Spectacular Nighttime Blastoff Boosts SpaceX Cargo Ship Loaded with Science and Critical Supplies for Space Station

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A SpaceX Falcon 9 rocket blazed aloft on a spectacular middle of the night blastoff that turned night into day along the Florida Space coast today, Sept. 21, 2014, boosting a commercial cargo ship for NASA and loaded with 2.5 tons of ground breaking science experiments, 20 ‘mousetronauts’ and critical supplies for the human crew residing aboard the International Space Station (ISS).

The SpaceX Dragon cargo vessel on the CRS-4 mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida at 1:52 a.m. EDT Sunday, Sept. 21, just hours after a deluge of widespread rain showers inundated central Florida.

Notably, the Space CRS-4 mission is carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.

“There’s nothing like a good launch, it’s just fantastic,” said Hans Koenigsman, vice president of Mission Assurance for SpaceX at the post launch briefing. “From what I can tell, everything went perfectly.”

“We worked very hard yesterday and weather wasn’t quite playing along and today everything was beautiful.”

CRS-4 marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing, and supplies for the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

“This launch kicks off a very busy time for the space station,” said NASA’s Sam Scimemi, director of the International Space Station, noting upcoming launches of a Soyuz carrying the next three person international crew of the station and launches of other cargo spacecraft including the Orbital Sciences Antares/Cygnus around mid- October.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, on Sept. 21, 2014 bound for the ISS. Credit: Ken Kremer/kenkremer.com

Today’s Falcon 9 launch had already been postponed 24 hours by continuing terrible weather all week long at Cape Canaveral which had also forced a more than two hour delay to the target liftoff of a United Launch Alliance Atlas V rocket from the Cape just four days earlier. Read my Atlas V launch story involving the completely clandestine CLIO satellite – here.

Rather amazingly given the awful recent weather, Falcon 9 streaked to orbit under a beautifully star filled nighttime sky.

Sunday’s launch brilliantly affirmed the ability of SpaceX to fire off their Falcon 9 rockets at a rapid pace since it was the second launch in less than two weeks, and the fourth over the past ten weeks. The prior Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite from the Cape on Sept. 7 – detailed here.

The CRS-4 missions marks the birth of a new era in Earth science aboard the massive million pound orbiting space station. The trunk of the Dragon is loaded with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.

RapidScat is NASA’s first research payload aimed at conducting Earth science from the station’s exterior. The station’s robot arm will pluck RapidScat out of the trunk and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.

Dragon also carries the first 3-D printer to space for studies by the astronaut crews over at least the next two years.

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40  awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com
SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept. 21, 2014 on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

The science experiments and technology demonstrations alone amount to over 1644 pounds (746 kg) of the Dragon’s cargo and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.

After a two day orbital chase, Dragon will rendezvous with the station on Tuesday morning, Sept. 23. It will be grappled at 7:04 a.m. by Expedition 41 Flight Engineer Alexander Gerst of the European Space Agency, using the space station’s robotic arm and then berthed at an Earth-facing port on the station’s Harmony module. NASA astronaut Reid Wiseman will support Gerst.

NASA TV is expected to provide live coverage of Dragon’s arrival, grappling, and station berthing.

Dragon was launched aboard the newest, more powerful version of the Falcon 9, dubbed v1.1, powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines’ 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.

The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.

Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.

The maiden launch of the Falcon 9 v1.1 took place in December 2013.

The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.

At the 330 am NASA post launch news conference it’s all smiles and congratulations on the successful SpaceX launch to the ISS from the Kennedy Space Center Florida. From L/R NASA Kennedy Space Center News Chief Mike Curie, NASA Director International Space Station Sam Scimemi and SpaceX VP of Mission Assurance Dr. Hans Koenigsmann. Credit: Julian Leek
At the 3:30 am NASA post launch news conference it’s all smiles and congratulations on the successful SpaceX launch to the ISS from the Kennedy Space Center Florida. From L/R NASA Kennedy Space Center News Chief Mike Curie, NASA Director International Space Station Sam Scimemi and SpaceX VP of Mission Assurance Dr. Hans Koenigsmann. Credit: Julian Leek

Overall it’s been a great week for SpaceX. The firm was also awarded one of two NASA contracts to build a manned version of the Dragon, dubbed V2, that will ferry astronaut crews to the ISS starting as soon as 2017. Read my story – here.

The second ‘space taxi’ contract was awarded Boeing to develop the CST-100 crew transporter to end the nation’s sole source reliance on Russia for astronaut launches in 2017.

Dragon V2 will launch on the same version of the Falcon 9 launching today’s CRS-4 cargo Dragon.

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more Earth and Planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS. Credit: Ken Kremer/kenkremer.com

SpaceX Commercial Resupply Dragon Set for Sept. 21 Blastoff to Station – Watch Live

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission.
Credit: Ken Kremer – kenkremer.com
Story/launch date/headline updated[/caption]

KENNEDY SPACE CENTER, FL – SpaceX is on the cusp of launching the company’s fourth commercial resupply Dragon spacecraft mission to the International Space Station (ISS) shortly after midnight, Saturday, Sept. 20, 2014, continuing a rapid fire launch pace and carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.

Final preparations for the launch are underway right now at the Cape Canaveral launch pad with the stowage of sensitive late load items including a specially designed rodent habitat housing 20 mice.

Update 20 Sept: Poor weather scrubs launch to Sept. 21 at 1:52 a.m.

Fueling of the two stage rocket with liquid oxygen and kerosene propellants commences in the evening prior to launch.

If all goes well, Saturday’s launch of a SpaceX Falcon 9 rocket would be the second in less than two weeks, and the fourth over the past ten weeks. The last Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite on Sept. 7 – detailed here.

“We are ready to go,” said Hans Koenigsmann, SpaceX vice president of mission assurance, at a media briefing at the Kennedy Space Center today, Sept. 19.

Liftoff of the SpaceX Falcon 9 rocket on the CRS-4 mission bound for the ISS is targeted for an instantaneous window at 2:14 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at the moment Earth’s rotation puts Cape Canaveral in the flight path of the ISS.

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com
Story/launch date/headline updated

You can watch NASA’s live countdown coverage which begins at 1 a.m. on NASA Television and NASA’s Launch Blog: http://www.nasa.gov/multimedia/nasatv/

Liftoff of SpaceX Falcon 9 rocket and Dragon from Cape Canaveral Air Force Station, Fla, April 18, 2014.   Credit: Ken Kremer/kenkremer.com
Liftoff of SpaceX Falcon 9 rocket and Dragon from Cape Canaveral Air Force Station, Fla, April 18, 2014. Credit: Ken Kremer/kenkremer.com

The weather forecast is marginal at 50/50 with rain showers and thick clouds as the primary concerns currently impacting the launch site.

The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

The CRS-4 missions marks the start of a new era in Earth science. The truck of the Dragon is loaded Dragon with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.

RapidScat is NASA’s first research payload aimed at conducting Earth science from the stations exterior. The stations robot arm will pluck RapidScat out of the truck and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.

Dragon will also carry the first 3-D printer to space for studies by the astronaut crews over at least two years.

SpaceX Falcon 9  rests horizontally at Cape Canaveral launch pad 40 awaiting blastoff reset to Sept 21, 2014 on the CRS-4 mission.  Credit: Ken Kremer - kenkremer.com
SpaceX Falcon 9 rests horizontally at Cape Canaveral launch pad 40 awaiting blastoff reset to Sept 21, 2014 on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

The science experiments and technology demonstrations alone amount too over 1644 pounds (746 kg) and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.

“This flight shows the breadth of ISS as a research platform, and we’re seeing the maturity of ISS for that,” NASA Chief Scientist Ellen Stofan said during a prelaunch news conference held today, Friday, Sept. 19 at NASA’s Kennedy Space Center.

After a two day chase, Dragon will be grappled and berth at an Earth-facing port on the stations Harmony module.

The Space CRS-4 mission marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

SpaceX Dragon resupply spacecraft arrives for successful berthing and docking at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV
SpaceX Dragon resupply spacecraft arrives for successful berthing and docking at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV

This week, SpaceX was also awarded a NASA contact to build a manned version of the Dragon dubbed V2 that will ferry astronauts crews to the ISS starting as soon as 2017.

NASA also awarded a second contact to Boeing to develop the CST-100 astronaut ‘space taxi’ to end the nation’s sole source reliance on Russia for astronaut launches in 2017.

