial Crew Program (CCP) to transport American astronauts back and forth to low Earth orbit and the International Space Station (ISS).

SpaceX and Boeing were awarded commercial crew contracts from NASA back in September 2014.

Both firms hope to launch unmanned and manned test flights of their SpaceX Crew Dragon and Boeing CST-100 Starliner spacecraft to the ISS starting sometime in 2017.

The crew Dragon is also an advanced descendent of the original unmanned cargo Dragon that has ferried tons of science experiments and essential supplies to the ISS since 2012.

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

To enable propulsive landings, SpaceX recently conducted hover tests using a Dragon 2 equipped with eight side-mounted SuperDraco engines at their development testing facility in McGregor, TX.

These are “Key for Mars landing,” SpaceX wrote.

“We are closer than ever before to sending American astronauts to Mars than anyone, anywhere, at any time has ever been,” Newman states.

SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas.  Credit: SpaceX
SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer