KENNEDY SPACE CENTER, FL – NASA Astronaut Scott Kelly and his Russian cohort Mikhail Kornienko successful returned to Earth late Tuesday night (March 1), after spending nearly a year in space aboard the space station on a mission to gauge the limits of human endurance in microgravity and blaze a path forward to eventual human expeditions to the Red Planet.
American astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko will return to Earth tonight after 340 days aboard the International Space Station. The year in space may have been fairly routine in some aspects (other than goofing around in a gorilla suit,) but the return to Earth aboard the Soyuz capsule will be anything but.
After un-docking from the ISS at 8:02 pm EST, the Soyuz—piloted by commander Sergey Volkov—will move about 12 miles away. Then the Soyuz’s braking rockets will be fired for 4 minutes and 49 seconds, slowing the craft by 460 kmh (286 mph.) Then begins the harrowing part.
Soyuz will free-fall for 25 minutes, until it hits the Earth’s atmosphere at 100 km (62 miles) above the surface. Then the craft has to withstand a five-minute stretch of extreme heating as it descends to 20 miles above the Earth’s surface. At an altitude of 10.6 km (6.6 miles), a large parachute—called a drogue chute—will deploy from Soyuz’s descent module, helping to slow the craft’s descent. Lastly, rockets will fire, which will lead to a jarring and nerve-wracking touchdown in Kazakhstan. According to Kelly, who has two space shuttle flights to his credit, the whole experience defies description.
But it’s what happens when Kelly is back on Earth that is the most important part of this record-breaking 340 day mission aboard the ISS. It’s no coincidence that the mission was exactly 340 days long. That’s how long a manned mission to Mars is expected to take, and Kelly’s and Kornienko’s mission was designed to mimic that. NASA hopes to gain an understanding of the effects a Mars mission will have on the astronauts who make that trip.
What’s unique about Kelly is that he has a twin brother Mark—also an astronaut and former shuttle commander—who is being monitored and subjected to the same tests as Scott during his year in space. By comparing the twin brothers before, during, and after Scott’s year aboard the ISS, NASA expects to learn a lot about extended periods of weightlessness and long-term exposure to radiation, and how astronauts will be affected. And that will all happen as soon as Kelly and Kornienko return.
Any crew member returning from space faces a battery of tests to determine their condition. But Kelly and Kornienko will face all that and then some. It’s essential that the two are assessed as soon as they return, because their bodies will begin to acclimatize to Earth’s gravity as soon as they land. After exiting Soyuz, they will be transported directly to medical tents, where they will sit in recliners. They will have a short time to get their bearings, then testing will begin. For Kelly, the testing will continue on his flight back to the USA. The more detail they can gather on Kelly’s condition and physiology, the better it will be for any astronauts making the trip to Mars in the future.
This is important, ground-breaking stuff. And with missions like this, NASA and other organizations are learning a lot and are continuing to expand humanity’s horizons. But, as we keep seeing, there is always a lighter side to these endeavours: For fun, check out NASA’s Crazy Facts About The Year In Space.
It seems that besides doing a lot of important science, and generally expanding humanity’s horizons, astronaut Scott Kelly has time for a practical joke. Thanks to his twin brother Mark, Scott received a gorilla costume when the ISS was resupplied, and used it to chase his crew-mate Tim Peake around. It’s a funny but effective way to celebrate a year in space.
A commercial Cygnuscargo freighter departed the International Space Station (ISS) this morning (Feb. 19) after successfully resuming America’s train of resupply runs absolutely essential to the continued productive functioning of the orbiting science outpost.
NASA astronauts Scott Kelly and Tim Kopra commanded the release of the privately developed Orbital ATK “S.S. Deke Slayton II” Cygnus resupply ship from the snares of the stations Canadian-built robotic arm at 7:26 a.m. EST – while the space station was flying approximately 250 miles (400 km) above Bolivia.
“Honor to give #Cygnus a hand (or arm) in finalizing its mission this morning. Well done #SSDekeSlayton!” Kelly quickly posted to his social media accounts.
The Orbital ATK “S.S. Deke Slayton II” Cygnus craft had arrived at the station with several tons of supplies on Dec. 9, 2015 after blazing to orbit on Dec. 6 atop a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station in Florida on the company’s fourth NASA-contracted commercial station resupply mission dubbed CRS-4.
To prepare for today’s release, ground controllers at NASA’s Johnson Space Center first used the station’s 57.7-foot-long (17.6- meter-long) robotic arm, Canadarm2, to unberth Cygnus from its place on the stations Earth-facing port of the Unity module at about 5:38 a.m.
Cygnus came loaded with over three tons of critically needed supplies and research experiments as well as Christmas presents for the astronauts and cosmonauts living and working on the massive orbital lab complex during Expeditions 45 and 46.
Today’s activities were carried live on NASA TV. This brief NASA video shows a few highlights from Cygnus departure:
Altogether, Cygnus spent approximately 72 days attached to the station. During that time the crews unloaded all the research gear for experiments in areas such as biology, biotechnology, and physical and Earth science.
“All good things must come to an end. #Cygnus, your mission was a success! Farewell #SSDekeSlayton,” said Kelly.
Mission controllers at Orbital ATK’s Dulles, VA space operations facility soon commanded Cygnus to fire its thrusters to gradually maneuver away from the station.
Before departure, the crew had loaded Cygnus back up with about 3000 pounds of trash for disposal.
On Saturday, after the spacecraft is far away from the station, controllers will fire the engines twice to pushing the vehicle into Earth’s atmosphere for a fiery reentry where it will harmlessly burn up over the Pacific Ocean.
Meanwhile, Kelly himself will also be departing the ISS in about ten days when his historic ‘1 Year ISS Mission’ concludes on March 1, when he returns to Earth on a Russian Soyuz capsule along with his cosmonaut crewmates Mikhail Kornienko and Sergey Volkov.
December’s arrival of the Orbital ATK Cygnus CRS-4 cargo freighter – also known as OA-4 – represented the successful restart of American’s critically needed cargo missions to the ISS following a pair of launch failures by both of NASA’s cargo providers – Orbital ATK and SpaceX – over the past year and a half. It was the first successful US cargo delivery mission in some 8 months.
Cygnus was named the ‘SS Deke Slayton II’ in memory of Deke Slayton, one of the America’s original seven Mercury astronauts. He was a member of the Apollo Soyuz Test Flight. Slayton was also a champion of America’s commercial space program.
CRS-4 counts as the first flight of Cygnus on an Atlas and the first launch to the ISS using an Atlas booster.
This is also the first flight of the enhanced, longer Cygnus, measuring 5.1 meters (20.5 feet) tall and 3.05 meters (10 feet) in diameter, sporting a payload volume of 27 cubic meters.
“The enhanced Cygnus PCM is 1.2 meters longer, so it’s about 1/3 longer,” Frank DeMauro, Orbital ATK Vice President for Human Spaceflight Systems Programs, said in an exclusive interview with Universe Today.
This Cygnus also carried its heaviest payload to date since its significantly more voluminous than the original shorter version.
“It can carry about 50% more payload,” DeMauro told me.
“This Cygnus will carry more payload than all three prior vehicles combined,” former NASA astronaut Dan Tani elaborated.
The total payload packed on board amounted to 3513 kilograms (7745 pounds), including science investigations, crew supplies, vehicle hardware, spacewalk equipment and computer resources.
Among the contents are science equipment totaling 846 kg (1867 lbs.), crew supplies of 1181 kg (2607 lbs.), and spacewalk equipment of 227 kg (500 lbs.).
Orbital ATK holds a Commercial Resupply Services (CRS) contract from NASA worth $1.9 Billion to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for eight Cygnus cargo delivery flights to the ISS.
Orbital ATK has contracted a second Cygnus to fly on an Atlas on the OA-6 mission, currently slated for liftoff around March 22, 2016. Liftoff was delayed about two weeks to decontaminate an infestation of mold found in cargo already packed on the Cygnus.
NASA has also contracted with Orbital ATK to fly three additional missions through 2018. Orbital also recently was awarded six additional cargo missions by NASA as part of the CRS-2 procurement.
Orbital ATK hopes to resume Cygnus cargo launches with their own re-engined Antares rocket from NASA’s Wallops Flight Facility in Virginia this summer.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – Nearing the final days of his history making one-year-long sojourn in orbit, space farming NASA astronaut Scott Kelly harvested the first ever crop of ‘Space Zinnias’ grown aboard the International Space Station (ISS) on a most appropriate day – Valentine’s Day, Sunday, Feb. 14, 2016.
On the road to restoring US Human spaceflight from US soil, SpaceX conducted a pair of key tests involving a propulsive hover test and parachute drop test for their Crew Dragon vehicle which is slated to begin human missions in 2017.
SpaceX released a short video showing the Dragon 2 vehicle executing a “picture-perfect propulsive hover test” on a test stand at the firms rocket development facility in McGregor, Texas.
The video published last week shows the Dragon 2 simultaneously firing all eight of its side mounted SuperDraco engines, during a five second test carried out on Nov. 22, 2015.
Using the SuperDragos will eventually enable pinpoint propulsive soft landings like a helicopter in place of parachute assisted landings in the ocean or on the ground.
The video clip seen below includes both full speed and slow motion versions of the test, showing the vehicle rising and descending slowly on the test stand.
Video caption: SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test firing at rocket development facility in McGregor, Texas.
The eight SuperDraco thrusters are mounted in sets 90 degrees apart around the perimeter of the vehicle in pairs called “jet packs.”
The SuperDracos generate a combined total of 33,000 lbs of thrust.
SpaceX is developing the Crew Dragon under the Commercial Crew Program (CCP) awarded by NASA to transport crews of four or more astronauts to the International Space Station.
“This test was the second of a two-part milestone under NASA’s Commercial Crew Program,” said SpaceX officials. “The first test—a short firing of the engines intended to verify a healthy propulsion system—was completed November 22, and the longer burn two-days later demonstrated vehicle control while hovering.”
The first unmanned and manned orbital test flights of the crew Dragon are expected sometime in 2017. A crew of two NASA astronauts should fly on the first crewed test before the end of 2017.
Initially, the Crew Dragon will land via parachutes in the ocean before advancing to use of pinpoint propulsive landing.
Thus SpaceX recently conducted a parachute drop test involving deployment of four red-and-white parachutes unfurling high above the desert near Coolidge, Arizona using a mass simulator in place of the capsule.
Video Caption: SpaceX performed a successful test of its parachute system for the Crew Dragon spacecraft near Coolidge, Arizona, as part of its final development and certification work with NASA’s Commercial Crew Program. Using a weight simulant in the place of a boilerplate spacecraft, four main parachutes were rigged to deploy just as they would when the Crew Dragon returns to Earth with astronauts aboard. Credit: NASA/SpaceX
“The mass simulator and parachutes were released thousands of feet above the ground from a C-130 cargo aircraft. This test evaluated the four main parachutes, but did not include the drogue chutes that a full landing system would utilize,” said NASA.
Since the CCP program finally received full funding from Congress in the recently passed Fiscal Year 2016 NASA budget, the program is currently on track to achieve the orbital test flight milestones.
Boeing and SpaceX were awarded contracts by NASA Administrator Charles Bolden in September 2014 worth $6.8 Billion to complete the development and manufacture of the privately developed Starliner CST-100 and Crew Dragon astronaut transporters under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.
The Crew Dragon will launch atop a SpaceX Falcon 9 rocket from launch Complex 39A at the Kennedy Space Center. The historic launch pad has been leased by SpaceX from NASA and is being refurbished for launches of the Falcon 9 and Falcon Heavy.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Furthermore its contributing invaluable experience to scientists and astronauts on learning how to grow plants and food in microgravity during future deep space human expeditions planned for NASA’s “Journey to Mars” initiative.
A shuttle will soar again from American soil before this decade is out, following NASA’s announcement today (Jan 14) that an unmanned version of the Dream Chaser spaceplane was among the trio of US awardees winning commercial contracts to ship essential cargo to the International Space Station (ISS) starting in 2019.