Dragon V2 will launch on the same version of the Falcon 9 launching this cargo Dragon

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 awaits launch on Sept 20, 2014 on the CRS-4 mission. Credit: NASA
SpaceX Falcon 9 awaits launch on Sept 20, 2014 on the CRS-4 mission. Credit: NASA

Watch Live as NASA Announces Who Will Fly Astronauts to the Space Station



Broadcast live streaming video on Ustream

NASA will make a “major announcement” today on the return of human spaceflight launches for the U.S, specifically which commercial space company — or companies — will taxi astronauts to and from the International Space. You can watch the press conference live here today (Sept. 16) at 4 pm EDT (1 pm PDT, 20:00 UTC).

The competition for the Commercial Crew Program (CCP) has been between four companies: SpaceX, Boeing, Sierra Nevada and Blue Origin. Some media reports indicate NASA will make commercial crew awards to the obvious front-runners, Boeing and SpaceX.

SpaceX’s Dragon became the first commercial spacecraft to deliver cargo to the space station in 2012, and SpaceX has been working on a version of the Dragon that can carry humans as well.

Boeing’s CST-100 can carry up to seven passengers or a mix of humans and cargo.

Sierra Nevada has been working on the Dream Chaser, a winged spacecraft that looks similar to a mini space shuttle. Blue Origin has been developing a capsule called Space Vehicle.

The CCP program was developed after the space shuttle program ended in 2011. While NASA focuses its human spaceflight efforts on the new Space Launch System and going beyond Earth orbit, they will use commercial companies that will launch from the US to ferry their astronauts to the space station.

Spectacular Ultra-High Definition Timelapse from the Space Station

Imagery from the new ESA timelapse in 4K from the International Space Station.

Holy moly! Take a look at this new 4K timelapse video from ESA created from imagery taken by astronaut Alexander Gerst. Before you watch, however, you might want to change your video viewing setting to as high as they can go.

The imagery was taken at a resolution of 4256 x 2832 pixels at a rate of one every second. ESA said the high resolution allowed their production team to create a 3840 x 2160 pixel movie, also known as Ultra HD or 4K.

Playing these sequences at 25 frames per second, the film runs 25 times faster than it looks for the astronauts in space. They also did some nice effects creating trails from from stars and lights from cities on Earth for that “hyper-space” look. There’s a great sequence starting at about :55 of the Orbital Cygnus capsule being unberthed from the ISS and then it zooms away from the station.

Cygnus Cargo Carrier Concludes with Fiery Reentry Aug. 17 – Amazing Astronaut Photos

Cygnus reentry [17 Aug 2014]. In 84 days Reid, Max and I will ride home inside such an amazing fireball! Credit: NASA/ESA/Alexander Gerst

Cygnus reentry [17 Aug 2014]. In 84 days Reid, Max and I will ride home inside such an amazing fireball! Credit: NASA/ESA/Alexander Gerst
Story updated[/caption]

Farewell Cygnus!

The flight of the Orbital Sciences’ Cygnus commercial cargo carrier concluded this morning, Sunday Aug. 17, in a spectacular fireball as planned upon reentry into Earth’s atmosphere at approximately 9:15 a.m. (EDT). And the fireworks were captured for posterity in a series of amazing photos taken by the Expedition 40 crew aboard the International Space Station (ISS). See astronaut photos above and below.

ESA astronaut Alexander Gerst and Russian Cosmonaut Maxim Suraev documented the breakup and disintegration of Cygnus over the Pacific Ocean east of New Zealand today following precise thruster firings commanded earlier by Orbital Sciences mission control in Dulles, VA, that slowed the craft and sent it on a preplanned destructive reentry trajectory.

Cygnus reentry on 17 Aug 2014.  Credit: NASA/ESA/Alexander Gerst
Cygnus reentry on 17 Aug 2014. Credit: NASA/ESA/Alexander Gerst

Gerst was truly moved by the spectacle of what he saw as a portent for his voyage home inside a Soyuz capsule barely three months from now, with crew mates Maxim Suraev and NASA astronaut Reid Wiseman.

“In 84 days Reid, Max and I will ride home inside such an amazing fireball! In 84 Tagen werden Reid, Max & ich in solch einem Feuerball nach Hause fliegen!” – Gerst wrote from the station today in his social media accounts with the fireball photos.

Cygnus was loaded with no longer needed trash and fell harmlessly over an uninhabited area of the South Pacific Ocean.

Today’s spectacular reentry fireworks concluded the hugely successful flight of the Cygnus resupply ship named in honor of astronaut Janice Voss on the Orb-2 mission.

ISS Crewmate Max Suraev just caught this amazing photo of Cygnus Orb2 disintegrating on reentry.   Credit: Roscosmos/ Max Suraev via ISS crew mate Reid Wiseman
ISS Crew mate Max Suraev just caught this amazing photo of Cygnus Orb2 disintegrating on reentry. Credit: Roscosmos/ Max Suraev via ISS crew mate Reid Wiseman

The astronaut photos may be helpful to engineers planning the mechanics of the eventual deorbiting of the ISS at some point in the hopefully distant future.

Cygnus finished it’s month-long resupply mission two days ago when it was unberthed from the International Space Station (ISS) on Friday, Aug. 15, and station astronaut Alex Gerst released the vessel from the snares of the Canadarm2 robotic arm at 6:40 a.m. EDT.

“From start to finish, we are very pleased with the results of this mission. Our team is proud to be providing essential supplies to the ISS crew so they can carry out their vital work in space,” said Mr. Frank Culbertson, Executive Vice President and General Manager of Orbital’s Advanced Programs Group, in a statement.

Goodbye, Cygnus!  Credit: NASA/ESA/Alexander Gerst
Goodbye, Cygnus! Credit: NASA/ESA/Alexander Gerst

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

It arrived at the station after a three day chase and was captured with the 58-foot (17-meter) long Canadian robotic arm on July 16, 2014 by Station Commander Steve Swanson working at a robotics workstation in the cupola.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cygnus arrival at the ISS took place on the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission by Neil Armstrong, Buzz Aldrin and Michael Collins.

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

This mission dubbed Orbital-2, or Orb-2, marks the second of at least eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m.  EDT, Friday, Aug. 15, 2014.  Credit: NASA TV
Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m. EDT, Friday, Aug. 15, 2014. Credit: NASA TV

The next resupply launch of the private Cygnus Orb-3 craft atop the Orbital Sciences’ Antares rocket is currently scheduled for October 2014 from NASA’s Wallops Flight Facility, VA.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

“With three fully successful cargo delivery missions now complete, it is clear our public-private partnership with NASA is proving to be a positive asset to the productivity of the ISS. We are looking forward to the next Antares launch and the Cygnus cargo delivery mission that is coming up in about two months,” said Culbertson.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing ISS, Rosetta, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Cygnus Commercial Cargo Ship ‘Janice Voss’ Finishes Resupply Mission and Departs Space Station

Cygnus Orb-2 spacecraft ‘Janice Voss’ bids farewell to the ISS at 6:40 a.m. EDT, Friday, Aug. 15, 2014. It's set to reenter the atmosphere on Aug. 17. Credit: NASA TV

The Cygnus commercial cargo ship ‘Janice Voss’ built by Orbital Sciences finished it’s month-long resupply mission and bid farewell to the International Space Station (ISS) this morning, Friday, Aug. 15, after station astronauts released the vessel from the snares of the Canadarm2 robotic arm at 6:40 a.m. EDT.

The on time release and departure took place as the massive orbiting lab complex was soaring 260 miles (400 km) above the west coast of Africa over the coastline of Namibia.

Expedition 40 Flight Engineer and ESA astronaut Alexander Gerst was in charge of commanding the vessels actual release from the snares on the end effector firmly grasping Cygnus at the terminus of the 58-foot (17-meter) long Canadian robotic arm.

Gerst was working at the robotics work station inside the seven windowed cupola, backed by fellow station crew member and NASA astronaut Reid Wiseman.

About two minutes later, Cygnus fired its thrusters to depart the million pound station and head toward a destructive fiery reentry into the Earth’s atmosphere over the Pacific Ocean on Sunday, Aug. 17.

Ground controllers at Mission Control, Houston had paved the way for Cygnus release earlier this morning when they unberthed the cargo ship from the Earth-facing port of the Harmony module at about 5:14 a.m. EDT.

Cygnus Orb-2 spacecraft ‘Janice Voss’ unberthed from ISS at 5:14 a.m.  EDT, Friday, Aug. 15, 2014. Credit: NASA TV
Cygnus Orb-2 spacecraft ‘Janice Voss’ unberthed from ISS at 5:14 a.m. EDT, Friday, Aug. 15, 2014. Credit: NASA TV

This mission dubbed Orbital-2, or Orb-2, marks the second of at least eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module named ‘SS Janice Voss’ during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

The supplies are critical to keep the station flying and humming with research investigations.

The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

The “Dove” flock of nanosatellites will be deployed from the Kibo laboratory module’s airlock beginning next week. “They will collect continuous Earth imagery documenting natural and man-made conditions of the environment to improve disaster relief and increase agricultural yields” says NASA.

Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m.  EDT, Friday, Aug. 15, 2014.  Credit: NASA TV
Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m. EDT, Friday, Aug. 15, 2014. Credit: NASA TV

Cygnus arrived at the station after a three day chase. It was captured in open space on July 16, 2014 at 6:36 a.m. EDT by Commander Steve Swanson working at a robotics workstation in the cupola.

The by the book arrival coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission by Neil Armstrong, Buzz Aldrin and Michael Collins.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

Stay tuned here for Ken’s continuing ISS, Rosetta, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer – kenkremer.com

How Do You #SpotTheStation?

The International Space Station (ISS) makes a 71º maximum elevation pass over the Little Kennebec Bay, in Roque Bluffs, Maine. The photo is a five-frame vertical panorama with the ISS's path composited. Credit and copyright: David Murr.

How would you like to have one of your astrophotos sent up to the astronauts and cosmonauts on the International Space Station? Since arriving on the ISS back in May, astronaut Reid Wiseman has been posting beautiful images on social media of the International Space Station passing overhead, taken by people from all around the world.

There’s a dedicated team of people working behind the scenes back on Earth to make sure Wiseman and his crewmates get to see as many images as possible. This is all part of the #SpotTheStation, a project to get people to look up and see the ISS — to increase the “visibility” off the space station, so to speak — to make the general public more aware of the station and what benefits it brings to science. Of course, being able to see the space station fly overhead is always a fun experience!

The #SpotTheStation project is getting photographers more involved, too. We get several images a week posted on our Flickr site of space station passes (see the gorgeous one above by David Murr).

Take a look at some of the recent images @Astro_Reid has posted on Twitter:

As you can see, a map of #SpotTheStation Tweets is being created here.

How do you get your images sent up to the ISS? You can email your picture to [email protected] and include a description of your images of the ISS (location, date, times, maybe exposure information and techniques involved). Please also include your Twitter handle, Facebook or website information.

You can also just share your image through your social media outlets using #SpotTheStation hashtag.

How do you find out how to see the ISS? There are several different tools:

NASA’s Spot the Station website: Enter your Country, Region, City along with an email address or mobile phone number. Then give your preference for notifications in the evening, morning or both and that’s it. About twelve hours before the station is due to fly overhead, you’ll get a notification from NASA.

Heaven’s Above: A great website that will provide times and locations of where to look for the ISS and many more satellites that are flying over your location.

ISS Tracker: A real-time location tracker.

Satellite Flybys: A site that finds dates/times and the ccoordinates of a flyby at your location.

Fraser also put together a video (and article) about how to see the ISS:

You can find out more info this website, too.

We’ve also got a detailed guide on how to View the International Space Station for Beginners, and How to Photograph the International Space Station.

People are getting involved in this project, even if they’ve never taken a picture of the ISS previously. For example, photographer George Krieger who had never taken an image of the ISS before he heard of the #SpotTheStation project. He got right to it and on June 3 he captured two amazing ISS passes over Hollister, California. Take a look below:

The International Space Station makes two passes over Hollister California in this series of long exposure images.  Credit and copyright:  George Krieger.
The International Space Station makes two passes over Hollister California in this series of long exposure images. Credit and copyright: George Krieger.
The International Space Station passes over Hollister California. Credit and copyright: George Krieger.
The International Space Station passes over Hollister California. Credit and copyright: George Krieger.

Here are a few more pics from our Flickr pool:

Long exposure shots of bright passes by the International Space Station over the UK on June 11, 2014.  Credit and copyright: Sarah and Simon Fisher.
Long exposure shots of bright passes by the International Space Station over the UK on June 11, 2014. Credit and copyright: Sarah and Simon Fisher.
Composite image of the June 8, 2014 ISS pass, featuring Spica, the Moon and Mars. Credit and copyright: Dave Walker.
Composite image of the June 8, 2014 ISS pass, featuring Spica, the Moon and Mars. Credit and copyright: Dave Walker.
175 x 45 second exposures taken between 23:37 on June 5, 2014  and 01:53 on the 6th capturing the 23:52 and 01:28 ISS passes over London. Credit and copyright: Roger Hutchinson.
175 x 45 second exposures taken between 23:37 on June 5, 2014 and 01:53 on the 6th capturing the 23:52 and 01:28 ISS passes over London. Credit and copyright: Roger Hutchinson.

Join in and maybe you can tell all your friend that YOUR image has been sent up to the International Space Station!

Cygnus Commercial Resupply Ship ‘Janice Voss’ Berths to Space Station on 45th Apollo 11 Anniversary

The International Space Station's robotic arm, Canadarm2, grapples the Orbital Sciences' Cygnus cargo craft named "Janice Voss" on July 16, 2014. Image Credit: NASA TV

Following a nearly three day journey, an Orbital Sciences Corp. Cygnus commercial cargo freighter carrying a ton and a half of science experiments and supplies for the six person crew was successfully installed onto the International Space Station at 8:53 a.m. EDT this morning, July 16, after a flawless arrival and being firmly grasped by station astronauts deftly maneuvering the Canadarm2 robotic arm some two hours earlier.

Cygnus was captured in open space at 6:36 a.m. EDT by Commander Steve Swanson as he maneuvered the 57-foot (17-meter) Canadarm2 from a robotics workstation inside the station’s seven windowed domed Cupola, after it was delicately flown on an approach vector using GPS and LIDAR lasers to within about 32 feet (10 meters) of the massive orbiting complex.

Swanson was assisted by ESA astronaut and fellow Expedition 40 crew member Alexander Gerst working at a hardware control panel.

“Grapple confirmed” radioed Houston Mission Control as the complex soared in low orbit above Earth at 17500 MPH.

“Cygnus is captured as the ISS flew 260 miles (400 km) over northern Libya.”

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

Cygnus by the book arrival at the million pound orbiting laboratory coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission.

This mission dubbed Orbital-2, or Orb-2, marks the second of eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The supplies are critical to keep the station flying and humming with research investigations.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

The supply ship thrusters all worked perfectly normal during rendezvous and docking to station with streaming gorgeous views provided by the stations new high definition HDEV cameras.

“We now have a seventh crew member. Janice Voss is now part of Expedition 40,” radioed Swanson.

“Janice devoted her life to space and accomplished many wonderful things at NASA and Orbital Sciences, including five shuttle missions. And today, Janice’s legacy in space continues. Welcome aboard the ISS, Janice.”

The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

A robotics officer at Mission Control in Houston then remotely commanded the arm to move Cygnus into place for its berthing at the Earth-facing port on the Harmony module.

Once Cygnus was in place at the ready to latch (RTF) position, NASA astronaut and Flight Engineer Reid Wiseman monitored the Common Berthing Mechanism operations and initiated the first and second stage capture of the cargo ship to insure the craft was firmly joined.

The hard mate was completed at 8:53 a.m. EDT as the complex was flying about 260 miles over the east coast of Australia. 16 bolts were driven to firmly hold Cygnus in place to the station.

“Cygnus is now bolted to the ISS while flying 260 miles about the continent of Australia,” confirmed Houston Mission Control.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Student Space Flight teams at NASA Wallops.  Science experiments from these students representing 15 middle and high schools across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing 15 middle and high schools across America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

The crew will begin work today to remove the Centerline Berthing Camera System that provided the teams with a view of berthing operations through the hatch window.

Swanson will then pressurize and outfit the vestibule area between Harmony and Cygnus. After conducting leak checks they will open the hatch to Cygnus either later today or tomorrow and begin the unloading process, including retrieving a stash of highly desired fresh food.

The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

“Every flight is critical,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a post launch briefing at NASA Wallops. Culbertson was a NASA shuttle commander and also flew aboard the International Space Station (ISS).

“We carry a variety of types of cargo on-board, which includes food and basic supplies for the crew, and also the research.”

The cargo mission was crucial since the crew supply margin would have turned uncomfortably narrow by the Fall of 2014.

Cygnus will remain attached to the station approximately 30 days until August 15.

For the destructive and fiery return to Earth, the crew will load Cygnus with approximately 1,340 kg (2950 lbs) of trash for disposal upon atmospheric reentry over the Pacific Ocean approximately five days later after undocking.

The Orb-2 launch was postponed about a month from June 9 to conduct a thorough re-inspection of the two Russian built and US modified Aerojet AJ26 engines that power the rocket’s first stage after a test failure of a different engine on May 22 at NASA’s Stennis Space Center in Mississippi resulted in extensive damage.

The July 13 liftoff marked the fourth successful launch of the 132 foot tall Antares in the past 15 months, Culbertson noted.

The first Antares was launched from NASA Wallops in April 2013. And the Orb-2 mission also marks the third deployment of Cygnus in less than a year.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Cygnus Cargo Craft Closing In for Space Station Berthing on July 16 – Watch Live

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com

The Cygnus commercial cargo craft is rapidly closing in on the International Space Station (ISS) for an expected berthing on Wednesday morning, July 16, following a spectacular lunchtime blastoff from the Virginia shore on Sunday, July 13, carrying over one and a half tons of supplies and science experiments for the six man crew.

During a three day orbital chase, mission controllers are executing a series of carefully choreographed thruster firings to maneuver the private Orbital Sciences Cygnus ever closer to the space station.

You can watch the final rendezvous and berthing sequence live on NASA TV on Wednesday starting at 5:15 a.m.

Watch the streaming NASA TV webcast here at – http://www.nasa.gov/nasatv

All systems “green” reported Orbital Sciences as of about 6 p.m. Tuesday evening, July 15.

In this photo posted to Twitter by Flight Engineer Alexander Gerst, he and Commander Steve Swanson (foreground) use the robotics workstation in the International Space Station's cupola.  Image Credit: NASA
In this photo posted to Twitter by Flight Engineer Alexander Gerst, he and Commander Steve Swanson (foreground) use the robotics workstation in the International Space Station’s cupola.
Image Credit: NASA

Cygnus orbit was 415 x 409 km and some 4 kilometers below and 270 kilometers behind the ISS. It is closing in at 23 km/hour using its 32 thrusters.

Cygnus roared to orbit during the flawless July 13 blastoff of the Orbital Sciences Corp. Antares rocket at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

The two stage rocket ascended very slowly after ignition with a mounting sound and deafening crescendo that reverberated across the local Virginia viewing area. It put on a spectacular sky show before disappearing into the clouds after about 40 seconds or so.

The 13 story Antares lofted the Cygnus christened “Janet Voss” in honor of the late shuttle astronaut bound for the space station and packed with a wide range of science experiments and essential supplies.

ISS Expedition 40 crew members Commander Steve Swanson of NASA and Alexander Gerst of the European Space Agency conducted a last minute practice session today at the robotics work station inside the domed cupola.

They used the Robotics Onboard Trainer, or ROBoT, to practice techniques for capturing Cygnus with Canadarm2, said NASA.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

They are expected to capture the private cargo freighter at approximately 6:39 a.m. (EDT) using the stations 57-foot (17-meter) Canadarm2 robotic arm.

Live coverage will then pause as the crew makes final preparations.

NASA will resume the live webcast at 8:30 a.m. EDT for the berthing of Cygnus.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port during Orb-1 mission in January 2014. Credit: NASA TV

Mission Control in Houston will command the arm to move Cygnus into place for its installation at the Earth-facing port on the Harmony module expected to take place some 15 minutes later at around 8:45 a.m.

The Antares/Cygnus Orbital-2 (Orb-2) mission is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The pressurized Cygnus cargo freighter will deliver 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

The wide ranging science cargo and experiments includes a flock of 29 nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Commercial Antares/Cygnus Rocket Loaded with Science for July 13 Virginia Launch – Watch Live

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Following further weather delays this week Orbital Sciences Corp. commercial Antares rocket is at last set to soar to space at lunchtime Sunday, July 13, from a beachside launch pad in Virginia carrying a private Cygnus cargo freighter loaded with a diverse array of science experiments including a flock of nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

The privately developed Antares rocket is on a critical cargo resupply mission – named Orb-2 – bound for the International Space Station (ISS) and now targeting liftoff at 12:52 p.m. on July 13 from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island on Virginia’s Eastern shore.

Read my complete Antares launch viewing guide here – “How to See the Antares/Cygnus July 13 Blastoff”

Severe thunderstorms up and down the US East coast forced two consecutive postponements this week from the Atlantic Ocean region launch pad at NASA’s Wallops Flight Facility, VA, from July 11 to July 13.

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer – kenkremer.com

“Orbital’s launch team has made great progress in preparing the rocket for the Orb-2 mission, which will be the fourth flight of Antares in the past 15 months,” Orbital said in a statement.

“However, severe weather in the Wallops area has repeatedly interrupted the team’s normal operational schedule leading up to the launch. As a result, these activities have taken longer than expected. Orbital has decided to postpone the Orb-2 mission by an additional day in order to maintain normal launch operations processing.”

The pressurized Cygnus cargo freighter will deliver 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

A flock of 28 nanosatellites from Planet Labs of San Francisco are aboard to take pictures of Earth.

Close-up view of Cygnus spacecraft atop Antares rocket on Orb 2 mission launching on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer - kenkremer.com
Close-up view of Cygnus spacecraft atop Antares rocket on Orb 2 mission launching on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer – kenkremer.com

After deployment from the Japanese JEM module they will form “the largest constellation of imaging satellites in Earth orbit,” said Robbie Schingler, Co-Founder of PlanetLabs.

“The individual satellites will take images that will be combined into a whole Earth mosaic,” Schingler told me in an interview at Wallops.

15 student experiments on the “Charlie Brown” mission are aboard and hosted by the Student Spaceflight Experiment Program, an initiative of the National Center for Earth and Space Science Education (NCESSE) and NanoRacks.

“The student experiments were chosen from over 1000 proposals from Grades 5 to 12,” said Jeff Goldstein, NCESSE director.

They will investigate plant, lettuce, raddish and mold growth and seed germination in zero-G, penecilium growth, corrosion inhibitors, oxidation in space and microencapsulation experiments.

The TechEdSat-4 is a small cubesat built by NASA’s Ames Research Center in California that will investigate technology to return small samples to Earth from the space station.

NASA will broadcast the Antares launch live on NASA TV starting at 12 Noon – http://www.nasa.gov/nasatv

The weather prognosis is very favorable with a 90% chance of acceptable weather at launch time during the 5 minute window.

The Antares/Cygnus Orbital-2 (Orb-2) mission is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

NASA will broadcast the Antares launch live on NASA TV starting at 12 Noon – http://www.nasa.gov/nasatv

Depending on local weather conditions, portions of the daylight liftoff could be visible to millions of spectators along the US Eastern seaboard stretching from South Carolina to Massachusetts.

Here’s a viewing map:

Orbital 2 Launch from NASA Wallops Island, VA on July 12, 2014- Time of First Sighting Map   This map shows the rough time at which you can first expect to see Antares after it is launched on July 12, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you'll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon more than a minute.   Credit: Orbital Sciences
Orbital 2 Launch from NASA Wallops Island, VA on July 13, 2014- Time of First Sighting Map This map shows the rough time at which you can first expect to see Antares after it is launched on July 13, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you’ll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon more than a minute. Credit: Orbital Sciences

The best viewing will be in the mid-Atlantic region closest to Wallops Island.

Locally at Wallops you’ll get a magnificent view and hear the rockets thunder at either the NASA Wallops Visitor Center or the Chincoteague National Wildlife Refuge/Assateague National Seashore.

For more information about the Wallops Visitors Center, including directions, see: http://www.nasa.gov/centers/wallops/visitorcenter

NASA will have special “countdown speakers” set up at the NASA Wallops Visitor Center, Chincoteague National Wildlife Refuge/Assateague National Seashore and Ocean City inlet.

ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS.  The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS. The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

The July mission marks the second operational Antares/Cygnus flight.

The two stage Antares rocket stands 132 feet tall. It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer – kenkremer.com

SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.

Watch for Ken’s onsite Antares Orb-2 mission reports from NASA Wallops, VA.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about NASA’s Mars missions and Orbital Sciences Antares ISS launch on July 13 from NASA Wallops, VA in July and more about SpaceX, Boeing and commercial space and more at Ken’s upcoming presentations.

July 11/12/13: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening