SS John Glenn Launching Science Stash to Space Station atop Atlas V April 18 – Watch Live and 360 Degree Video

Orbital ATK SS John Glenn CRS-7 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the United Launch Alliance Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Ken Kremer/kenkremer.com
Orbital ATK SS John Glenn CRS-7 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the United Launch Alliance Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The ‘SS John Glenn’ cargo freighter stands proudly poised for launch at pad 41 from the Florida Space Coast on Tuesday April 18, loaded with a stash of nearly 4 tons of science investigations and essential supplies atop a United Launch Alliance Atlas V rocket destined for the multinational crew aboard the International Space Station (ISS).

The lunchtime liftoff of the ‘SS John Glenn’ Cygnus resupply spacecraft manufactured by NASA commercial cargo provider Orbital ATK is slated for 11:11 a.m. EDT Tuesday, April 18 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.

The US cargo ships provided by NASA suppliers Orbital ATK and SpaceX every few months act as NASA’s essential railroad to space. And they are vital to operating the station with a steady stream of new research experiments as well as essential hardware, spare parts, crew supplies, computer, maintenance and spacewalking equipment as well food, water, clothing, provisions and much more.

The launch window lasts 30 minutes and runs from 11:11-11:41 a.m. EDT April 18.

Excited spectators are gathering from near and far and Tuesday’s weather outlook is spectacular so far.

Orbital ATK OA-7/CRS-7 vehicle rolls out to pad 41 atop ULA Atlas V rocket for launch from Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Julian Leek

Blastoff of the S.S. John Glenn on the OA-7 or CRS-7 flight counts as Orbital ATK’s seventh contracted commercial resupply services mission to the ISS for NASA.

The ‘S.S. John Glenn’ is named in honor of legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.

If you can’t attend in person, there are a few options to watch online.

NASA’s Atlas V/Cygnus CRS-7 launch coverage will be broadcast on NASA TV and the NASA launch blog beginning at 10 AM, Tuesday morning.

You can watch the launch live NASA TV at: http://www.nasa.gov/nasatv

A ULA webcast will be available starting at 10 a.m. at: www.ulalaunch.com

And for the first time ever you can also watch the launch live via a live 360 stream on the NASA Television YouTube channel. The 360 degree broadcast starts about 10 minutes prior to lift off at:

http://youtube.com/nasatelevision

The late morning daytime launch offers the perfect opportunity to debut this technology with the rocket magnificently visible atop a climbing plume of smoke and ash – and with a “pads-eye” view!

NASA/ULA Atlas V launch of Orbital ATK SS John Glenn Cygnus spacecraft on OA-7 resupply ship on April 18, 2017. Credit: ULA/Orbital ATK/NASA

Science plays a big role in this mission in tribute named in tribute to John Glenn. Over one third of the payload loaded aboard Cygnus involves science.

“The new experiments will include an antibody investigation that could increase the effectiveness of chemotherapy drugs for cancer treatment and an advanced plant habitat for studying plant physiology and growth of fresh food in space,” according to NASA.

The astronauts will grow food in space, including Arabidopsis and dwarf wheat, in an experiment that could lead to providing nutrition to astronauts on a deep space journey to Mars.

“Another new investigation bound for the U.S. National Laboratory will look at using magnetized cells and tools to make it easier to handle cells and cultures, and improve the reproducibility of experiments. Cygnus also is carrying 38 CubeSats, including many built by university students from around the world as part of the QB50 program. The CubeSats are scheduled to deploy from either the spacecraft or space station in the coming months.”

Also aboard is the ‘Genes in Space-2’ experiment. A high school student experiment from Julian Rubinfien of Stuyvescent High School, New York City, to examine accelerated aging during space travel. This first experiment will test if telomere-like DNA can be amplified in space with a small box sized experiment that will be activated by station astronauts.

The Saffire III payload experiment will follow up on earlier missions to study the development and spread of fire and flames in the microgravity environment of space. The yard long experiment is located in the back of the Cygnus vehicle. It will be activated after Cygnus departs the station roughly 80 days after berthing. It will take a few hours to collect the data for transmission to Earth.

Furthermore you can learn more about the Orbital ATK CRS-7 mission by going to the mission home page at: http://www.nasa.gov/orbitalatk

Up close view of umbilical’s connecting to Atlas V rocket carrying Orbital ATK CRS-7 launch vehicle to the ISS at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 17, 2017 prior to planned launch on April 18. Credit: Ken Kremer/kenkremer.com

From a weather standpoint, Tuesday’s launch outlook is outstanding at this time.

According to meteorologists with the U.S. Air Force 45th Weather Squadron we are forecasting a 90 percent chance of “go” conditions at the 11:11 a.m. EDT launch time. The primary concern is for the possibility of cumulus clouds.

The forecast calls for temperatures of 75-76° F with on-shore winds peaking below 10 knots during the countdown.

In the event of a delay for any reason related to weather or technical issues a backup launch opportunity exists for Wednesday, April 19, and also looks promising.

The AF is also predicting the same 90 percent chance of “go” conditions at launch time. With the primary concern again being for the possibility of cumulus clouds.

Orbital ATK SS John Glenn OA-7 vehicle atop ULA Atlas V rocket slated for launch from Space Launch Complex 41 at Cape Canaveral Air Force Station, FL on April 18, 2017. Credit: Julian Leek

The rocket was rolled out to pad 41 at about 9 a.m. EDT this morning Monday April 17, in a process that takes about 25 minutes

The rocket and spacecraft passed the Launch Readiness Review held by United Launch Alliance and Orbital ATK on April 15. Launch managers from ULA, Orbital ATK and NASA determined all is ready for Tuesday’s targeted launch to the ISS.

OA-7 is loaded with 3500 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 51 and 52 crews. The total volumetric capacity of Cygnus exceeds 27 cubic meters.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The Orbital ATK Cygnus CRS-7 (OA-7) mission will launch aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) in the 401 configuration vehicle. This includes a 4-meter-diameter payload fairing in its longest, extra extended configuration (XEPF) to accommodate the enhanced, longer Cygnus variant being used.

Orbital ATK SS John Glenn Cygnus CRS-7 cargo ship bolted on top of United Launch Alliance Atlas V rocket is poised for launch to the ISS at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Ken Kremer/kenkremer.com

The first stage of the Atlas V booster is powered by the RD AMROSS RD-180 engine. There are no side mounted solids on the first stage. The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C-1 engine.

Overall this is the 71st launch of an Atlas V and the 36th utilizing the 401 configuration.

