Station Astronaut Snaps Super Sharp View of the Great Pyramids from Space

The Great Egyptian Pyramids of Giza from space and the International Space Station on 10 June 2015. “It took me until my last day in space to get a good picture of these! Credit: NASA/Terry Virts/@AstroTerry

The Great Egyptian Pyramids of Giza from space and the International Space Station on 10 June 2015. “It took me until my last day in space to get a good picture of these!
Credit: NASA/Terry Virts/@AstroTerry
See Pyramid map below[/caption]

On his last full day in space aboard the International Space Station (ISS), NASA astronaut Terry Virts at last captured a truly iconic shot of one of the “Seven Wonders of the World” – the Great Pyramids of Giza in Egypt.

Virts snapped the exquisitely sharp view of the Egyptian pyramids at Giza on June 10 looking out from the stations windows, just hours before entering the Soyuz return spaceship and closing the hatches behind him for his planned plummet back to Earth.

He proudly posted the spectacular photo on his twitter social media account from space while serving as station commander of Expedition 43.

The three pyramids of Giza dominate the fantastically beautiful photo. They are located about 9 km (5 mi) from the town of Giza on the Nile, and some 25 km (15 mi) southwest of the Egyptian capital city of Cairo.

The Great Sphinx is also located nearby the massive complex of the Great Pyramids and visible in the stunning photo. See map below.

Map of Giza pyramid complex - "Pyramid of Khufu" refers to the Great Pyramid.
Map of Giza pyramid complex – “Pyramid of Khufu” refers to the Great Pyramid.

Virts and his international crewmates from Russia and Italy just returned home safely to a sun drenched and toasty touchdown on the remotes steppes of Kazakhstan on June 11, after departing from the massive orbiting complex aboard their Russian Soyuz TMA-15M ferry craft.

Apparently the Pyramid photo proved to be quite elusive – as it took Virts the entire length of his six months duration flight to finally take the stunning close up photo he longed for and achieved, with no time left to spare.

“It took me until my last day in space to get a good picture of these!” tweeted Virts from the ISS on June 11.

NASA Astronaut Terry Virts inside the Cupola, commanded just completed Expedition 43 during over 199 days aboard the ISS.  Credit: NASA
NASA Astronaut Terry Virts inside the Cupola, commanded just completed Expedition 43 during over 199 days aboard the ISS. Credit: NASA

The multinational Expedition 43 trio comprised Commander Terry Virts of NASA, Flight Engineers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Samantha Cristoforetti of ESA (European Space Agency).

They undocked from the orbiting outposts Russian Rassvet module as scheduled in the Soyuz TMA-15M spaceship at 6:20 a.m. EDT, June 11, while soaring some 250 miles (400 kilometers) above Mongolia.

Earlier in the mission, Cristoforetti captured a wider angle view of the Great Pyramids of Giza, shown for comparison below. Modern civilization juts up very near to the ancient pyramids.

The Egyptian Pyramids of Giza from space and the ISS.  ESA/Samantha Cristoforetti
The Egyptian Pyramids of Giza from space and the ISS. Credit: ESA/Samantha Cristoforetti

The largest pyramid, known as the Great Pyramid or Pyramid of Khufu was built over around 10 to 20 years and completed around 2560 BC. It measured about 146.5 meters (481) feet in height when it was originally built. At the base it has a width of 230.4 meters (765 feet).

Altogether, the Expedition 43 crew served nearly 200 days on board the ISS.

During his just concluded stay aboard the ISS during Expedition 43, Virts did three spacewalks totaling 19 hours and 2 minutes. Including the nearly 200 day mission, he raised has total cumulative time in space to 212 days.

Virts was a prolific photographer during his duty time in orbit. A few more of his shots are gathered included herein, including one of many nighttime photos, a shot of the Soyuz return vehicle and his very last shot, a magnificent view out the stations windows.

“The last picture I took on this mission.”  Credit:  NASA: Terry Virts/@AstroTerry
“The last picture I took on this mission.” Credit: NASA/Terry Virts/@AstroTerry

The Expedition 43 flight was extended at the last minute due to the surprise launch failure of a Russian rocket carrying a station bound Progress resupply ship in late April.

The Progress 59 cargo vessel, also known as Progress M-27M, spun wildly out of control as it separated from the Soyuz-2.1A carrier rocket. The freighter and all its 2.5 tons of contents for the crew were destroyed during an uncontrolled plummet as its crashed back to Earth on May 8.

As a direct result of the mission extension, Cristoforetti now holds the single mission space record for a female astronaut, of nearly 200 days.

On June 6, Cristoforetti surpassed the female astronaut record of 194 days, 18 hours and 2 minutes established by NASA astronaut Sunita Williams on a prior station flight back in 2007.

Expedition 43 marked Cristoforetti first foray into space and she is also the first female Italian astronaut.

With the departure of the Virts crew, three people remain on board to start Expedition 44. They comprise NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko, the two members of the first “ISS 1 Year Mission” as well as cosmonaut Gennady Padalka.

The next three person crew is due to blastoff in a Soyuz around July 23 to 25 to restote the station to a full complement of six.

The next cargo ferry flight involves NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight. Dragon CRS-7 is now slated for liftoff on June 26. Watch for my onsite reports from KSC.

The Dragon will be carrying critical US equipment, known as the International Docking Adapter (IDA), enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters – due for first crewed launches in 2017.

The most recent unmanned Dragon cargo CRS-6 mission concluded with a Pacific Ocean splashdown on May 21.

“My ride back to Earth today.” Soyuz ferry craft touched down safe on 11 June 2015.  Credit:  NASA: Terry Virts/@AstroTerry
“My ride back to Earth today.” Soyuz ferry craft touched down safe on 11 June 2015. Credit: NASA/Terry Virts/@AstroTerry

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Soyuz departs on 11 June 2015. “Fair winds and following seas to my good friends @AstroTerry,   @AstroSamantha, and @AntonAstrey.”  Credit: NASA/Scott Kelly
Soyuz departs on 11 June 2015. “Fair winds and following seas to my good friends @AstroTerry, @AstroSamantha, and @AntonAstrey.” Credit: NASA/Scott Kelly

Longest Woman Spaceflyer to Return as Russia Reshuffles Station Launches After Rocket Failure

Flight Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as SpaceX Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

The longest space mission in history by a female astronaut is now set to conclude on Thursday, following Russia’s confirmation of a significant reshuffling of the crew and cargo flight manifest to the International Space Station (ISS) for the remainder of 2015 – all in the wake of the unexpected Russian launch failure of a station bound Progress resupply ship in late April with far reaching consequences.

The record setting flight of approximately 200 days by Italian spaceflyer Samantha Cristoforetti, along with her two Expedition 43 crewmates, will come to an end on Thursday, June 11, when the trio are set to undock and depart the station aboard their Russian Soyuz crew capsule and return back to Earth a few hours later.

NASA TV coverage begins at 6 a.m. EDT on June 11.

Roscosmos, the Russian Federal Space Agency, officially announced today, June 9, a revamped schedule changing the launch dates of several upcoming crewed launches this year to the Earth orbiting outpost.

Launch dates for the next three Progress cargo flights have also been adjusted.

The next three person ISS crew will now launch between July 23 to 25 on the Soyuz TMA-17M capsule from the Baikonur cosmodrome in Kazakhstan. The exact timing of the Expedition 44 launch using a Russian Soyuz-FG booster is yet to be determined.

The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA
The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA

Soon after the Progress mishap, the Expedition 43 mission was extended by about a month so as to minimize the period when the ISS is staffed by only a reduced crew of three people aboard – since the blastoff of the next crew was simultaneously delayed by Roscosmos by about two months from May to late July.

Indeed Cristoforetti’s endurance record only came about as a result of the very late mission extension ordered by Roscosmos, so the agency could investigate the root cause of the recent launch failure of the Russian Progress 59 freighter that spun wildly out of control soon after blastoff on April 28 on a Soyuz-2.1A carrier rocket.

Roscosmos determined that the Progress failure was caused by an “abnormal separation of the 3rd stage and the cargo vehicle” along with “associated frequency dynamic characteristics.”

The Expedition 43 crew comprising of Cristoforetti, NASA astronaut and current station commander Terry Virts, and Russian cosmonaut Anton Shkaplerov had been scheduled to head back home around May 13. The trio have been working and living aboard the complex since November 2014.

The 38-year old Cristoforetti actually broke the current space flight endurance record for a female astronaut during this past weekend on Saturday, June 6, when she eclipsed the record of 194 days, 18 hours and 2 minutes established by NASA astronaut Sunita Williams on a prior station flight back in 2007.

Cristoforetti, of the European Space Agency (ESA), also counts as Italy’s first female astronaut.

The Progress 59 cargo vessel, also known as Progress M-27M, along with all its 2.5 tons of contents were destroyed during an uncontrolled plummet back to Earth on May 8.

NASA astronaut Terry Virts (left) Commander of Expedition 43 on the International Space Station along with crewmates Russian cosmonaut Anton Shkaplerov (center) and ESA (European Space Agency) astronaut Samantha Cristoforetti on May 6, 2015 perform a checkout of their Russian Soyuz spacesuits in preparation for the journey back to Earth - now set for June 11, 2015.  Credits: NASA
NASA astronaut Terry Virts (left) Commander of Expedition 43 on the International Space Station along with crewmates Russian cosmonaut Anton Shkaplerov (center) and ESA (European Space Agency) astronaut Samantha Cristoforetti on May 6, 2015 perform a checkout of their Russian Soyuz spacesuits in preparation for the journey back to Earth – now set for June 11, 2015. Credits: NASA

Roscosmos announced that they are accelerating the planned launch of the next planned Progress 60 (or M-28M) from August 6 up to July 3 on a Soyuz-U carrier rocket, which is different from the problematic Soyuz-2.1A rocket.

Following the Soyuz crew launch in late July, the next Soyuz will blastoff on Sept. 1 for a 10 day taxi mission on the TMA-18M capsule with cosmonaut Sergei Volkov and ESA astronaut Andreas Mogensen. After British opera singer Sarah Brightman withdrew from participating as a space tourist, a new third crew member will be named soon by Roscosmos.

The final crewed Soyuz of 2015 with the TMA-19M capsule has been postponed from Nov. 20 to Dec. 15.

Also in the mix is the launch of NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight. Dragon CRS-7 is now slated for liftoff on June 26. Watch for my onsite reports from KSC.

The most recent unmanned Dragon cargo CRS-6 mission concluded with a Pacific Ocean splashdown on May 21.

The Dragon will be carrying critical US equipment, known as the IDA, enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters – due for first crewed launches in 2017.

ESA (European Space Agency) astronaut Samantha Cristoforetti enjoys a drink from the new ISSpresso machine. The espresso device allows crews to make tea, coffee, broth, or other hot beverages they might enjoy.  Credit: NASA
ESA (European Space Agency) astronaut Samantha Cristoforetti enjoys a drink from the new ISSpresso machine. The espresso device allows crews to make tea, coffee, broth, or other hot beverages they might enjoy. Credit: NASA

NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka will remain aboard the station after the Virts crew returns to begin Expedition 44.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

America’s First Space Station: The NASA Skylab

Skylab, America’s First manned Space Station. Photo taken by departing Skylab 4 crew in Feb. 1974. Credit: NASA

Before there was the International Space Station, before there was Mir, there was Skylab. Established in 1973, and remaining in orbit until 1979, this orbital space station was American’s first long-duration orbital workshop, and the ancestor of all those that have followed.

Originally conceived of in 1969, the plans for the station were part of a general winding down that took place during the last years of the Space Race – which officially ran from 1955 to 1972. Having sent astronauts into orbit and achieved the dream of manned missions to the Moon, the purpose of Skylab was to achieve a lasting presence in space. Rather than simply “getting there first”, NASA was now concerned with staying there.

Planning:

The seeds of Skylab were planted as early as 1959, when Wernher von Braun – the head of the Development Operations Division at the Army Ballistic Missile Agency – proposed a mission that would use a multistage rocket to place men on the Moon. As part of this mission, the upper stage of the rocket would be deposited around the Earth to function as an orbital laboratory. Known as Horizon, these plans were eventually be seized upon by NASA, which was rapidly forming at the time.

A 1967 conceptual drawing of the Gemini B reentry capsule separating from the MOL at the end of a mission. Credit: NASA
A 1967 conceptual drawing of the Gemini B reentry capsule separating from the MOL at the end of a mission. Credit: NASA

Similarly, as of September 1963, the US Department of Defense (DoD) and NASA began collaborating on a manned facility known as the “Manned Orbital Laboratory” (MOL). The initial DoD plan called for a station that would be the same diameter as a Titan II upper stage, and which would primarily be intended for photo reconnaissance using large telescopes directed by a two-man crew.

As the head of the Marshall Space Flight Center during the 1960s, Von Braun became concerned that his employees would not have work beyond developing the Saturn rockets intended for the Apollo program. As a result, he began advocating for the creation of a space station using modified Apollo hardware – which included the S-II second stage of a Saturn V rocket.

Throughout 1965, several more proposals were considered that relied on the Saturn S-IVB stage to create a space station. As part of NASA’s The Orbital Workshop program, this proposal also called for sending a crew to man the station using a Apollo Command-Service Module (CSM) aboard a Saturn IB rocket.

 This artist's concept is a cutaway illustration of the Skylab with the Command/Service Module being docked to the Multiple Docking Adapter. Credit: NASA
This artist’s concept is a cutaway illustration of the Skylab with the Command/Service Module being docked to the Multiple Docking Adapter. Credit: NASA

The crew would dock with the station, vent the residual propellants from the S-IVB stage, fill the hydrogen tank with a breathable oxygen atmosphere, and then enter the tank and outfit it as a station. On August 8th, 1969, after years of development and workshops, the McDonnel Douglas Corporation received a contract to create an Orbital Workshop out of two existing S-IVB stages.

In February of 1970, the program was renamed “Skylab” as a result of a NASA contest. A Saturn V rocket that was originally produced for the Apollo program – before the cancellation of Apollo 18, 19, and 20 – was re-purposed and redesigned to carry the station into orbit.

Launch:

Skylab was launched on May 14th, 1973 on a mission that is sometimes referred to as Skylab 1 (or SL-1). Severe damage was sustained during the launch when the station’s meteoroid shield and one of the two solar panels tore off due to vibrations.

Since the station was designed to face the Sun in order to get as much power as possible, and the shield was ripped off, the station rose to a temperature of 52°C. As a result, scientists had to move the space station and effect repairs before astronauts could be dispatched to it.

Launch of the modified Saturn V rocket carrying the Skylab space station. Credit: NASA
Launch of the modified Saturn V rocket carrying the Skylab space station. Credit: NASA

Missions:

The first manned mission (designated Skylab 2, or SL-2) took place on May 25th, 1973, atop a Saturn IB and involved extensive repairs to the station. This mission last four weeks, and astronauts Charles Conrad, Jr., Paul J. Weitz, Joseph P. Kerwin were the crew members. During the mission, the crew conducted a number of experiments, including solar astronomy and medical studies, and three EVAs (extra-vehicular activities) were completed as well.

The second manned mission, also known as Skylab 3 (SL-3), was launched on July 28th, 1973. The crew consisted of Alan L. Bean, Jack R. Lousma, and Owen K. Garriott. The mission lasted 59 days and 11 hours, during which time the crew carried out additional repairs as well as performing scientific and medical experiments.

The third and final mission to the Skylab (Skylab 4, SL-4) was the longest, lasting 84 days and one hour. Gerald P. Carr, William R. Pogue, Edward G. Gibson were the crew, and in addition to performing various experiments, they also observed the Comet Kohoutek. The crew conducted three EVAs which lasted a total of 22 hours and 13 minutes.

Skylab in February 1974, pictured by the SL-4 crew as they departed the station to return to Earth. Credit: NASA
Skylab in February 1974, pictured by the SL-4 crew as they depart the station to return to Earth. Credit: NASA

Skylab was occupied a total of 171 days and orbited the Earth more than 2,476 times during the course of its service. Each Skylab mission set a record for the amount of time astronauts spent in space.

Decommissioning:

Though NASA hoped that the station would remain in orbit for ten years, by 1977, it became clear that it would not be able to maintain a stable orbit for that long. As a result, after SL-4, preparations were made to shut down all operations and de-orbit the station.

Skylab’s demise was an international media event, with merchandising of T-shirts and hats with bullseyes, wagering on the time and place of re-entry, and nightly news reports. In the hours before re-entry, ground controllers adjusted Skylab’s orientation to try to minimize the risk of re-entry on a populated area.

They aimed the station at a spot 1,300 km (810 miles) south southeast of Cape Town, South Africa, and re-entry began at approximately 16:37 UTC, July 11, 1979. The debris reached Earth on July 11th, 1979, raining down over the Indian Ocean and parts of Australia.

On May 13, NASA commemorated the 40th anniversary of Skylab’s liftoff with a special roundtable discussion broadcast live on NASA TV. The event took place at NASA’s Headquarters in Washington, DC, and participants included Skylab and current ISS astronauts and NASA human spaceflight managers.

While the station did not have the history of service that NASA initially hoped for, the development, deployment and crewed missions to Skylab were essential to the creation of the International Space Station, which began almost 20 years after Skylab came home.

We have many interesting articles on the Apollo program and space stations here at Universe Today. For example, here are some articles on Apollo 20 and the International Space Station.

You should also check out Skylab and NASA Skylab. Astronomy Cast has an episode on space elevators.

Source: NASA

NASA Orders First Ever Commercial Human Spaceflight Mission from Boeing

Boeing was awarded the first service flight of the CST-100 crew capsule to the International Space Station as part of the Commercial Crew Transportation Capability agreement with NASA in this artists concept. Credit: Boeing

The restoration of America’s ability to launch American astronauts to the International Space Station (ISS) from American soil in 2017 took a major step forward when NASA ordered the first ever commercial human spaceflight mission from Boeing.

NASA’s Commercial Crew Program (CCP) office gave the first commercial crew rotation mission award to the Boeing Company to launch its CST-100 astronaut crew capsule to the ISS by late 2017, so long as the company satisfactorily meets all of NASA’s human spaceflight certification milestones.

Thus begins the history making new era of commercial human spaceflight.

“This occasion will go in the books of Boeing’s nearly 100 years of aerospace and more than 50 years of space flight history,” said John Elbon, vice president and general manager of Boeing’s Space Exploration division, in a statement.

“We look forward to ushering in a new era in human space exploration.”

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 ‘space taxi’ under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

“Final development and certification are top priority for NASA and our commercial providers, but having an eye on the future is equally important to the commercial crew and station programs,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.

“Our strategy will result in safe, reliable and cost-effective crew missions.”

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry four to seven person crews to the ISS. Credit: Ken Kremer – kenkremer.com

The CST-100 will be carried to low Earth orbit atop a manrated United Launch Alliance Atlas V rocket launching from Cape Canaveral Air Force Station, Florida.

Boeing will first conduct a pair of unmanned and manned orbital CST-100 test flights earlier in 2017 in April and July, prior to the operational commercial crew rotation mission to confirm that their capsule is ready and able and met all certification milestone requirements set by NASA.

“Orders under the CCtCap contracts are made two to three years prior to the missions to provide time for each company to manufacture and assemble the launch vehicle and spacecraft. In addition, each company must successfully complete the certification process before NASA will give the final approval for flight,” says NASA.

Boeing got the mission order from NASA because they have “successfully demonstrated to NASA that the Commercial Crew Transportation System has reached design maturity appropriate to proceed to assembly, integration and test activities.”

Boeing recently completed the fourth milestone in the CCtCap phase dubbed the delta integrated critical design review.

Read my earlier exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander and who now leads Boeings CST-100 program; here and here.

The commercial crew program is designed to return human spaceflight launches to the United States and end our sole source reliance on Russia and the Soyuz capsule.

ISS Soyuz crew rotation missions are currently on hold due to the recent launch failure of the Russian Soyuz booster and Progress resupply vessel earlier this month.

Since the forced retirement of NASA’s shuttle orbiters in 2011, US astronauts have been totally dependent on the Russians for trips to space and back.

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

SpaceX also received a NASA award worth $2.6 Billion to build the Crew Dragon spacecraft for launch atop the firms man-rated Falcon 9 rocket.

SpaceX conducted a successful Pad Abort Test of the Crew Dragon on May 6, fulfilling a key NASA milestone, as I reported here.

NASA will order a commercial mission from SpaceX sometime later this year. At a later date NASA will decide which company will fly the first commercial crew rotation mission to the ISS.

Both the CST-100 and Crew Dragon will typically carry a crew of four or five NASA or NASA-sponsored crew members, along with some 220 pounds of pressurized cargo. Each will also be capable of carrying up to seven crew members depending on how the capsule is configured.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

The spacecraft will be capable to remaining docked at the station for up to 210 days and serve as an emergency lifeboat during that time.

The NASA CCtCAP contracts call for a minimum of two and a maximum potential of six missions from each provider.

The station crew will also be enlarged to seven people that will enable a doubling of research time.

“Commercial Crew launches are critical to the International Space Station Program because it ensures multiple ways of getting crews to orbit,” said Julie Robinson, International Space Station chief scientist.

“It also will give us crew return capability so we can increase the crew to seven, letting us complete a backlog of hands-on critical research that has been building up due to heavy demand for the National Laboratory.”

NASA’s Commercial Crew Program initiative aims to restore US access to the ISS. Credit: NASA
NASA’s Commercial Crew Program initiative aims to restore US access to the ISS. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

Russia’s Out of Control Progress Freighter Doomed to Fiery Finale Friday

File photo of a Russian Progress cargo freighter. Credit: Roscosmos

Russia’s out-of-control Progress 59 cargo freighter is doomed to a fiery finale overnight Friday, May 8, according to Roscosmos, the Russian Space Agency.

The errant spaceship is expected to fall back to Earth and reenter the atmosphere early in the morning Moscow time following the latest orbital analysis by Roscosmos.

“The time window for the failed Progress spacecraft reentry in the Earth’s atmosphere was changed to a span between 01.13 a.m. and 04.51 a.m. Moscow time on May 8, according to Russia’s space agency Roscosmos,” according to the latest update today, May 7, from the Russian Sputnik news outlet.

According to a Roscosmos source, the unmanned Progress 59, also known as M-27M , would most likely make the atmospheric reentry over the Indian Ocean.

Roscosmos said in a statement that Progress 59 “will cease to exist” on Friday.

Most of the debris is expected to burn up. But any remaining fragments are likely to hit north of Madagascar.

Russian mission controllers lost control of the Progress 59 spacecraft ship – bound for the International Space Station (ISS) on a routine resupply mission – shortly after its otherwise successful launch on April 28 from the Baikonur space center in Kazakhstan atop a Soyuz-2.1A carrier rocket.

Soon after detaching from the rockets third stage, it began to spin out of control at about 1.8 times per second, as seen in a video transmitted from the doomed ship.

After control could not be reestablished, all hope of docking with the ISS was abandoned by Roscosmos.

Here’s a short video taken by the spinning Progress with NASA commentary:

The 7 ton vehicle was loaded with 2.5 tons of supplies for the ISS and the six person Expedition 43 crew. Items included personal mail for the crew, scientific equipment, as well as replaceable parts for the station’s life support systems and a stockpile of water and oxygen, according to Russia Today.

The Progress spacecraft is also loaded with a significant amount of fuel as it orbits Earth at an inclination of 51.6 degrees to the equator. This carries it over most of the populated world between 51.6 degrees north and south latitudes. But most of the area is over unpopulated oceans, making the chances of danger from falling debris very small.

The latest ground track reentry prediction for the Progress 59 (M-27M)  spacecraft showing orbital path around Earth as of May 7, 2015. Note: subject to change.  Credit: Aerospace Corp.
The latest ground track reentry prediction for the Progress 59 (M-27M) spacecraft showing orbital path around Earth as of May 7, 2015. Note: subject to change. Credit: Aerospace Corp.

To date the Progress vehicle have been highly reliable. The last failure occurred in 2011, shortly after the retirement of NASA’s Space Shuttle orbiters in July 2011.

Roscosmos has established an investigation board to determine the cause of the Progress failure and any commonalities it might have with manned launches of the Soyuz rocket and capsule.

“The conclusions are to be made by May 13, 2015,” according to a Roscosmos statement.

The potential exists for a delay in the next planned manned Soyuz launch with a three person international crew later on May 26 from the Baikonur Cosmodrome in Kazakhstan.

The ISS crew is in no danger and has sufficient supplies to last until at least September.

Besides the Russian Progress cargo ship, the ISS is resupplied by the commercial US SpaceX Dragon and Orbital Sciences Cygnus vessels and the Japanese HTV. ESA’s ATV has been retired after 5 flights.

The next Falcon 9 launch carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS is slated for mid-June. The most recent Dragon was launched on the CRS-6 mission on April 14, 2015.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

The last Orbital Sciences launch of an Antares rocket with the Orb-3 Cygnus resupply ship ended in a catastrophic explosion just seconds after liftoff on October 28, 2014.

The ISS lifeline hangs by a delicate thread.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Buster the Dummy Strapped in for Mile High SpaceX Dragon Flight Test

Hans Koenigsmann, vice president of Mission Assurance at SpaceX with Jon Cowart, NASA’s CCP partner manager address the press during May 1, 2015 briefing on the Pad Abort Test of SpaceX's Dragon V2 crewed spacecraft. Credit: Julian Leek

SpaceX and NASA are just days away from a crucial test of a crew capsule escape system that will save astronauts lives in the unlikely event of a launch failure with the Falcon 9 rocket.

Buster the Dummy is already strapped into his seat aboard the SpaceX Crew Dragon test vehicle for what is called the Pad Abort Test, that is currently slated for Wednesday, May 6.

The test is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.

Boeing was also selected by NASA to build the CST-100 spaceship to provide a second, independent crew space taxi capability to the ISS during 2017.

The May 6 pad abort test will be performed from the SpaceX Falcon 9 launch pad from a platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. The test will not include an actual Falcon 9 booster.

First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014.  Credit: SpaceX.
First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in May 2015. Credit: SpaceX.

The SpaceX Dragon and trunk together stand about 20 feet tall and are positioned atop the launch mount at SLC-40 for what is clearly labeled as a development test to learn how the Dragon, engines and abort system perform.

Buster will soar along inside the Dragon that will be rapidly propelled to nearly a mile high height solely under the power of eight SpaceX SuperDraco engines.

The trunk will then separate, parachutes will be deployed and the capsule will splashdown about a mile offshore from Florida in the Atlantic Ocean, said Hans Koenigsmann, vice president of Mission Assurance at SpaceX during a May 1, 2015 press briefing on the pad abort test at the Kennedy Space Center, Florida.

The entire test will take about a minute and a half and recovery teams will retrieve Dragon from the ocean and bring it back on shore for detailed analysis.

The test will be broadcast live on NASA TV. The test window opens at 7 a.m. EDT May 6 and extends until 2:30 p.m. EDT. The webcast will start about 20 minutes prior to the opening of the window. NASA will also provide periodic updates about the test at their online Commercial Crew Blog.

SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX
SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX

The test is designed to simulate an emergency escape abort scenario from the test stand at the launch pad in the unlikely case of booster failing at liftoff or other scenario that would threaten astronauts inside the spacecraft.

The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a split second in a simulated emergency to save the astronauts lives in the event of a real emergency.

The SuperDraco engines are located in four jet packs around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds, to carry astronauts to safety, according to Koenigsmann.

“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX.

“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”

SpaceX and NASA hope to refurbish and reuse the same Dragon capsule for another abort test at high altitude later this year. The timing of the in flight abort test hinges on the outcome of the pad abort test.

“No matter what happens on test day, SpaceX is going to learn a lot,” said Jon Cowart, NASA’s partner manager for SpaceX. “One test is worth a thousand good analyses.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

Beside Buster the dummy, who is human-sized, the Dragon is outfitted with 270 sensors to measure a wide range of vehicle, engine, acceleration and abort test parameters.

“There’s a lot of instrumentation on this flight – a lot,” Koenigsmann said. “Temperature sensors on the outside, acoustic sensors, microphones. This is basically a flying instrumentation deck. At the end of the day, that’s the point of tests, to get lots of data.”

Buster will be accelerated to a force of about 4 to 4½ times the force of Earth’s gravity, noted Koenigsmann.

The pad abort test is being done under SpaceX’s Commercial Crew Integrated Capability (CCiCap) agreement with NASA that will eventually lead to certification of the Dragon for crewed missions to low Earth orbit and the ISS.

“The point is to gather data – you don’t have to have a flawless test to be successful,” Cowart said.

The second Dragon flight test follows later in the year, perhaps in the summer. It will launch from a SpaceX pad at Vandenberg Air Force Base in California and involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure (Max-Q) at about T plus 1 minute, to save astronauts lives.

The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the Ocean.

Koenigsmann notes that the SpaceX abort system provides for emergency escape all the way to orbit, unlike any prior escape system such as the conventional launch abort systems (LAS) mounted on top of the capsule.

“Whatever happens to Falcon 9, you will be able to pull out the astronauts and land them safely on this crew Dragon,” said Koenigsmann. “In my opinion, this will make it the safest vehicle that you can possibly fly.”

The SpaceX Dragon V2 and Boeing CST-100 vehicles were selected by NASA last fall for further funding under the auspices of the agency’s Commercial Crew Program (CCP), as the worlds privately developed spaceships to ferry astronauts back and forth to the International Space Station (ISS).

Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.

During the Sept. 16, 2014 news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.

The next Falcon 9 launch is slated for mid-June carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS. On April 14, a flawless Falcon 9 launch boosted the SpaceX CRS-6 Dragon to the ISS.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

There was no attempt to soft land the Falcon 9 first stage during the most recent launch on April 27. Due to the heavy weight of the TurkmenÄlem52E/MonacoSat satellite there was not enough residual fuel for a landing attempt on SpaceX’s ocean going barge.

The next landing attempt is set for the CRS-7 mission.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Hans Koenigsmann, vice president of Mission Assurance at SpaceX during CRS-6 mission media briefing in April 2015 at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Hans Koenigsmann, vice president of Mission Assurance at SpaceX during CRS-6 mission media briefing in April 2015 at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

SpaceX Picks Up Launch Pace; Sets April 27 Commercial Launch and May 5 Crew Dragon Pad Abort Test

SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX

SpaceX Dragon V2 test flight vehicle set for May 5, 2015 pad abort test. Credit: SpaceX
See below SpaceX live launch webcast link[/caption]

As promised, SpaceX is picking up its launch pace in 2015 with a pair of liftoffs from the Florida space coast slated for the next week and a half. They follow closely on the heels of a quartet of successful blastoffs from Cape Canaveral, already accomplished since January.

If all goes well, a commercial satellite launch and a human spaceflight related pad abort test launch for NASA are scheduled for April 27 and May 5 respectively.

Mondays launch of a communications satellite for Thales Alenia Space takes place just 13 days after SpaceX successfully launching the Dragon CRS-6 resupply freighter to the International Space Station (ISS) for NASA on April 14.

The 13 day turnaround time will mark a new launch cadence record for SpaceX if the weather and rocket cooperate, eclipsing the 14 day turnaround record set last September.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

The 224 foot tall SpaceX Falcon 9 rocket is scheduled to launch at approximately 6:14 p.m. EDT (2214 GMT) on April 27 from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. It will deliver the TurkmenÄlem52E/MonacoSat satellite to a geosynchronous transfer orbit.

This first satellite ever for Turkmenistan will be deployed approximately 32 minutes after liftoff of the fifth Falcon 9 rocket this year.

The outlook is currently 60 percent GO for favorable weather conditions at launch time.

You can watch the launch live via a SpaceX webcast that begins about 20 minutes before launch at: spacex.com/webcast

The May 5 pad abort test for NASA is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil to the space station.

The test will simulate an emergency abort from a test stand and will also take place from the Cape’s Space Launch Complex 40 in Florida.

SpaceX has a four hour launch window in which to conduct the test. The test window opens at 9:30 a.m. EDT (1330 GMT) on May 5. There is a backup opportunity on May 6.

The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a split second in a simulated emergency.

First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014.  Credit: SpaceX.
First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014. Credit: SpaceX.

The purpose is to test the ability of the abort system to save astronauts lives in the event of a real emergency.

The SuperDraco engines are located in four jet packs around the base. Each enigne can produce up to 120,000 pounds of axial thrust to carry astronauts to safety, according to a SpaceX description.

Here is a SpaceX video of SuperDraco’s being hot fire tested in Texas.

Video caption: Full functionality of Crew Dragon’s SuperDraco jetpacks demonstrated with hotfire test in McGregor, TX. Credit: SpaceX

The pad abort test is being done under SpaceX’s Commercial Crew Integrated Capability (CCiCap) agreement with NASA.

The initial pad abort test will test the ability of the full-size Dragon to safely push away and escape in case of a failure of its Falcon 9 booster rocket in the moments around launch, right at the launch pad.

“The purpose of the pad abort test is to demonstrate Dragon has enough total impulse (thrust) to safely abort,” SpaceX spokeswoman Emily Shanklin informed me.

For that test, Dragon will use its pusher escape abort thrusters to lift the Dragon safely away from the failing rocket.

The vehicle will be positioned on a structural facsimile of the Dragon trunk in which the actual Falcon 9/Dragon interfaces will be represented by mockups. The test will not include an actual Falcon 9 booster.

A second Dragon flight test follow later in the year. It involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure at about T plus 1 minute, to save astronauts lives. The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted landing into the Atlantic Ocean.

The SpaceX Dragon V2 and Boeing CST-100 vehicles were selected by NASA last fall for further funding under the auspices of the agency’s Commercial Crew Program (CCP), as the worlds privately developed spaceships to ferry astronauts back and forth to the International Space Station (ISS).

Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.

During the Sept. 16, 2014 news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.

There will be no attempt to soft land the Falcon 9 first stage during the April 27 launch. The next landing attempt is set for mid-June.

Up close view of the SpaceX Falcon 9 rocket landing legs prior to launch on April 14, 2015 on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
Up close view of the SpaceX Falcon 9 rocket landing legs prior to launch on April 14, 2015 on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

High Resolution Video Reveals Dramatic SpaceX Falcon Rocket Barge Landing and Launch

View of Falcon 9 first stage landing burn and touchdown on ‘Just Read the Instructions’ landing barge. Credit SpaceX

Video caption: High resolution and color corrected SpaceX Falcon 9 first stage landing video of CRS-6 first stage landing following launch on April 14, 2015. Credit: SpaceX

KENNEDY SPACE CENTER, FL – A new high resolution video from SpaceX shows just how close the landing attempt of their Falcon 9 first stage on an ocean floating barge came to succeeding following the rockets launch on Tuesday afternoon, April 14, from Cape Canaveral, Florida, on a resupply run for NASA to the International Space Station (ISS).

Newly added video shows video taken from the barge:

The SpaceX Falcon 9 carrying the Dragon cargo vessel blasted off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 mission bound for the space station.

The flawless Falcon 9 liftoff came a day late following a postponement from Monday, April 13, due to threatening clouds rolling towards the launch pad in the final minutes of the countdown. See an up close video view of the launch from a pad camera, below.

Video caption: SpaceX CRS-6 Falcon 9 Launch to the International Space Station on April 14, 2015. Credit: Alex Polimeni

The dramatic hi res landing video was released by SpaceX CEO Elon Musk. It clearly reveals the deployment of the four landing legs at the base of the booster as planned in the final moments of the landing attempt, aimed at recovering the first stage booster.

By about three minutes after launch, the spent fourteen story tall first stage had separated from the second stage and reached an altitude of some 125 kilometers (77 miles) following a northeastwards trajectory along the U.S. east coast.

SpaceX engineers relit a first stage Merlin 1D engine some 200 miles distant from the Cape Canaveral launch pad to start the process of a precision guided descent towards the barge, known as the ‘autonomous spaceport drone ship’ (ASDS).

It had been pre-positioned offshore of the Carolina coast in the Atlantic Ocean.

SpaceX initially released a lower resolution view taken from a chase plane captured dramatic footage of the landing.

“Looks like Falcon landed fine, but excess lateral velocity caused it to tip over post landing,” tweeted SpaceX CEO Elon Musk.

The Falcon successfully reached the tiny ocean floating barge in the Atlantic Ocean, but tilted over somewhat over in the final moments of the approach, and tipped over after landing and exploded in a fireball.

“Either not enough thrust to stabilize or a leg was damaged. Data review needed.”

“Looks like the issue was stiction in the biprop throttle valve, resulting in control system phase lag,” Musk elaborated. “Should be easy to fix.”

The next landing attempt is set for the SpaceX CRS-7 launch, currently slated for mid- June, said Hans Koenigsmann, SpaceX Director of Mission assurance, at a media briefing at KSC.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

The 20 story tall Falcon 9 hurled Dragon on a three day chase of the ISS where it will rendezvous with the orbiting outpost on Friday, April 17. Astronauts will grapple and berth Dragon at the station using the robotic arm.

Up close view of the SpaceX Falcon 9 rocket landing legs prior to launch on April 14, 2015 on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
Up close view of the SpaceX Falcon 9 rocket landing legs prior to launch on April 14, 2015 on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer
………….

Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club

SpaceX Resets CRS-6 Space Station Launch to April 13 with Booster Landing Attempt

Falcon 9 and Dragon undergoing preparation in Florida in advance of April 13 launch to the International Space Station on the CRS-6 mission. Credit: SpaceX

The clock is ticking towards the next launch of a SpaceX cargo vessel to the International Space Station (ISS) hauling critical supplies to the six astronauts and cosmonauts serving aboard, that now includes the first ever ‘One-Year Mission’ station crew comprising NASA’s Scott Kelly and Russia’s Mikhail Kornienko.

The mission, dubbed SpaceX CRS-6 (Commercial Resupply Services-6) will also feature the next daring attempt by SpaceX to recover the Falcon 9 booster rocket through a precision guided soft landing onto an ocean-going barge.

SpaceX and NASA are now targeting blastoff of the Falcon 9 rocket and Dragon spacecraft for Monday, April 13, just over a week from now, at approximately 4:33 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

NASA Television plans live launch coverage starting at 3:30 p.m.

The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays due to weather or technical factors will force a scrub.

The backup launch day in case of a 24 hour scrub is Tuesday, April 14, at approximately 4:10 p.m.

Falcon 9 launches have been delayed due to issues with the rockets helium pressurization bottles that required investigation.

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida. File photo. Credit: Ken Kremer – kenkremer.com

The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the mission.

An on time launch on April 13 will result in the Dragon spacecraft rendezvousing with the Earth orbiting outpost Wednesday, April 15 after a two day orbital chase.

After SpaceX engineers on the ground maneuver the Dragon close enough to the station, European Space Agency (ESA) astronaut Samantha Cristoforetti will use the station’s 57.7-foot-long (17-meter-long) robotic arm to reach out and capture Dragon at approximately 7:14 a.m. EDT on April 15.

Cristoforetti will be assisted by fellow Expedition 43 crew member and NASA astronaut Terry Virts, as they work inside the stations seven windowed domed cupola to berth Dragon at the Earth-facing port of the Harmony module.

SpaceX Dragon cargo ship approaches ISS, ready for grappling by astronauts. Credit: NASA
SpaceX Dragon cargo ship approaches ISS, ready for grappling by astronauts. Credit: NASA

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.

The ship will remain berthed at the ISS for about five weeks.

The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.

The prior resupply mission, CRS-5, concluded in February with a successful Pacific Ocean splashdown and capsule recovery.

Introducing Landing Complex 1, formerly Launch Complex 13, at Cape Canaveral in Florida.  Credit: SpaceX
Introducing Landing Complex 1, formerly Launch Complex 13, at Cape Canaveral in Florida. Credit: SpaceX

The CRS-5 mission also featured SpaceX’s history making attempt at recovering the Falcon 9 first stage as a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.

As I wrote earlier at Universe Today, despite making a ‘hard landing’ on the vessel dubbed the ‘autonomous spaceport drone ship,’ the 14 story tall Falcon 9 first stage did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.

Listen to my live radio interview with BBC 5LIVE conducted in January 2015, discussing SpaceX’s first attempt to land and return their Falcon-9 booster.

Watch for Ken’s onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Eye of Super Typhoon Maysak Looks “Like a Black Hole” from Space

Maysak, a category 4 Super Typhoon, as photographed by astronaut Terry Virts on board the International Space Station. Credit: NASA/Terry Virts.

From his perch on the International Space Station, astronaut Terry Virts has been taking some beautiful photos of Earth and space and sharing them on social media. Today, he shared his views of Super Typhoon Maysak, including this terrifying view looking straight down into the huge eye of the storm. “Looking down into the eye – by far the widest one I’ve seen,” he tweeted. “It seemed like a black hole from a Sci-Fi movie.”

See more of his images, below.

According to AccuWeather.com, Super Typhoon Maysak is one of the strongest cyclones in history during the months of January, February and March. It has slammed several Micronesian islands, killing 5 people, and is now on its way to the Philippines. As of early on April 1, Maysak had sustained winds of 240 kph (150 mph), equivalent of a Category 4 hurricane. Gusts as high as 390 kph (180 mph) are possible with this storm.

The typhoon is expected to weaken, but still poses a threat to the islands in its path:

A graphic showing Typhoon Maysak's projected path. Credit: AccuWeather.com
A graphic showing Typhoon Maysak’s projected path. Credit: AccuWeather.com