The 401 is thus the workhorse version of the Atlas V and accounts for half of all launches.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the SS John Glenn/ULA Atlas V launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Apr 18-19: “SS John Glenn/ULA Atlas V launch to ISS, SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Orbital ATK SS John Glenn Cygnus CRS-7 cargo ship bolted on top of United Launch Alliance Atlas V rocket is poised for launch to the ISS at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Ken Kremer/kenkremer.com

SS John Glenn to Debut as World’s 1st Live 360 Degree Video of Rocket Launch April 18

Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com
Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Imagine watching a real rocket launch in a 360 degree live video broadcast. Well NASA is about to make it happen for the first time in a big way and on a significant mission.

On Tuesday April 18, NASA will broadcast the launch of the ‘S.S. John Glenn’ space station cargo freighter in a feat marking the world’s first live 360-degree stream of a rocket launch – namely the United Launch Alliance (ULA) Atlas V rocket.

The ‘S.S. John Glenn’ is named in honor of legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.

The late morning daytime launch offers the perfect opportunity to debut this technology with the rocket magnificently visible atop a climbing plume of smoke and ash – and with a “pads-eye” view!

The ‘S.S. John Glenn’ is actually a Cygnus resupply spacecraft built by NASA commercial cargo provider Orbital ATK for a cargo mission heading to the International Space Station (ISS) – jam packed with nearly 4 tons or research experiments and gear for the stations Expedition 51 crew of astronauts and cosmonauts.

“NASA, in coordination with United Launch Alliance (ULA) and Orbital ATK, will broadcast the world’s first live 360-degree stream of a rocket launch,” the agency announced in a statement.

“The live 360 stream enables viewers to get a pads-eye view.”

The Cygnus spaceship will launch on a ULA Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Liftoff of the S.S. John Glenn on Orbital ATK’s seventh commercial resupply services mission to the ISS – dubbed OA-7 or CRS-7 – is slated for 11:11 a.m. EDT Tuesday, April 18.

The launch window lasts 30 minutes and runs from 11;11-11:41 a.m. EDT.

You can watch the live 360 stream of the Atlas V/OA-7 cargo resupply mission liftoff to the ISS on the NASA Television YouTube channel starting 10 minutes prior to lift off at:

http://youtube.com/nasatelevision

The sunshine state’s weather outlook is currently very promising with a forecast of an 80% chance of favorable ‘GO’ conditions at launch time Tuesday morning.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The S.S. John Glenn will carrying more than 7,600 pounds of science research, crew supplies and hardware to the orbiting outpost.

How can you watch the streaming 360 video? Read NASA’s description:

“To view in 360, use a mouse or move a personal device to look up and down, back and forth, for a 360-degree view around Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida. Note: not all browsers support viewing 360 videos. YouTube supports playback of 360-degree videos on computers using Chrome, Firefox, Internet Explorer and Opera browsers. Viewers may use the YouTube app to view the launch on a smart phone. Those who own virtual reality headsets will be able to look around and experience the view as if they were actually standing on the launch pad.”

“While virtual reality and 360 technology have been increasing in popularity, live 360 technology is a brand new capability that has recently emerged. Recognizing the exciting possibilities opened by applying this new technology to spaceflight, NASA, ULA, and Orbital ATK seized this opportunity to virtually place the public at the base of the rocket during launch. Minimum viewing distance is typically miles away from the launch pad, but the live 360 stream enables viewers to get a pads-eye view.”

A ULA Atlas V rocket carrying the EchoStar 19 high speed internet satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

The naming announcement for the ‘S.S. John Glenn’ was made by spacecraft builder Orbital ATK during a ceremony held inside the Kennedy Space Center (KSC) clean room facility when the cargo freighter was in the final stages of flight processing – and attended by media including Universe Today on March 9.

“It is my humble duty and our great honor to name this spacecraft the S.S. John Glenn,” said Frank DeMauro, vice president and general manager of Orbital ATK’s Advanced Programs division, during the clean room ceremony inside the Payload Hazardous Servicing Facility (PHFS) high bay at NASA’s Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the SS John Glenn/ULA Atlas V launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Apr 17-19: “SS John Glenn/ULA Atlas V launch to ISS, SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

In this Oct. 23, 2016 image, the International Space Station’s Canadarm2 robotic arm captures Orbital ATK’s Cygnus cargo spacecraft on its sixth mission to the station. The company’s seventh cargo resupply mission is targeted for launch April 18 from NASA’s Kennedy Space Center. Credits: NASA

Space Station Trio Touches Down on Earth as NASA’s Next Cargo Ship Targets Apr. 18 Blastoff

Expedition 50 Commander Shane Kimbrough of NASA, and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos, touched down southeast of the remote town of Dzhezkazgan in Kazakhstan at 7:20 a.m. EDT April 10, 2017 in their Soyuz MS-02 spacecraft. Photo Credit: (NASA/Bill Ingalls)
Expedition 50 Commander Shane Kimbrough of NASA, and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos, touched down southeast of the remote town of Dzhezkazgan in Kazakhstan at 7:20 a.m. EDT April 10, 2017 in their Soyuz MS-02 spacecraft. Photo Credit: (NASA/Bill Ingalls)

Comings and goings continue apace on the International Space Station! After living and working fruitfully for six months in space aboard the ISS, an international trio of astronauts and cosmonauts including NASA’s Shane Kimbrough departed the orbiting lab complex aboard their Soyuz capsule and plummeted back safely through the Earth’s atmosphere to a soft touchdown in Kazahkstan on Monday- as NASA meanwhile targets liftoff of the next US resupply ship a week from today.

These are busy times indeed with regular flights to low Earth orbit and back to maintain and enhance the scientific research aboard the multinationally built and funded million pound orbiting outpost.

ISS Expedition 50 came to a glorious end for Commander Shane Kimbrough of NASA and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos as they returned to Earth Monday, April 10 in Kazakhstan aboard their Soyuz spacecraft after spending 173 days aloft in the weightless environment of space.

With his return to Earth April 10, 2017, from a mission aboard the International Space Station, NASA astronaut Shane Kimbrough now has spent 189 days in space on two flights. Credits: NASA TV

The Russian Soyuz MS-02 capsule touched down safely by making a parachute assisted landing in Kazakhstan at approximately 7:20 a.m. EDT (5:20 p.m. Kazakhstan time).

The three person crew comprising Kimbrough, Ryzhikov and Andrey Borisenko landed southeast of the remote town of Dzhezkazgan in Kazakhstan.

Meanwhile as the trio were landing, NASA is targeting launch of the next commercial cargo ship for blastoff on April 18 with more than three tons of science and supplies to stock the station for the Expedition 51 crew.

Christened the ‘S.S. John Glenn’ to honor legendary NASA astronaut John Glenn – the first American to orbit the Earth back in February 1962 – the next Orbital ATK Cygnus cargo ship heading to the space station will launch on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Liftoff of the S.S. John Glenn from NASA commercial cargo provider Orbital ATK on their seventh commercial resupply services mission to the ISS is slated for 11 a.m. EDT Tuesday, April 18.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

During their time in orbit, the Expedition 50 crew members contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science aboard the world-class orbiting laboratory.

“For example, the Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity. Results from this investigation could lead to the treatment of diseases and injury in space, and provide a way to improve stem cell production for medical therapies on Earth,” said NASA.

“The Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates, such as rodents and humans, from regenerating lost bone and tissue, and how microgravity conditions impact the process. Results will provide a new understanding of the biological reasons behind a human’s inability to regrow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic, non-healing wounds.”

The Soyuz MS-02 spacecraft is seen as it lands with Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of Roscosmos near the town of Zhezkazgan, Kazakhstan on Monday, April 10, 2017 (Kazakh time). Credit: NASA/Bill Ingalls

Kimbrough, Ryzhikov and Andrey Borisenko served as members of the Expedition 49 and 50 crews onboard the International Space Station during their 173 days in orbit.

During two flights Kimbrough has now amassed 189 days in space. During his two flights Borisenko now totals 337 days in space. Rookie Ryzhikov logged 173 days in space.

They leave behind another trio of crewmates who will continue as Expedition 51; namely NASA astronaut and new station commander Peggy Whitson, Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency).

The next manned Soyuz launch will carry just two crewmembers. Due to Russian funding cutbacks only 1 cosmonaut will launch. The crew comprises Jack Fischer of NASA and Fyodor Yurchikhin of Roscosmos. They are scheduled to launch Thursday, April 20 from Baikonur, Kazakhstan.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Dragon Splashes Down in Pacific with Treasure Trove of Space Station Science

The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX
The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX

KENNEDY SPACE CENTER, FL – SpaceX’s tenth contracted resupply mission to the International Space Station came to a safe conclusion with a splashdown of the Dragon spacecraft in the Pacific Ocean Sunday and successfully returned a treasure trove of more than two tons of precious science experiments and research samples from the space station.

Researchers on Earth are eagerly awaiting the science data and samples in order to carry out high powered laboratory analysis that will eventually yield the fruits of the hard won labor – years in the making.

The Dragon CRS-10 cargo freighter departed the International Space Station (ISS) Sunday morning after Expedition 50 astronauts Thomas Pesquet of ESA (European Space Agency) and Shane Kimbrough of NASA released the spacecraft from the grip of the station’s 57.7-foot-long(17.6-meter) Canadian-built Canadarm2 robotic arm as planned at 5:11 a.m. EDT, March 19.

After carefully maneuvering away from the orbiting outpost and six person international crew at an altitude of appox. 250 miles (400 km), Dragon eased away to a safe distance.

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

The vessel then fired its braking thrusters a few hours later to initiate the reentry burn that would set the craft on course for a fiery plummet through the Earth’s atmosphere.

Some five and a half hours later the spaceship carried out a parachute assisted splashdown in the Pacific Ocean at 10:46 a.m. EDT, about 200 miles southwest of Long Beach, California.

The highest priority research and technology cargo will be removed from Dragon immediately and returned to NASA.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The rest will travel back to port and be prepared for a return trip to SpaceX’s test facility in McGregor, Texas, where the remaining scientific samples, research experiments and technology gear and hardware will be unloaded for NASA.

Dragon had spent nearly a month berthed at the Earth-facing port on the station’s Harmony module, since arriving on Feb 23.

Dragon begun its space voyage after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory – as I reported here.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

At liftoff, the Dragon CRS-10 space freighter was carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload to the low Earth orbiting station in support of the Expedition 50 and 51 crew members.

After a four day chase, Dragon was captured and attached to the station using the Canadian arm on Feb 23 by the same two astronauts who released it on Sunday.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck. Astronauts plucked them out of the trunk using the robotic arm and attached them to specified locations on the stations exterior to carry out their objectives.

For the return trip to Earth, the astronaut crew loaded Dragon with more than 5,400 pounds of NASA cargo, and science and technology demonstration samples gathered and collected by the stations crewmembers.

“A variety of technological and biological studies are returning in Dragon. The Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity,” said NASA.

“This information will provide insight into how human cancers start and spread, which aids in the development of prevention and treatment plans. Results from this investigation could lead to the treatment of disease and injury in space, as well as provide a way to improve stem cell production for human therapy on Earth.”

“Samples from the Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates such as rodents and humans from re-growing lost bone and tissue, and how microgravity conditions affect the process. Results will provide a new understanding of the biological reasons behind a human’s inability to grow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic non-healing wounds.”

Dragon departed in order to make way for the arrival of the next cargo ship.

The ‘SS John Glenn’ Cygnus cargo freighter built by Orbital Sciences is due to lift off no earlier than March 27 on a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite launch and mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Twins Study Researchers Take Genetic Data To Next Level

NASA is beginning to integrate the results of its twin study on astronauts Mark and Scott Kelly. Image: NASA

People who plan and conduct space missions never tire of telling us how hard it is to do things in space.

Our next big goal is getting humans to Mars, and establishing a colony there. There are a multitude of technical and engineering hurdles to be overcome, but we think we can do it.

But the other side of the coin is the physiological hurdles to be overcome. Those may prove to be much more challenging to deal with. NASA’s twins study is poised to add an enormous amount of data to our growing body of knowledge on the effects of space travel on human beings.

NASA's astronauts twins, Scott Kelly (l) and Mark Kelly (r). Image: NASA
NASA’s astronaut twins, Scott Kelly (l) and Mark Kelly (r). Image: NASA

Astronaut twins Scott and Mark Kelly are the basis of NASA’s study. Scott spent a year in space, returning to Earth on March 1st 2016, after spending 340 days aboard the ISS. Mark, himself a retired astronaut, remained on Earth during Scott’s year in space, providing a baseline for studying the effects on the human body of such a prolonged period of time away from Earth.

In February of 2016, NASA released preliminary results of the study. Now, the team studying the results of the twins study has started integrating the data. The way they’re doing this sets it apart from other studies.

“No one has ever looked this deeply at a human subject and profiled them in this detail.” – Tejaswini Mishra, Ph.D., Stanford University School of Medicine.

Typically, individual studies are released to appropriate journals more or less one at a time. But in the twins study, the data will be integrated and summarized before individual papers are published on separate themes. The idea is that taken together, their impact on our understanding of prolonged time in space will be much greater.

“The beauty of this study is when integrating rich data sets of physiological, neurobehavioral and molecular information, one can draw correlations and see patterns,” said Tejaswini Mishra, Ph.D., research fellow at Stanford University School of Medicine, who is creating the integrated database, recording results and looking for correlations. “No one has ever looked this deeply at a human subject and profiled them in this detail. Most researchers combine maybe two to three types of data but this study is one of the few that is collecting many different types of data and an unprecedented amount of information.”

“Each investigation within the study complements the other.” – Brinda Rana, Ph.D., U of C, San Diego School of Medicine

Mike Snyder, Ph.D, is the head of a team of people at Stanford that will work to synthesize the data. There are roughly three steps in the overall process:

  1. Individual researchers in areas like cognition, biochemistry, and immunology will analyze and compile their data then share their results with the Stanford team.
  2. The Stanford team will then further integrate those results into larger data sets.
  3. Those larger data sets will then be reviewed and analyzed to confirm and modify the initial findings.

“There are a lot of firsts with this study and that makes it exciting,” said Brinda Rana, Ph.D., associate professor of psychiatry, University of California San Diego School of Medicine. “A comparative study with one twin in space and one on Earth has never been done before. Each investigation within the study complements the other.”

NASA compares the twins study, and the new integrated method of handling all the results, to conducting a symphony. Each study is like an instrument, and instead of each one playing a solo, they will be added into a greater whole. The team at Stanford is like the conductor. If you’ve ever listened to an orchestra, you know how powerful that can be.

“The human systems in the body are all intertwined which is why we should view the data in a holistic way,” said Scott M. Smith, Ph.D., NASA manager for nutritional biochemistry at the Johnson Space Center. He conducts biochemical profiles on astronauts and his research is targeted to specific metabolites, end products of various biological pathways and processes.

“It is a more comprehensive way to conduct research.” – Chris Mason, Ph.D., associate professor, Department of Physiology and Biophysics Weill Cornell Medicine

Chris Mason Ph.D., at Weill Cornell Medicine said, “Both the universe and the human body are complicated systems and we are studying something hard to see. It’s like having a new flashlight that illuminates the previously dark gears of molecular interactions. It is a more comprehensive way to conduct research.”

Scientists involved with the twins study are very clearly excited about this new approach. Having twin astronauts is an extraordinary opportunity, and will advance our understanding of spaceflight on human physiology enormously.

“There is no doubt, the learnings from integrating our data will be priceless,” said Emmanuel Mignot, M.D., Ph.D., director of Center for Sleep Science and Medicine, Stanford University School of Medicine. He studies the immune system and is enthusiastic to study specific immune cell populations because many of the other immune studies focus only on general factors.

A summary of the early results should be out by early 2018, or possible late 2017. Individual papers on more detailed themes will follow shortly.

SpaceX Conducts Successful Static Fire Test Permitting Post Midnight Spectacle with EchoStar 23 Comsat on March 14

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on Mar 9, 2017 as seen from Space View Park, Titusville, FL. Liftoff with EchoStar 23 comsat is planned for 14 March 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on Mar 9, 2017 as seen from Space View Park, Titusville, FL. Liftoff with EchoStar 23 comsat is planned for 14 March 2017. Credit: Ken Kremer/Kenkremer.com

SPACE VIEW PARK/KENNEDY SPACE CENTER, FL – After a pair of back to back postponements presumably due to technical gremlins, the third time proved to be the charm at last as SpaceX engineers carried out a successful engine test of the Falcon 9 first stage this evening (Mar. 9) atop historic pad 39 at the Kennedy Space Center in Florida.

The brief test lasting about 3 seconds took place at 6 p.m. this evening, with an exciting eruption of smoke and ash into the air during the serene waning sunlight as I witnessed from Space View Park in Titusville, FL – which is a great place to watch launches from, offering an unobstructed view across the inland waterway.

This critical engine test opens the door to what will be only the second blastoff of the SpaceX commercial Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Liftoff of the Falcon 9 carrying the EchoStar 23 telecommunications satellite is now slated for a post midnight spectacle next Tuesday, Mar. 14 from pad 39A at the opening of the launch window at 1:34 a.m. EDT.

The two and a half hour launch window closes at 4:04 a.m. EDT.

The delayed completion of the static fire test resulted in a two day launch slip from March 12 to March 14 in order to complete all the prelaunch processing.

SpaceX Falcon 9 rocket minus EchoStar 23 comsat stands erect atop Launch Complex 39-A at the Kennedy Space Center as seen from Playalinda Beach, Fl, prior to static fire test on 9 Mar. 2017. This is only the second rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff is slated for 14 Mar 2017. Credit: Ken Kremer/Kenkremer.com

“Following today’s static fire test, SpaceX is targeting the launch of the EchoStar XXIII satellite from Launch Complex 39A (LC-39A) at Kennedy Space Center in Florida on Tuesday, Mar. 14, SpaceX confirmed in a statement soon after completion of the test.

“SpaceX’s Falcon 9 rocket will deliver the satellite to a Geostationary Transfer Orbit (GTO).”

The EchoStar 23 launch counts as only the second Falcon 9 ever to blastoff from pad 39A- which SpaceX’s billionaire CEO Elon Musk leased from NASA back in April 2014.

The nighttime lunge to space should offer spectacular viewing. But unlike most recent SpaceX missions, this Falcon will be the last expendable first stage. It is not outfitted with landing legs or grid fins to maneuver it back to a touchdown.

Watch this video of the March 9 static fire test from colleague Jeff Seibert:

Video Caption: Falcon 9 static fire test on Pad 39A on March 9, 2017. This is the second Falcon 9 static fire test on Pad 39A in preparation for the launch of the EchoStar-23 satellite. Credit: Jeff Seibert

The planned Mar. 14 launch comes barely three weeks after the Falcon’s successful debut on Feb. 19 on the NASA contracted Dragon CRS-10 mission that delivered over 2.5 tons of cargo to the six person crew living and working aboard the International Space Station (ISS).

Launch Complex 39A was repurposed by SpaceX from launching Shuttles to Falcons. It had lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Today’s engine test was carried out absent the expensive satellite payload bolted on top, to keep it safely stored away in case of a repeat of the catastrophic Falcon 9/Amos-6 pad explosion last September at pad 40 during a similar test that destroyed both the rocket and payload and caused extensive damage to the pad infrastructure.

If all goes well, the EchoStar 23 launch will showcase that SpaceX is picking up the pace of space launches and recovering from the Amos-6 disaster.

During today’s static fire test, the rocket’s first and second stages are fueled with liquid oxygen and RP-1 propellants like an actual launch and a simulated countdown is carried out to the point of a brief engine ignition.

The hot fire test generated a huge plume of smoke exhausting out the north side of the flame trench of Launch Complex 39A at approximately 6:00 p.m. EST, Mar. 9. at the opening of a 6 hour long test window.

The hold down engine test with the erected rocket involved the ignition of all nine Merlin 1D first stage engines generating some 1.7 million pounds of thrust at pad 39A – which has been repurposed from its days as a shuttle launch pad.

The Merlin 1D engines fired for about 3 seconds while the two stage rocket was restrained on the pad.

The smoke cloud soon dissipated and within 5 minutes there was barely a trace of what we shall soon see next Tuesday – if all goes well with launch processing and the ever changing sunshine state weather.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on Mar 9, 2017 as seen from Space View Park, Titusville, FL. Liftoff with EchoStar 23 comsat is planned for 14 March 2017. Credit: Ken Kremer/Kenkremer.com

Titusville offers a prime viewing location for anyone interested in traveling to the Florida Space Coast to see this Falcon 9 launch in person.

SpaceX Falcon 9 rocket minus EchoStar 23 comsat stands erect atop Launch Complex 39A at the Kennedy Space Center as seen from the press site prior to static fire test on 9 Mar. 2017. Only the top of the rocket is visible behind the historic shuttle RSS structure. This is only the second rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff is slated for 14 Mar 2017. Credit: Ken Kremer/Kenkremer.com

The static fire test is routinely carried out by SpaceX and confirms that both the first stage engines and the rocket are suited for liftoff.

The rocket – minus the EchoStar 23 payload – had been rolled out of the SpaceX processing hangar at the perimeter fence several days ago and then up the incline to the top of pad 39A using a newly built dedicated transporter-erector.

With the successful completion of the static fire test, the booster will be rolled back to the big processing hangar and EchoStar 23 encapsulated inside the payload fairing will be integrated on top.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 10, 11, 13-15: “SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 rocket minus EchoStar 23 comsat sits horizontal atop Launch Complex 39A at the Kennedy Space Center as seen from Playalinda Beach, Fl, prior to static fire test on 9 Mar. 2017, as technicians process the rocket. This is only the second rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff is slated for 14 Mar 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 EchoStar 23 mission patch. Credit: SpaceX

So it Begins, Red Dragon Delayed 2 Years to 2020

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX

KENNEDY SPACE CENTER, FL – With so many exciting projects competing for the finite time of SpaceX’s super talented engineers, something important had to give. And that something comes in the form of slipping the blastoff of SpaceX’s ambitious Red Dragon initiative to land the first commercial spacecraft on Mars by 2 years – to 2020. Nevertheless it will include a hefty science payload, SpaceX’s President told Universe Today.

The Red Dragon launch postponement from 2018 to 2020 was announced by SpaceX president Gwynne Shotwell during a Falcon 9 prelaunch press conference at historic pad 39A at NASA’s Kennedy Space Center in Florida.

“We were focused on 2018, but we felt like we needed to put more resources and focus more heavily on our crew program and our Falcon Heavy program, said SpaceX Gwynne Shotwell at the pad 39a briefing.

“So we’re looking more in the 2020 time frame for that.”

And whenever Red Dragon does liftoff, it will carry a significant “science payload” to the Martian surface, Shotwell told me at the pad 39A briefing.

“As much [science] payload on Dragon as we can,” Shotwell said. Science instruments would be provided by “European and commercial guys … plus our own stuff!”

SpaceX President Gwynne Shotwell meets the media at Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 ahead of launch of the CRS-10 mission on 19 Feb 2017. Credit: Julian Leek

Another factor potentially at play is yesterdays (Feb 27) announcement by SpaceX CEO Elon Musk that he has two hefty, revenue generating paying customers for a manned Moonshot around the Moon that could blastoff on a commercial crew Dragon as soon as next year atop a Falcon Heavy from pad 39A – as I reported here.

Whereas SpaceX is footing the bill for the private Red Dragon venture.

Pad 39A is the same pad from which the Red Dragon mission will eventually blastoff atop a heavy lift SpaceX Falcon Heavy rocket – and which just reopened for launch business last week on Feb. 19 after lying dormant for more than 6 years since the retirement of NASA’s Space Shuttle Program in July 2011.

So at least the high hurdle of reopening pad 39A has been checked off!

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

SpaceX continues to dream big – setting its extraterrestrial sights on the Moon and Mars.

Musk founded SpaceX with the dream of transporting Humans to the Red Planet and establishing a ‘City on Mars’.

Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2020. Credit: SpaceX

Since launch windows to Mars are only available every two years due to the laws of physics and planetary alignments, the minimum Red Dragon launch delay automatically amounts to 2 years.

Furthermore the oft delayed Falcon Heavy has yet to launch on its maiden mission.

Shotwell said the maiden Falcon Heavy launch from pad 39A is planned to occur this summer, around mid year or so – after Pad 40 is back up and running.

And the commercial crew Dragon 2 spacecraft being built under contract to NASA to launch American astronauts to the International Space Station (ISS) has also seen its maiden launch postponed more than six months over the past calendar year.

Finishing the commercial crew Dragon is absolutely critical to NASA for launching US astronauts to the ISS from US soil – in order to end our total dependence on Russia and the Soyuz capsule at a cost in excess of $80 million per seat.

Artistic concepts of the Falcon Heavy rocket (left) and the Dragon capsule deployed on the surface of Mars (right). Credit: SpaceX

The bold Red Dragon endeavor which involved launching an uncrewed version of the firms Dragon cargo spacecraft to carry out a propulsive soft landing on Mars as soon as 2018, was initially announced with great fanfare by SpaceX less than a year ago in April 2016.

At that time, SpaceX signed a space act agreement with NASA, wherein the agency will provide technical support to SpaceX with respect to Mars landing technologies for ‘Red Dragon’ and NASA would reciprocally benefit from SpaceX technologies for Mars landing.

But given the magnitude of the work required for this extremely ambitious Mars landing mission, the two year postponement was pretty much expected from the beginning by this author.

The main goal is to propulsively land the heaviest payload ever on Mars – something 5-10 times the size of anything landed before.

“These missions will help demonstrate the technologies needed to land large payloads propulsively on Mars,” SpaceX noted last April.

Red Dragon will utilize supersonic retropropulsion to achieve a safe touchdown.

I asked Shotwell whether Red Dragon would include a science payload? Would Universities and Industry compete to submit proposals?

“Yes we had planned to fly [science] stuff in 2018, but people are also more ready to fly in 2020 than 2018,” Shotwell replied.

“Yes we are going to put as much [science] payload on Dragon as we can. By the way, just Dragon landing alone will be the largest mass ever put on the surface of Mars. Just the empty Dragon alone. That will be pretty crazy!”

“There are a bunch of folks that want to fly [science], including European customers, commercial guys.”

“Yeah there will be [science] stuff on Dragon – plus our own stuff!” Shotwell elaborated.

Whenever it does fly, SpaceX will utilize a recycled cargo Dragon from one of the space station resupply missions for NASA, said Jessica Jensen, SpaceX Dragon Mission manager at a KSC media briefing.

NASA’s still operating 1 ton Curiosity rover is the heaviest spaceship to touchdown on the Red Planet to date.

Dramatic wide angle mosaic view of butte with sandstone layers showing cross-bedding in the Murray Buttes region on lower Mount Sharp with distant view to rim of Gale crater, taken by Curiosity rover’s Mastcam high resolution cameras. This photo mosaic was assembled from Mastcam color camera raw images taken on Sol 1454, Sept. 8, 2016 and stitched by Ken Kremer and Marco Di Lorenzo, with added artificial sky. Featured at APOD on 5 Oct 2016. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

NASA’s agency wide goal is to send humans on a ‘Journey to Mars’ by the 2030s utilizing the SLS rocket and Orion deep space capsule – slated for their uncrewed maiden launch in late 2018.

Although NASA has just initiated a feasibility study to alter the mission and add 2 astronauts with a revised liftoff date of 2019.

Of course it all depends on whether the new Trump Administration bolsters NASA or slashes NASA funding.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Elon Musk Announces Daring SpaceX Dragon Flight Beyond Moon with 2 Private Astronauts in 2018

SpaceX CEO Elon Musk announced plans on Feb. 27, 2017 to launch a commercial crew SpaceX Dragon to beyond the Moon and back with two private astronauts in 2018 using a SpaceX Falcon Heavy launching from the Kennedy Space Center. Credit: SpaceX
SpaceX CEO Elon Musk announced plans on Feb. 27, 2017 to launch a commercial crew SpaceX Dragon to beyond the Moon and back with two private astronauts in 2018 using a SpaceX Falcon Heavy launching from the Kennedy Space Center. Credit: SpaceX

KENNEDY SPACE CENTER, FL – Elon Musk, billionaire founder and CEO of SpaceX, announced today (27 Feb) a daring plan to launch a commercial manned journey “to beyond the Moon and back” in 2018 flying aboard an advanced crewed Dragon spacecraft paid for by two private astronauts – at a media telecon.

Note: Check back again for updated details on this breaking news story.

“This is an exciting thing! We have been approached to do a crewed mission to beyond the Moon by some private individuals,” Musk announced at the hastily arranged media telecon just concluded this afternoon which Universe Today was invited to participate in.

The private two person crew would fly aboard a human rated Dragon on a long looping trajectory around the moon and far beyond on an ambitious mission lasting roughly eight days and that could blastoff by late 2018 – if all goes well with rocket and spacecraft currently under development, but not yet flown.

“This would do a long leap around the moon,” Musk said. “We’re working out the exact parameters, but this would be approximately a week long mission – and it would skim the surface of the moon, go quite a bit farther out into deep space, and then loop back to Earth. I’m guessing probably distance wise, maybe 300,000 or 400,000 miles.”

The private duo would fly on a ‘free return’ trajectory around the Moon – but not land on the Moon like NASA did in the 1960s and 1970s.

But they would venture further out into deep space than any humans have ever been before.

No human has traveled beyond low Earth orbit in more than four decades since Apollo 17 – NASA’s final lunar landing mission in December 1972, and commanded by recently deceased astronaut Gene Cernan.

“Like the Apollo astronauts before them, these individuals will travel into space carrying the hopes and dreams of all humankind, driven by the universal human spirit of exploration,” says SpaceX.

Musk said the private crew of two would launch on a Dragon 2 crew spacecraft atop a SpaceX Falcon Heavy booster from historic pad 39A at the Kennedy Space Center in Florida – the same pad that just reopened for business last week with the successful launch of a cargo Dragon to the International Space Station (ISS) for NASA on the CRS-10 mission.

“They are two paying customers,” Musk elaborated. “They’re very serious about it.”

“But nobody from Hollywood.”

“They will fly using a Dragon 2 and Falcon Heavy next year in 2018.”

“The lunar orbit mission would launch about 6 months after the [first] NASA crew to the space station on Falcon 9/Dragon 2,” Musk told Universe Today.

Musk noted they had put down “a significant deposit” and will undergo extensive flight training.

He declined to state the cost – but just mentioned it would be more than the cost of a Dragon seat for a flight to the space station, which is about $58 million.

The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: SpaceX

SpaceX is currently developing the commercial crew Dragon spacecraft for missions to transport astronauts to low Earth orbit (LEO) and the International Space Station (ISS) under a NASA funded a $2.6 billion public/private contract. Boeing was also awarded a $4.2 Billion commercial crew contract by NASA to build the crewed CST-100 Starliner for ISS missions.

The company is developing the triple barreled Falcon Heavy with its own funds – which is derived from the single barreled Falcon 9 rocket funded by NASA.

But neither the Dragon 2 nor the Falcon Heavy have yet launched to space and their respective maiden missions haven been postponed multiple time for several years – due to a combination of funding and technical issues.

So alot has to go right for this private Moonshot mission to actually lift off by the end of next year.

NASA is developing the new SLS heavy lift booster and Orion capsule for deep space missions to the Moon, Asteroids and Mars.

The inaugural uncrewed SLS/Orion launch is slated for late 2018. But NASA just announced the agency has started a feasibility study to examine launching a crew on the first Orion dubbed Exploration Mission-1 (EM-1) on a revamped mission in 2019 rather than 2021 on EM-2.

Thus the potential exists that SpaceX could beat NASA back to the Moon with humans.

I asked Musk to describe the sequence of launches leading up to the private Moonshot and whether a crewed Dragon 2 would launch initially to the ISS.

Musk replied that SpaceX hopes to launch the first uncrewed Dragon 2 test flight to the ISS by the end of this year on the firm’s Falcon 9 rocket – almost identical to the rocket that just launched on Feb. 19 from pad 39A.

That would be followed by crewed launch to the ISS around mid-2018 and the private Moonshot by the end of 2018.

“The timeline is we expect to launch a human rated Dragon 2 on Falcon 9 by the end of this year, but without people on board just for the test flight to the space station,” Musk told Universe Today.

“Then about 6 months later we would fly with a NASA crew to the space station on Falcon 9/Dragon 2.”

“And then about 6 months after that, assuming the schedule holds by end of next year, is when we would do the lunar orbit mission.”

I asked Musk about whether any heat shield modifications to Dragon 2 were required?

“The heat shield is quite massively over designed,” Musk told me during the telecom.

“It’s actually designed for multiple Earth orbit reentry missions – so that we can actually do up to 10 reentry missions with the same heat shield.”

“That means it can actually do at least 1 lunar orbit reentry velocity missions, and conceivably maybe 2.”

“So we do not expect any redesign of the heat shield.”

The reentry velocity and heat generated from a lunar mission is far higher than from a low Earth orbit mission to the space station.

Nevertheless the flight is not without risk.

The Dragon 2 craft will need some upgrades. For example “a deep space communications system” with have to be installed for longer trips, said Musk.

Dragon currently is only equipped for shorter Earth orbiting missions.

The flight must also be approved by the FAA before its allowed to blastoff – as is the case with all commercial launches like the Feb. 19 Falcon 9/Cargo Dragon mission for NASA.

SpaceX founder and CEO Elon Musk. Credit: Ken Kremer/kenkremer.com

Musk declined to identify the two individuals or their genders but did say they know one another.

They must pass health and training tests.

“We expect to conduct health and fitness tests, as well as begin initial training later this year,’ noted SpaceX.

The flight itself would be very autonomous. The private passengers will train for emergencies but would not be responsible for piloting Dragon.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Musk said he would give top priority to NASA astronauts for the Moonshot mission if the agency wanted to procure the seats ahead of the private passengers.

He noted that SpaceX would have the capability to launch one or 2 private moonshots per year.

“I think this should be a really exciting mission that gets the world really excited about sending people into deep space again. I think it should be super inspirational,” Musk said.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket launches from pad 39A at the Kennedy Space Center on Feb 19, 2017 for NASA on the Dragon CRS-10 delivery mission to the International Space Station (ISS). Credit: Julian Leek
SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com
An artist's illustration of the Falcon Heavy rocket. Image: SpaceX
An artist’s illustration of the Falcon Heavy rocket. Image: SpaceX

SpaceX Dragon Arrives at Space Station with Tons of Earth and Human Science Experiments

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA
SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

KENNEDY SPACE CENTER, FL – A SpaceX Dragon supply ship jam packed with more than 2.5 tons of critical science gear, crew supplies and 40 mice successfully arrived this morning at the International Space Station (ISS) – where six humans from the US, Russia and France are living and working aboard.

Dragon reached the station four days after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory.

Astronauts Thomas Pesquet of ESA (European Space Agency) and station commander Shane Kimbrough of NASA deftly maneuvered the space station’s 57.7-foot (17.6-meter) Canadian-built Canadarm2 robotic arm to reach out and flawlessly capture the Dragon CRS-10 spacecraft at about 5:44 a.m. EST early Thursday, after it arrived at the station.

The SpaceX CRS-10 Dragon is pictured in the grips of the Canadarm2 shortly after its capture by astronauts Shane Kimbrough and Thomas Pesquet on Feb. 23, 2017. Credit: NASA TV

Pesquet and Kimbrough were working at the robotics work station inside the seven windowed Cupola module as they monitored Dragon’s approach for capture by the grappling snares on the terminus of the robotic arm this morning as the station was soaring over the northwest coast of Australia.

“Looks like we have a great Dragon capture,” said capcom astronaut Mike Hopkins.

“We want to congratulate all the teams working around the world for the successful arrival,” said Pesquet.

The million pound station is orbiting approximately 250 miles (400 km) above Earth.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The commercial Dragon cargo freighter arrived about 16 minutes earlier than originally planned.

The duo were assisted by experienced NASA astronaut Peggy Whitson. The 57 year old Whitson will soon set a record for most time spent in space by an American on April 24.

The gumdrop shaped Dragon cargo freighter slowly and methodically approached the station and the capture point through the required approach corridor during the final stages of the orbital chase.

After hovering at the capture point in free drift at a distance of about 34 feet (11 m) from the orbiting outpost, the crew members extended the robotic arm and Dragon was successfully plucked from free space using Canardarm2 at the grapple fixture located on the side of the supply ship.

The entire thrilling approach and grappling sequence was broadcast live on NASA TV.

SpaceX Dragon arrives at the 30 meter hold point during final approach to International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

Robotics officers on the ground at the NASA’s Johnson Space Center then took over and berthed Dragon to the Earth facing port on the Harmony module at about 8 a.m. as the mated craft were soaring over central America.

16 latches and bolts on the stations Common Berthing Mechanism (CBM) will hold Dragon firmly in place for a hard mate to the stations Harmony module.

4 gangs of 4 bolts were driven into place with ground commands from the robotics officer to firmly bolt Dragon to the nadir port on Harmony.

The second stage capture and Dragon installation was confrmed at 8:12 a.m. Feb 23 as the craft were flying over the US East Coast.

“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.

“Dragon systems are in excellent shape.”

“There have been no issues and everything has gone as planned.”

“Today was smooth sailing as Dragon arrived below the space station and maneuvered its way through a carefully choreographed procedure to the grapple position for rendezvous and capture.”

“Dragon is now firmly attached to the International Space Station and the crew will begin unloading critical science payloads and supplies this afternoon.”

“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.

“Dragon systems are in excellent shape.”

“There have been no issues and everything has gone as planned.”

Yesterday’s rendezvous was automatically aborted when a bad bit of navigational data was uplinked to Dragons relative GPS navigation system as it was about 0.7 miles below the station.

“The Dragon’s computers received an incorrect navigational update, triggering an automatic wave off. Dragon was sent on a “racetrack” trajectory in front of, above and behind the station for today’s second rendezvous attempt.”

There was never any danger to the crew, space station or Dragon. It merely arrived a day later than planned as it is fully equipped to do if needed.

The SpaceX Dragon was successfully installed to the Harmony module a few hours after it was captured with the Canadarm2 by the crew on Feb 23, 2017. This artists concept shows the location of several visiting vehicles including Dragon, Soyuz and BEAM expandable module. Credit: NASA

CRS-10 counts as the company’s tenth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The Dragon is the first of two cargo craft arriving at the station over two consecutive days.

The unpiloted Russian Progress 66 supply ship launched yesterday from Baikonur is slated to arrive early Friday morning with 2.9 tons of supplies. It will automatically dock at the Pirs docking module at about 3:45 a.m., with a trio of Russian cosmonauts monitoring all the action.

After conducting leak checks, the crew plans to open the hatch to Dragon later today.

They will quickly begin removing the highest priority science investigations and gear first.

Dragon will remain at the station for about 30 days.

SpaceX Falcon 9 rocket and Dragon cargo ship rests horizontal atop Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 as work crews use the access room to load ‘late stow’ science experiments aboard Dragon – as seen from inside the pad perimeter. This is the first rocket launched from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission occurred on 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

1000 pounds of ‘late stow’ experiments were loaded the day before the originally planned Feb. 18 liftoff of the SpaceX Falcon 9 rocket.

Dragon was successfully launched from NASA’s Kennedy Space Center atop the 213-foot-tall (65-meter) SpaceX Falcon 9 rocket at 9:38 a.m. EST on Feb. 19, 2017 from historic Launch Complex 39A to low Earth orbit.

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

The 40 mice will be used in a wound healing experiment to test therapies in microgravity.

An advanced plant growth habitat will launch soon to test better technologies for growing crops in space that could contribute to astronauts nutrition on long duration spaceflights.

SpaceX Dragon CRS-10 Cargo manifest from NASA:

TOTAL CARGO: 5489.5 lbs. / 2490 kg

TOTAL PRESSURIZED CARGO WITH PACKAGING: 3373.1 lbs. / 1530 kg

• Science Investigations 1613.8 lbs. / 732 kg
• Crew Supplies 652.6 lbs. / 296 kg
• Vehicle Hardware 842.2 lbs. / 382 kg
• Spacewalk Equipment 22.0 lbs. / 10 kg
• Computer Resources 24.2 lbs. / 11 kg
• Russian Hardware 48.5 lbs. / 22 kg

UNPRESSURIZED

• SAGE-III & STP-H5 Lightning Imaging Sensor 2116.4 lbs. / 960 kg

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA’s Historic Pad 39A Back in Business with Maiden SpaceX Falcon 9 Blastoff to ISS and Booster Landing

Historic maiden blastoff of a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center on Dragon CRS-10 resupply mission to the International Space Station (ISS) at 9:38 a.m. EDT on Feb 19, 2017. Photo taken from the VAB roof. Credit: Ken Kremer/kenkremer.com
Historic maiden blastoff of a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center on Dragon CRS-10 resupply mission to the International Space Station (ISS) at 9:38 a.m. EDT on Feb 19, 2017. Photo taken from the VAB roof. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After a six year lull NASA’s historic pad 39A roared back to business this morning with the dramatic maiden blastoff of a SpaceX Falcon 9 rocket, on a critical cargo delivery mission for NASA to the space station – while simultaneously landing the first stage back on the ground at the Cape on a secondary mission aimed at one day propelling humans to Mars.

The era of undesired idleness for America’s most famous launch pad was broken at last by the rumbling thunder of a SpaceX Falcon 9 that ignited at 9:38 a.m. EST Sunday morning, Feb 19, at Launch Complex 39A at NASA’s Kennedy Space Center.

The storied liftoff took place under heavily overcast skies with rain showers nearby under seemingly improbable weather conditions.

After liftoff, the rocket disappeared within seconds and never really reappeared in the local area until the final moments of the descent of the first stage – which nailed a nearly perfect dead center touchdown at Landing Zone 1 at the Cape some 9 minutes after launch.

Final descent of the SpaceX Falcon 9 1st stage landing as seen from the VAB roof under heavily overcast skies after Feb. 19, 2017 launch from pad 39 at the Kennedy Space Center. The booster successfully soft landed upright at Landing Zone-1 (LZ-1) accompanied by multiple sonic booms at Cape Canaveral Air Force Station, Florida, about 9 minutes after launch to the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

Nevertheless the Falcon 9 launch was a smashing success and probably the loudest I have ever witnessed since the shuttle era ended. Watching from atop the roof of the iconic VAB, I can report the building did experience some rather exciting rattling!

And it was SpaceX’s first daylight booster landing back at the Cape. The two earleir touchdowns were at night – most recently for the CRS-9 mission last summer in July 2016.

The goal of the mission was aimed at launching the SpaceX Dragon cargo freighter to deliver over 5500 pounds of science and supplies to the orbiting science outpost on the CRS-10 mission.

The Dragon spacecraft was successfully delivered in Earth orbit and is on course for the International Space Station (ISS) on the CRS-10 mission.

As a secondary side goal, SpaceX successfully carried out a propulsive soft landing of the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1 (LZ-1), located about 9 miles south of KSC launch complex 39A.

The touchdown, like the launch was completely obscured until the final moments of the descent, when it suddenly and magnificently reappeared as a strange pale colored cylinder emitting a long yellow flame after dropping below the low hanging clouds.

The booster successfully accomplished a propulsive upright soft landing at Landing Zone-1 (LZ-1) accompanied by multiple sonic booms at Cape Canaveral Air Force Station, Florida, about 9 minutes after launch.

This was the 8th first stage booster that SpaceX has successfully recovered either by land or on a tiny droneship at sea over the past year.

The goal is to refurbish and recycle the 156 foot tall first stage boosters for relaunch with a new payload.

SpaceX CEO billionaire Elon Musk hopes that by reusing the spent booster, he can drastically cut the cost of access to space and that will one day lead to human colonies and a “City on Mars.”

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

The dream of Bob Cabana, former astronaut and now Center Director at the Kennedy Space Center NASA’s, to turn KSC into a multiuser spaceport open to utilization by government, industry and entrepreneurs like SpaceX’s billionaire CEO Elon Musk is finally coming to fruition in a blaze of glory.

“I’m so proud of this team for all the dedication and hard work,” said Cabana.

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

Today’s launch counts as the first commercial launch from Kennedy’s historic pad.

The storied pad initially sent NASA astronauts to the Moon soon after the dawn of the Space Age during the Apollo/Saturn era and was then significantly overhauled to serve as the on ramp for NASA space shuttles for another three decades.

SpaceX has now transformed pad 39A for launches of the Falcon 9. A bright future lies ahead with launches of the heavy lift Falcon Heavy later this year and a renewal of manned launches of astronauts some time in 2018.

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

The LIS lightning mapper will measure lightning from the altitude of the ISS. NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

As of today we are at last launching rockets again from the Kennedy Space Center – thanks to SpaceX and the Falcon 9. What a tremendous return to space !

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket rests horizontal atop Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 as seen from inside the pad perimeter. Technicians work to prepare the rocket for launch. Liftoff of the CRS-10 mission is slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about SpaceX CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Feb 18 – 19: “SpaceX CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings