S.S Gene Cernan Honoring Last Moonwalker Arrives at International Space Station Carrying Tons of Research Gear and Supplies

The Canadarm2 robotic arm is seen grappling the Orbital ATK S.S. Gene Cernan Cygnus resupply ship on Nov. 14, 2017 for berthing to the the International Space Station. Credit: NASA TV
The Canadarm2 robotic arm is seen grappling the Orbital ATK S.S. Gene Cernan Cygnus resupply ship on Nov. 14, 2017 for berthing to the the International Space Station. Credit: NASA TV

The S.S. Gene Cernan Cygnus spacecraft named in honor of the Apollo 17 lunar landing commander and launched by Orbital ATK from the eastern shore of Virgina at breakfast time Sunday, Nov. 12, arrived at the International Space Station early Tuesday morning, Nov 14, carrying over 3.7 tons of research equipment and supplies for the six person resident crew.

Soon thereafter at 5:04 a.m., Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik successfully captured Orbital ATK’s Cygnus cargo freighter using the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Nespoli and Bresnik were working at a robotics work station inside the seven windowed domed Cupola module that offers astronauts the most expansive view outside to snare Cygnus with the robotic arms end effector.

The Cygnus cargo freighter – named after the last man to walk on the Moon – reached its preliminary orbit nine minutes after blasting off early Sunday atop the upgraded 230 version of the Orbital ATK Antares rocket from NASA’s Wallops Flight Facility in Virginia.

The flawless liftoff of the two stage Antares rocket took place shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Sunday’s spectacular Antares launch delighted spectators – but came a day late due to a last moment scrub on the originally planned Veteran’s Day liftoff, Saturday, Nov. 11, when a completely reckless pilot flew below radar into restricted airspace just 5 miles away from the launch pad – forcing a sudden and unexpected halt to the countdown under absolutely perfect weather conditions.

After a carefully choreographed series of intricate thruster firings to raise its orbit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

With Cygnus firmly in the grip of the robots hand, ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, maneuvered the arm towards the exterior hull and berth the cargo ship at the Earth-facing port of the stations Unity module.

1st stage capture was completed at 7:08 a. EST Nov 14.

After driving in the second stage gang of bolts, hard mate and capture were completed at 7:15 a.m.

The station was flying 252 miles over the North Pacific in orbital night at the time of berthing.

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

NASA TV provided live coverage of the rendezvous and grappling.

Including Cygnus there are now five visiting vehicle spaceships parked at the space station including also the Russian Progress 67 and 68 resupply ships and the Russian Soyuz MS-05 and MS-06 crew ships.

International Space Station Configuration. Five spaceships are parked at the space station including the Orbital ATK Cygnus after Nov. 14, 2017 arrival, the Progress 67 and 68 resupply ships and the Soyuz MS-05 and MS-06 crew ships. Credit: NASA

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery re-entry into Earth’s atmosphere as it disposes of several tons of trash.

On this flight, the Cygnus OA-8 spacecraft is jam packed with its heaviest cargo load to date!

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cernan was commander of Apollo 17, NASA’s last lunar landing mission and passed away in January at age 82. He set records for both lunar surface extravehicular activities and the longest time in lunar orbit on Apollo 10 and Apollo 17.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Apollo17, NASA’s final lunar landing mission, on December 7, 1972, as seen from the KSC press site. Credit: Mark and Tom Usciak

………….

Ken’s upcoming outreach events:

Learn more about the upcoming SpaceX Falcon 9 Zuma launch on Nov 16, 2017, upcoming Falcon Heavy and CRS-13 resupply launches, NASA missions, ULA Atlas & Delta launches, SpySats and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Nov 15, 17: “SpaceX Falcon 9 Zuma launch, ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-13 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com
The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center. Credit: Ken Kremer/Kenkremer.com
Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com
Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

NASA’s Next-Generation Spaceplane Passes Free Flight Test

Sierra Nevada Corp’s Dream Chaser lands on Edwards Air Force Base in California. The spacecraft went through preparations for flight at NASA’s Armstrong Flight Research Center. Credits: NASA/Carla Thomas

It’s called the Dream Chaser, a reusable spaceplane that will one day transport cargo and crews to the International Space Station. For the past ten years, the Sierra Nevada Corporation and NASA have been developing and testing this next-generation space vehicle. When it is ready, this vehicle will not only provide a more cost-effective way of servicing the ISS, it will also help restore domestic launch capability to the United States.

On Saturday, November 11th, the Dream Chaser passed an important milestone by conducting a successful free flight test. This took place at Edwards Air Force Base in California, and verified the spaceplane’s ability to glide and land autonomously. This, in addition to verifying several key avionic and flight systems, is a strong indication that the spaceplane will be capable of conducting runs to and from Low-Earth Orbit (LEO) in the near future.

This test involved the spaceplane being lifted to an altitude of 3,780 meters (12,400 feet) and then let go to glide freely. It then deployed its landing gears and touched down on the Edwards Air Force Base runway before coming to a full stop. This runway, it should be noted, is very similar to the Kennedy Space Center Shuttle Landing Facility runway that the Dream Chaser will land on once it is operational.

https://vimeo.com/242615668

This flight test validated the performance of the Dream Chaser during what is arguably the most critical part of a mission – the approach and landing phase – which will be the final phase of future flights from the ISS. The ability to conduct automated landings is central to the spaceplane’s reusability, which operates in much the same way as the now-retired Space Shuttle did.

This process entails the craft being launched into orbit aboard a rocket (Atlas V or Ariane 5), maneuvering under its own power while in orbit so that it can dock with the ISS (or other orbiting facilities), and then re-entering the atmosphere and returning to a landing strip. As Mark Sirangelo, the corporate vice president of SNC’s Space System business area, said in a company press release:

“The Dream Chaser flight test demonstrated excellent performance of the spacecraft’s aerodynamic design and the data shows that we are firmly on the path for safe, reliable orbital flight.”

The flight test also helped advance the vehicle as part of NASA’s Commercial Crew Program and prepare it for service under Commercial Resupply Services 2 program. These programs consist of NASA working closely with private aerospace companies to develop new spacecraft and launch systems that will be capable of carrying crews to locations in LEO and to the ISS.

Front-end view of the Dream Chaser spaceplane. Credit: Sierra Nevada Corporation

This approach and landing test expands on the phase one flight test, which took place back in October of 2013. For this free-flight test, the vehicle was released from a “skycrane” helicopter and flew a short flight, touching down less than a minute later. Just prior to landing, the left main landing gear failed to deploy resulting in a crash landing. However, the vehicle and its crew compartment were left intact.

For the second flight test, SNC and NASA incorporated orbital vehicle avionics and flight software for the first time. The trajectory also included specific program test inputs which, together with the added software, provided validations for orbital vehicle operations. Over the coming days and weeks, SNC and NASA will be evaluating all the data obtained during the flight, which includes the Dream Chaser aerodynamic and integrated system performance.

The data that SNC gathers from this test campaign will help inform the final design of the cargo Dream Chaser, which will be capable of transporting crews of six astronauts to the ISS. As Fatih Ozmen, the CEO of SNC, exclaimed:

“I’m so proud of the Dream Chaser team for their continued excellence. This spacecraft is the future and has the ability to change the way humans interact with space, and I couldn’t be happier with SNC’s dedicated team and the results of the test.”

If all goes well, SNC and NASA are hoping to begin conducting cargo deliveries by 2019. By 2024, it is hoped that a total of six cargo delivery missions will take place. No indications have been given as to when the crewed variant could start bringing astronauts to the ISS. But once that is possible, NASA will no longer be forced to rely on Roscosmos and their fleet of Soyuz rockets to send astronauts into space.

Be sure to check out this video of the Dream Chaster Cargo System, courtesy of Sierra Nevada Corporation:

https://vimeo.com/199209876

Further Reading: NASA, Sierra Nevada

Orbital ATK Antares Rocket Set for Breakfast Blastoff from Virginia to Space Station with S.S. Gene Cernan Cargo Freighter Nov. 11: Watch Live

The Orbital ATK Antares rocket topped with the Cygnus OA-8 spacecraft creates a beautiful water reflection in this prelaunch nighttime view across the inland waterways. Launch is targeted for Nov. 11, 2017, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
The Orbital ATK Antares rocket topped with the Cygnus OA-8 spacecraft creates a beautiful water reflection in this prelaunch nighttime view across the inland waterways. Launch is targeted for Nov. 11, 2017, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – The Orbital ATK Antares rocket is all set for a breakfast time blastoff from the commonwealth of Virginia to the International Space Station for NASA with a Cygnus cargo freighter named in honor of Gene Cernan, the last man to walk on the Moon.

The Antares launch is targeted for 7:37 a.m. EST on Saturday, Nov. 11, 2017 carrying the S.S. Gene Cernan resupply vessel that’s loaded with nearly four tons of science and supplies for the six person crew serving on the station.

Antares liftoff with the Cygnus spaceship also known as OA-8 will take place from launch Pad-0A at NASA’s Wallops Flight Facility located along the eastern shore of Virginia.

The Orbital ATK Antares rocket, with the Cygnus OA-8 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Nov. 11, 2017, at NASA’s Wallops Flight Facility in Virginia, in this nighttime view. Credit: Ken Kremer/kenkremer

The rocket was integrated with the Cygnus OA-8 supply ship this week and rolled out to the launch pad starting around 1 a.m. EST this morning Thursday, Nov. 9.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

The upgraded Antares rocket was erected into the vertical position and is now poised for liftoff early Saturday morning.

Tens of millions of spectators could potentially witness the launch with their own eyeballs since NASA’s Wallops Flight Facility is located within a short driving distance of the most heavily populated area of the United States along the eastern seaboard.

Since Saturdays weather forecast is quite favorable at this time this could be your chance to watch an exciting launch on a critical mission for NASA with your family or friends.

See detailed visibility map below.

But be aware that temperatures will be rather chilly, setting record or near record lows in the 20s throughout the Northeast and Atlantic coast states.

If you are wondering whether to watch, consider that Antares launches are infrequent.

The last Antares launch from Wallops took place a year ago on 23 October 2016 for the OA-5 cargo resupply mission to the ISS for NASA.

If you can’t watch the launch in person, you can always follow along via NASA’s live coverage.

Live launch coverage will begin at 7 a.m. Saturday on NASA Television and the agency’s website: www.nasa.gov

The launch window opens at 7:37 a.m. EST.

The windows runs for five minutes extending to 7:42 a.m. EST.

Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

The 14 story tall commercial Antares rocket will launch for only second first time in the upgraded 230 configuration – powered by a pair of the new Russian-built RD-181 first stage engines.

The Cygnus spacecraft will deliver over 7,400 pounds of science and research, crew supplies and vehicle hardware to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

Hardware for the Orbital ATK Antares rocket launching the Cygnus OA-8 resupply mission to the International Space Station on Nov. 11, 2017 – as it was being assembled for flight inside the Horizontal Integration Facility at NASA’s Wallops Flight Facility. Credit: Ken Kremer/kenkremer.com

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 250 ongoing research investigations.

Among the science: “Cygnus will carry several CubeSats that will conduct a variety of missions, from technology demonstrations of laser communication and increased data downlink rates to an investigation to study spaceflight effects on bacterial antibiotic resistance. Other experiments will advance biological monitoring aboard the station and look at various elements of plant growth in microgravity that may help inform plant cultivation strategies for future long-term space missions. The spacecraft will also transport a virtual reality camera to record a National Geographic educational special on Earth as a natural life-support system.”

“Orbital ATK is proud to name the OA-8 Cygnus Cargo Delivery Spacecraft after former astronaut Eugene “Gene” Cernan,” said Orbital ATK.

“As the last human to step foot on the moon, Cernan set records for both lunar surface extravehicular activities and longest time in lunar orbit, paving the way for future human space exploration. He died in January 2017.”

The last Cygnus was named the S.S. John Glenn, first American to orbit Earth, and launched atop a ULA Atlas V in March 2017.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. It launched on April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

After a two day orbital chase Cygnus will reach the stations vicinity on Monday, Nov. 13.

“Expedition 53 Flight Engineers Paolo Nespoli of ESA (European Space Agency) and Randy Bresnik of NASA will use the space station’s robotic arm to capture Cygnus at about 5:40 a.m. NASA TV coverage of rendezvous and capture will begin at 4:15 a.m.,” said NASA.

“After Canadarm2 captures Cygnus, ground commands will be sent to guide the station’s robotic arm as it rotates and attaches the spacecraft to the bottom of the station’s Unity module. Coverage of installation will begin at 7 a.m.”

“Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery reentry into Earth’s atmosphere as it disposes of several tons of trash.”

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-8 is the eighth of these missions.

Orbital ATK Cygnus OA-8 mission patch. Credit: Orbital ATK

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer.com
This map shows the visibility of the upcoming launch of Orbital ATK’s CRS-8 mission from Wallops Flight Facility in Virginia, with numeric values indicating the time (in seconds) after liftoff the Antares rocket and Cygnus spacecraft may be visible. Credit: NASA/Orbital ATK
An Antares rocket sunrise prior to blastoff from NASA’s Wallops Flight Facility on 17 Oct. 2016 bound for the ISS. Credit: Ken Kremer/kenkremer.com

Busy Space Coast December Ahead as SpaceX Reactivates Damaged Cape Launch Pad, Aims for Year End Maiden Falcon Heavy Blastoff

An artist's illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX
An artist's illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A very busy and momentous December is ahead for SpaceX workers on Florida’s Space Coast as the company plans to reactivate the firms heavily damaged pad 40 at Cape Canaveral for a NASA resupply mission liftoff in early December while simultaneously aiming for a Year End maiden launch of the oft delayed Falcon Heavy rocket from NASA’s historic pad 39A.

NASA and SpaceX announced that the next SpaceX commercial cargo resupply services mission to the International Space Station (ISS) will launch from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station (CCAFS) in Florida in December.

The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: SpaceX

The launch of the SpaceX Falcon 9 carrying the SpaceX Dragon CRS-13 cargo freighter to the orbiting outpost for NASA will be the first this year from Space Launch Complex 40 at Cape Canaveral Air Force Station (CCAFS) in Florida. It could come as soon as Dec. 4

Pad 40 was severely damaged on Sept. 1, 2016 during a catastrophic launch pad explosion of the Falcon 9 during a fueling test that concurrently completely consumed the Israeli AMOS-6 communications satellite bolted on top of the second stage during the planned static hot fire test.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Since Sept. 2016, all SpaceX launches from Florida have taken place from NASA’s Launch Complex 39A (LC-39A) on the Kennedy Space Center.

The first Falcon 9 launch from pad 39A took place this year in Feb. 2017. And all hot fire tests have been conducted minus the expensive payload on top to keep them safe in case of a repeat explosion.

A successful restoration of pad 40 for launch services is one of the critical prerequisites that must be achieved before paving the path to the inaugural blastoff of SpaceX’s triple barreled Falcon Heavy booster from pad 39A at NASA’s Kennedy Space Center.

Blastoff of SpaceX Dragon CRS12 on its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017 as seen from the VAB roof. Credit: Ken Kremer/Kenkremer.com

So if all goes well, SpaceX will have two operational launch pads at Florida’s Spaceport- one at KSC and one at the Cape. They also have a pad in California at Vandenberg AFB.

Thus SpaceX could ramp up their already impressive 2017 launch pace of 16 rocket launches so far through the end of October.

Indeed SpaceX plans another 4 or 5 launches over the final two months of this year.

An artist's illustration of the Falcon Heavy rocket. Image: SpaceX
An artist’s illustration of the Falcon Heavy rocket. Image: SpaceX

SpaceX is targeting late December for liftoff of the mammoth Falcon Heavy on its debut flight – to achieve CEO Elon Musk’s stated goal of launching Falcon Heavy in 2017.

The Falcon Heavy launch could come around Dec. 29, sources say.

But the late December Falcon Heavy launch date is dependent on placing pad 40 back in service with a fully successful NASA cargo mission, finishing upgrades to pad 39A for the Heavy as well as completing the rocket integration of three Falcon 9 cores and launch pad preparations.

Furthermore, SpaceX engineers must carry out a successful static fire test of the Falcon Heavy sporting a total of 27 Merlin 1 D engines – 9 engines apiece from each of the three Falcon 9 cores.

Both of the Falcon 9 side cores will be outfitted with nose cones on top in place of a payload and they have been spotted by myself and others being processed inside the huge processing hanger just outside the pad 39A perimeter fence at the bottom of the ramp.

Both of the side cores are also recycled boosters that will be launched for the second time each.

SpaceX originally hoped to launch Falcon Heavy in 2013, said Musk. But he also said the task was way more challenging then originally believed during a KSC post launch press conference in March 2017 following the first reuse of a liquid fueled booster during the SES-10 mission for SES that launch from pad 39A.

SpaceX CEO and Chief Designer Elon Musk and SES CTO Martin Halliwell exuberantly shake hands of congratulation following the successful delivery of SES-10 TV comsat to orbit using the first reflown and flight proven booster in world history at the March 30, 2017 post launch media briefing at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Former Space Shuttle and Apollo Saturn Launch Pad 39A was only reactivated this year by SpaceX for Falcon 9 launches.

SpaceX Falcon 9 blasts off with KoreaSat-5A commercial telecomsat atop Launch Complex 39A at the Kennedy Space Center, FL, on Halloween eve 30 Oct 2017. As seen from the crawlerway. Credit: Ken Kremer/Kenkremer.com

SpaceX most recently launched the KoreaSat-5A telecomsat on Oct. 30 from pad 39A.

Plus the first stage booster was successfully recovered after a soft landing on a platform at sea and the booster floated ‘back in town’ last Thursday – as I witnessed and reported here.

Recovered SpaceX first stage booster from KoreaSat-5A launch is towed into the mouth of Port Canaveral, FL atop OCISLY droneship to flocks of birds and onlookers as Atlantic Ocean waves crash onshore at sunset Nov. 2, 2017. Credit: Ken Kremer/Kenkremer.com

The uncrewed Dragon cargo spacecraft launch on the CRS-13 mission is also a recycled Dragon. It previously was flown on SpaceX’s sixth commercial resupply mission to station for NASA.

Rocket recycling is a feat straight out of science fiction. It’s the key part of SpaceX CEO Elon Musk oft stated goal of drastically slashing the high cost of access to space.

Chart comparing SpaceX’s Falcon 9 and Falcon Heavy. Credit: SpaceX

The next SpaceX launch is set for Nov. 15 with the mysterious Zuma payload for a US government customer. It will be the last from pad 39A before the Falcon Heavy.

An Orbital ATK Cygnus cargo ship is slated to launch on November 11 from NASA Wallops Flight Facility on Virginia’s eastern shore.

Watch for Ken’s continuing onsite NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 set to deliver JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

I Still ♥ the ISS: More Reasons to Love the International Space Station

The International Space Station as seen by the departing STS-134 crew on May 29, 2011. Credit: NASA

Back in 2008, I professed my feelings, bared my soul and told all about how I absolutely was in love the International Space Station. Nine and a half years ago when I wrote that article, titled “I ‘Heart’ the ISS: Ten Reasons to Love the International Space Station,” the ISS was still under construction, only three astronauts/cosmonauts at a time could live on board, and scientific research was sparse. Some people routinely questioned the cost and utility of what some people called an expensive erector set or orbiting white elephant.

Continue reading “I Still ♥ the ISS: More Reasons to Love the International Space Station”

NASA Undeterred by the Threat of Space Radiation

Artist's impression of the Mars Base Camp in orbit around Mars. When missions to Mars begin, one of the greatest risks will be that posed by space radiation. Credit: Lockheed Martin

When it comes to planning missions to Mars and other distant locations in the Solar System, the threat posed by radiation has become something of an elephant in the room. Whether it is NASA’s proposed “Journey to Mars“, SpaceX’s plans to conduct regular flights to Mars, or any other plan to send crewed missions beyond Low Earth Orbit (LEO), long-term exposure to space radiation and the health risks this poses is an undeniable problem.

But as the old saying goes, “for every problem, there is a solution”; not to mention, “necessity is the mother of invention”. And as representatives from NASA’s Human Research Program recently indicated, the challenge posed by space radiation will not deter the agency from its exploration goals. Between radiation shielding and efforts aimed at mitigation, NASA plans to proceed with mission to Mars and beyond.

Since the beginning of the Space Age, scientists have understood how beyond Earth’s magnetic field, space is permeated by radiation. This includes Galactic Cosmic Rays (GCRs), Solar Particle Events (SPEs) and the Van Allen Radiation Belts, which contains trapped space radiation. Much has also been learned through the ISS, which continues to provide opportunities to study the effects of exposure to space radiation and microgravity.

The magnetic field and electric currents in and around Earth generate complex forces that have immeasurable impact on every day life. Credit: ESA/ATG medialab

For instance, though it orbits within Earth’s magnetic field, astronauts receive over ten times the amount of radiation than people experience on average here on Earth. NASA is able to protect crews from SPEs by advising them to seek shelter in more heavily shielded areas of the station – such as the Russian-built Zvezda service module or the US-built Destiny laboratory.

However, GCRs are more of a challenge. These energetic particles, which are primarily composed of high-energy protons and atomic nuclei, can come from anywhere within our galaxy and are capable of penetrating even metal. To make matters worse, when these particles cut through material, they generate a cascade reaction of particles, sending neutrons, protons and other particles in all directions.

This “secondary radiation” can sometimes be a greater risk than the GCRs themselves. And recent studies have indicated that the threat they pose to living tissue can also have a cascading effect, where damage to one cell can then spread to others. As Dr. Lisa Simonsen, a Space Radiation Element Scientist with NASA’s HRP, explained:

“One of the most challenging parts for the human journey to Mars is the risk of radiation exposure and the inflight and long-term health consequences of the exposure. This ionizing radiation travels through living tissues, depositing energy that causes structural damage to DNA and alters many cellular processes.”

To address this risk, NASA is currently evaluating various materials and concepts to shield crews from GCRs. These materials will become an integral part of future deep-space missions. Experiments involving these materials and their incorporation into transport vehicles, habitats and space suits are currently taking place at the NASA Space Radiation Laboratory (NSRL).

At the same time, NASA is also investigating pharmaceutical countermeasures, which could prove to be more effective than radiation shielding. For instance, potassium iodide, diethylenetriamine pentaacietic acid (DTPA) and the dye known as “Prussian blue” have been used for decades to treat radiation sickness. During long-term missions, astronauts will likely need to take daily doses of radiation meds to mitigate exposure to radiation.

Space radiation detection and mitigation technologies are also being developed through NASA’s Advanced Exploration Systems Division. These include the Hybrid Electronic Radiation Assessor for the Orion spacecraft, and a series of personal and operational dosimeters for the ISS. There are also existing instruments which are expected to play an important role when crewed mission to Mars begin.

Who can forget the Radiation Assessment Detector (RAD), which was one of the first instruments sent to Mars for the specific purpose of informing future human exploration efforts. This instrument is responsible for identifying and measuring radiation on the Martian surface, be it radiation from space or secondary radiation produced by cosmic rays interacting with the Martian atmosphere and surface.

Artist depiction of a rover on the surface of Mars. Researchers are developing shielding concepts for transport vehicles, habitats and space suits to protect future astronauts on a journey to Mars. Credits: NASA

Because of these and other preparations, many at NASA are naturally hopeful that the risks of space radiation can and will be addressed. As Pat Troutman, the NASA Human Exploration Strategic Analysis Lead, stated in a recent NASA press statement:

“Some people think that radiation will keep NASA from sending people to Mars, but that’s not the current situation. When we add the various mitigation techniques up, we are optimistic it will lead to a successful Mars mission with a healthy crew that will live a very long and productive life after they return to Earth.

Scientists are also engaged in ongoing studies of space weather in order to develop better forecasting tools and countermeasures. Last, but not least, multiple organizations are looking to develop smaller, faster spacecraft in order to reduce travel times (and hence, exposure to radiation). Taken together, all of these strategies are necessary for long-duration spaceflights to Mars and other locations throughout the Solar System.

Granted, there is still considerable research that needs to be done before we can say with any certainty that crewed missions to Mars and beyond will be safe, or at least not pose any unmanageable risks. But the fact that NASA is busy addressing these needs from multiple angles demonstrates how committed they are to seeing such a mission happen in the coming decades.

Artist’s impression of the the Interplanetary Spacecraft approaching Mars. Credit: SpaceX

“Mars is the best option we have right now for expanding long-term, human presence,” said Troutman. “We’ve already found valuable resources for sustaining humans, such as water ice just below the surface and past geological and climate evidence that Mars at one time had conditions suitable for life. What we learn about Mars will tell us more about Earth’s past and future and may help answer whether life exists beyond our planet.”

Beyond NASA, Roscosmos, the Chinese National Space Agency (CSNA) have also expressed interest in conducting crewed mission to the Red Planet, possibly between the 2040s or as late as the 2060s. While the European Space Agency (ESA) has no active plans for sending astronauts to Mars, they see the establishment of an International Lunar Village as a major step towards that goal.

Beyond the public sector, companies like SpaceX and non-profits like MarsOne are also investigating possible strategies for protecting and mitigating against space radiation. Elon Musk has been quite vocal (especially of late) about his plans to conduct regular trips to Mars in the near future using the Interplanetary Transport System (ITS) – also known as the BFR – not to mention establishing a colony on the planet.

And Baas Landsdorp has indicated that the organization he founded to establish a human presence on Mars will find ways to address the threat posed by radiation, regardless of what a certain report from MIT says! Regardless of the challenges, there is simply no shortage of people who want to see humanity go to Mars, and possibly even stay there!

And be sure to check out this video about the Human Research Program, courtesy of NASA:

Further Reading: NASA

Hey Citizen Scientists! Help NASA Analyze Images Taken from the Space Station

Astronaut Karen Nyberg looks out at Earth from the International Space Station's Cupola. You can too! Credit: NASA.

Calling all citizen scientists, geography buffs, fans of the International Space Station and those who love that orbital perspective!

CosmoQuest has a brand new project in coordination with NASA and the Astronomical Society of the Pacific (ASP) where you can help identify features in photographs taken by astronauts from the space station.

The project is called Image Detective. I’ve tried it out, and wow, THIS is a lot of fun!

Now, I absolutely love seeing the images taken of Earth from the ISS, and I routinely follow all the astronauts on board on social media so I can see their latest images. And I also love the concept of regular, everyday people doing science. Plus I’m a big fan of CosmoQuest and their ‘quest’ to bring science to the public.

But still, the setup CosmoQuest has is really great and the process is easy. Citizen scientists are asked to help identify geographic features (natural or human-made) and then determine the location on Earth where the photo is centered.

I found that last part to be the most difficult, but I’ve been known to have trouble reading a map … so I’m hoping that I can improve a bit with more practice.

“The astronauts’ photos of Earth are visually stunning, but more than that, they can be used to study our changing Earth,” said our good friend Dr. Pamela Gay, who is the Director of Technology and Citizen Science at ASP. “From erupting volcanoes, to seasonal flooding, these images document the gradual changes that happen to our landscape. The trick is, we need to make these images searchable, and that means taking the time to sort through, analyze, and label (add metadata) the unidentified images within the database of 1.5 million plus photos.”

You can try it out here: http://cosmoquest.org/ImageDetective.

The team says that Image Detective spreads the significant work necessary to label all of the images out to citizen scientists across the world.

“This is a unique, powerful, and beautiful image data set that has already yielded excellent research science. But the data set needs the many eyes and minds of citizen scientists to reach its full potential as a publicly available, searchable catalog,” said Dr. Jennifer Grier, a Senior Scientist and Senior Education and Communication Specialist at Planetary Science Institute (PSI) and CosmoQuest’s lead support scientist. “With the additions that citizen scientists as detectives can make, professional research scientists will be able to conduct more research into our changing world, and do so much more effectively.”

SpaceX Dragon Splashes Down in Pacific with 2 Tons of NASA Space Station Science

The SpaceX Dragon (far right) begins its departure from the International Space Station after being released from the grips of the Canadarm2 robotic arm on Sept. 17, 2017. Credit: NASA TV
The SpaceX Dragon (far right) begins its departure from the International Space Station after being released from the grips of the Canadarm2 robotic arm on Sept. 17, 2017. Credit: NASA TV

KENNEDY SPACE CENTER, FL – Concluding a month long stay at the International Space Station (ISS) a SpaceX Dragon cargo freighter loaded with some two tons of NASA research samples, hardware and micestonauts returned home to make a successful splashdown in the Pacific on Sunday, Sept. 17.

The SpaceX Dragon CRS-12 resupply ship successfully splashed down in the Pacific Ocean at approximately 10:14 a.m. EDT, 7:14 a.m. PDT, 1414 GMT Sunday, southwest of Long Beach, California, under a trio of main parachutes.

The parachute assisted splashdown marked the end of the company’s twelfth contracted cargo resupply mission to the orbiting outpost for NASA.

The capsule returned with more than 3,800 pounds (1,700 kg) of cargo and research and 20 live mice.

“Good splashdown of Dragon confirmed, completing its 12th mission to and from the @Space_Station,” SpaceX confirmed via twitter.

The SpaceX Dragon CRS-12 spacecraft begins its departure from the International Space Station after being released from the grips of the Canadarm2 robotic arm on Sept. 17, 2017. Credit: NASA TV

Liftoff of the SpaceX Falcon 9 carrying Dragon CRS-12 to orbit took place from seaside pad 39A at NASA’s Kennedy Space Center in Florida on Aug. 14 at 12:31 p.m. EDT (1631 GMT).

After a two day orbital chase Dragon had been berthed at the station since arriving on Aug. 16.

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

Dragon’s departure began early Sunday morning when Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) and ISS Commander Randy Bresnik of NASA released the Dragon spacecraft from the grips of the Canadarm2 robotic arm at 4:40 a.m. EDT, 1:40 a.m. PDT, 840 GMT.

The departure events were carried live on NASA TV. There was no live broadcast of the Pacific Ocean landing.

Working from a robotics work station inside the seven windowed domed Cupola module Nespoli and Bresnik used the station’s 57.7-foot-long (17.6 meter-long) Canadian-built robotic arm to detach Dragon from the Earth-facing port of the Harmony module and release it into space.

“We would like to give a big thanks to all the operational teams around the world that keep our presence in space possible – to the scientists and engineers that provide the outstanding research and equipment that we have in space, to NASA and all the space agencies that contribute to the space station. And to SpaceX for giving us this outstanding vehicle,” Nespoli radioed.

Dragon then backed away slowly via a trio of thruster firings.

“The three departure burns to move Dragon away from the @Space_Station are complete,” SpaceX confirmed.

The departure of the SpaceX Dragon Sunday morning, Sept. 17, 2017 leaves three spaceships parked at the space station including the Progress 67 resupply ship and the Soyuz MS-05 and MS-06 crew ships. Credit: NASA

The final de-orbit burn took place as planned around 9 a.m. EDT some four and a half hours after leaving the station and setting Dragon up for the scorching reentry into the Earth’s atmosphere.

“Dragon’s de-orbit burn is complete and trunk has been jettisoned. Pacific Ocean splashdown in ~30 minutes,” said SpaceX.

All the drogue and main parachutes deployed as planned during the descent to Earth.

“Dragon’s three main parachutes have been deployed.”

SpaceX commercial naval ships were on standby to retrieve the spacecraft from the ocean and sail it back to port in Long Beach, California.

Some time critical research specimens will be removed immediately for return to NASA. The remainder will be transported back with Dragon to SpaceX’s test facility in McGregor, Texas, for final post flight processing and handover to NASA.

“A variety of technological and biological studies are returning in Dragon. NASA and the Center for the Advancement of Science in Space (CASIS), the non-profit organization that manages research aboard the U.S. national laboratory portion of the space station, will receive time-sensitive samples and begin working with researchers to process and distribute them within 48 hours,” said NASA in a statement.

The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

SpaceX holds a NASA commercial resupply services (CRS) contract that includes up to 20 missions under the original CRS-1 contract.

The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel carried more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex when it launched Aug. 14 from KSC pad 39A.

20 mice were also onboard and were returned alive on the round trip flight.

This mission supported dozens of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members – including NASA’s space endurance record breaking astronaut Peggy Whitson.

The Cosmic-Ray Energetics and Mass investigation (CREAM) instrument from the University of Maryland, College Park involves placing a balloon-borne instrument aboard the International Space Station to measure the charges of cosmic rays over a period of three years. CREAM will be attached to the Japanese Experiment Module Exposed Facility. Existing CREAM hardware used for balloon flights. Credit: NASA

Whitson returned to Earth in a Soyuz capsule earlier this month following a 10 month mission and carried out research included in the samples returned by Dragon CRS-12.

Visiting vehicle configuration at the International Space Station (ISS) after arrival of the Soyuz MS-06 spacecraft on Sept. 12, 2017. Credit: NASA

Here’s a NASA science summary:

The Lung Tissue experiment used the microgravity environment of space to test strategies for growing new lung tissue. The ultimate goal of this investigation is to produce bioengineered human lung tissue that can be used as a predictive model of human responses allowing for the study of lung development, lung physiology or disease pathology.

Samples from the CASIS PCG 7 study used the orbiting laboratory’s microgravity environment to grow larger versions of an important protein implicated in Parkinson’s disease. Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, researchers will look to take advantage of the station’s microgravity environment which allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and aid in the development of therapies against this target.

Mice from NASA’s Rodent Research-9 study also will return live to Earth for additional study. The investigation combined three studies into one mission, with two looking at how microgravity affects blood vessels in the brain and in the eyes and the third looking at cartilage loss in hip and knee joints. For humans on Earth, research related to limited mobility and degrading joints can help scientists understand how arthritis develops, and a better understanding of the visual impairments experienced by astronauts can help identify causes and treatments for eye disorders.

The next SpaceX Dragon is due to blastoff around December from KSC.

An Orbital ATK Cygnus cargo ship is slated to launch in November from NASA Wallops in Virginia.

Watch for Ken’s continuing onsite NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com
The Soyuz MS-06 rocket blasts off with the Expedition 53-54 crew towards the International Space Station from the Baikonur Cosmodrome in Kazakhstan, Tuesday, Sept. 12, 2017 (Wednesday, Sept. 13, Kazakh time). Credit: NASA/Bill Ingalls

Russian-American Trio Blasts Off and Boards International Space Station After Fast Track Trajectory

The Soyuz MS-06 rocket blasts off with the Expedition 53-54 crew towards the International Space Station from the Baikonur Cosmodrome in Kazakhstan, Tuesday, Sept. 12, 2017 (Wednesday, Sept. 13, Kazakh time). Credit: NASA/Bill Ingalls
The Soyuz MS-06 rocket blasts off with the Expedition 53-54 crew towards the International Space Station from the Baikonur Cosmodrome in Kazakhstan, Tuesday, Sept. 12, 2017 (Wednesday, Sept. 13, Kazakh time). Credit: NASA/Bill Ingalls

Barely a week and a half after the thrilling conclusion to the record breaking space endurance mission by NASA astronaut Peggy Whitson, a new Russian-American trio blasted off for the International Space Station (ISS) on a Russian Soyuz capsule and boarded safely early this morning Wednesday, Sept. 13, after arriving as planned on a fast track orbital trajectory.

NASA astronauts Mark Vande Hei, Joe Acaba and Alexander Misurkin of Roscosmos launched aboard the Soyuz MS-06 spacecraft from the Baikonur Cosmodrome in Kazakhstan overnight at 5:17 p.m. Tuesday, Sept. 12, 2017, (2127 GMT), or 3:17 a.m. Baikonur time Wednesday, Sept. 13, on the Expedition 53 mission.

Following the flawless launch and achieving orbit the three man crew executed a perfect four orbit, six hour rendezvous and arrived at the orbiting laboratory complex at 10:55 p.m. EDT Tuesday, Sept. 12, (or Wednesday, Sept. 13, Kazakh time) where they will carry out a jam packed schedule of scientific research in a wide array of fields.

The entire launch sequence aboard the Soyuz rocket performed flawlessly and delivered the Soyuz capsule to its targeted preliminary orbit eight minutes and 45 seconds after liftoff followed by the opening of the vehicles pair of life giving solar arrays and communications antennas.

The whole event from launch to docking was broadcast live on NASA TV.

Soyuz reached the ISS after a rapid series of orbit raising maneuvers over four orbits and six hours to successfully complete all the rendezvous and docking procedures to attach to the station at the Russian Poisk module.

“Contact! We have mechanical contact,” radioed Misurkin.

The Soyuz MS-06 spacecraft carrying NASA astronauts Mark Vande Hei and Joe Acaba and cosmonaut Alexander Misurkin of Roscosmos is seen on the right approaching the International Space Station on Tuesday, Sept. 12, 2017. The spacecraft docked to the station at 10:55 p.m. EDT. Credits: NASA Television

After conducting leak and safety checks the new trio opened the hatches between the Soyuz spacecraft and station at 1:08 a.m. EDT this morning, Sept. 13 and floated into the million pound orbiting outpost.

The arrival of Vande Hei, Acaba and Misurkin restores the station’s multinational habitation to a full complement of six astronaut and cosmonaut crewmembers.

They join Expedition 53 Commander Randy Bresnik of NASA and Flight Engineers Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of ESA (European Space Agency).

The station had been temporarily reduced to a staff of three for 10 days following the departure of the Expedition 52 crew including record setting Whitson, NASA astronaut Jack Fischer and veteran cosmonaut Fyodor Yurchikhin of Roscosmos.

This is the rookie flight for Vande Hei, the second for Misurkin and the third for Acaba. They will remain aboard the station for a planned five month long ISS expedition continuing into early 2018.

Vande Hei was selected as an astronaut in 2009. Misurkin previously flew to the station on the Expedition 35/36 increments in 2013. Acaba was selected as an astronaut in 2004. He flew on space shuttle mission STS 119 and conducted two spacewalks – as well as on the Expedition 31/32 increments in 2012 and has logged a total of 138 days in space.

Originally the Soyuz MS-06 was only to fly with a two person crew – Vande Hei and Misurkin after the Russians decided to reduce their cosmonaut crew from three to two to save money.

Acaba was added to the crew only in March of this year when NASA and Roscosmos brokered an agreement to fill the empty seat with a NASA astronaut, under an arrangement worked out for 5 astronauts seats on Soyuz through a procurement by Boeing, as compensation for an unrelated matter.

The Russian cosmonaut crew cutback enabled Whitson’s mission extension by three months and also proved to be a boon for NASA and science research. It enabled the US/partner USOS crew complement to be enlarged from three to four full time astronauts much earlier than expected.

This allowed NASA to about double the weekly time devoted to research aboard station – a feat not expected to happen until America’s commercial crew vehicles, namely Boeing Starliner and SpaceX Crew Dragon – finally begin inaugural launches next year from the Kennedy Space Center in mid-2018.

With Acaba and Vande Hei now on orbit joining Bresnik and Nespoli, the USOS crew stands at four and will continue.

The six crewmembers will carry out research supporting more than 250 experiments in astrophysics, biology, biotechnology, physical science and Earth science.

“During Expedition 53, researchers will study the cosmic ray particles, demonstrate the benefits of manufacturing fiber optic filaments in microgravity, investigate targeted therapies to improve muscle atrophy and explore the abilities of a new drug to accelerate bone repair,” says NASA.

Among the key investigations involves research on cosmic ray particles reaching Earth using ISS-CREAM, examining effects on the musculoskeletal system and exploring targeted therapies for slowing or reversal of muscle atrophy with Rodent Research 6 (RR-6), demonstrating the benefits of manufacturing fiber optic filaments in a microgravity environment with the Optical Fiber Production in Microgravity (Made in Space Fiber Optics) hardware, and working on drugs and materials for accelerating bone repair with the Synthetic Bone experiment to develop more effective treatments for patients with osteoporosis.

Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA and Soyuz Commander Alexander Misurkin of Roscosmos launched from the Baikonur Cosmodrome in Kazakhstan, Tuesday, Sept. 12, 2017 (Wednesday, Sept. 13, Kazakh time), and arrived at the International Space Station at 10:55 p.m. to begin their 5.5-month mission aboard the station. Credits: NASA/Bill Ingalls

Bresnik, Ryazanskiy and Nespoli are scheduled to remain aboard the station until December. Whereas Vande Hei, Acaba and Misurkin are slated to return in February 2018.

Watch this cool Roscosmos video showing rollout of the Soyuz rocket to the Baikonur launch pad and erection in advance of launch. Credit: Roscosmos

Meanwhile one of the first tasks of the new trio will be to assist with the departure of the SpaceX Dragon CRS-12 spacecraft upcoming this Sunday, Sept 17.

Dragon will be detached from the Harmony module using the stations Canadian-built robotic arm on Sunday and released for a splashdown and retrieval in the Pacific Ocean Sunday morning. It is carrying some hardware items as well as scores of science samples.

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

NASA TV will cover the release activities beginning Sunday at 4:30 a.m. EDT.

Visiting vehicle configuration at the International Space Station (ISS) after arrival of the Soyuz MS-06 spacecraft on Sept. 12, 2017. Credit: NASA

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

The space station’s Expedition 53 crew members are (from left) Joe Acaba, Alexander Misurkin, Mark Vande Hei, Sergey Ryazanskiy, Commander Randy Bresnik and Paolo Nespoli. Credit: NASA
Expedition 53 Crew Insignia

NASA’s Peggy Whitson Safely Returns Home in Soyuz from Record Breaking Stay in Space

The Soyuz MS-04 vehicle is pictured the moment it touches down with the Expedition 52 crew inside comprising NASA astronauts Peggy Whitson and Jack Fisher and Commander Fyodor Yurchikhin of Roscosmos on Sept. 3, 2017, Kazakhstan time. Credit: NASA/Bill Ingalls
The Soyuz MS-04 vehicle is pictured the moment it touches down with the Expedition 52 crew inside comprising NASA astronauts Peggy Whitson and Jack Fisher and Commander Fyodor Yurchikhin of Roscosmos on Sept. 3, 2017, Kazakhstan time. Credit: NASA/Bill Ingalls

NASA’s Peggy Whitson, America’s most experienced astronaut, returned to Earth safely and smiling Sunday morning on the steppes of Kazakhstan, concluding her record-breaking stay in space aboard the International Space Station (ISS) along with Soyuz crewmates Jack Fischer of NASA and Commander Fyodor Yurchikhin of Roscosmos.

The multinational trio touched down softly on Earth inside their Soyuz MS-04 descent capsule on Saturday evening, Sept. 2 at 9:21 p.m. EDT (shortly after sunrise 7:21 a.m. Kazakhstan time, Sept. 3), some 90 miles southeast of the remote town of Dzhezkazgan in Kazakhstan.

Whitson wrapped up a 288-day extended mission in obviously good health that began in November 2016, spanning 122.2 million miles and 4,623 orbits of Earth – completing her third long-duration stay on the orbiting science outpost spanning Expeditions 50, 51 and 52.

“A flawless descent and landing,” said NASA commentator Rob Navias during the live NASA TV coverage of the return of the ISS Expedition 52 crew Saturday afternoon and evening US time.

“The crew is back on Earth safe and sound.”

NASA astronaut Peggy Whitson, Russian cosmonaut Fyodor Yurchikhin of Roscosmos, and NASA astronaut Jack Fischer undergo routine initial medical checks after returning from their mission aboard the International Space Station at 9:21 p.m. EDT Saturday, Sept. 2, 2017 (7:21 a.m. Kazakhstan time, Sunday, Sept. 3), landing southeast of the remote town of Dzhezkazgan in Kazakhstan. Credits: NASA TV

She has now accrued a total of 665 days in space – more than any American astronaut – over the course of her illustrious career during which she set multiple U.S. space records spanning a total of three spaceflights.

Whitson’s 665 total accumulated days in space places her eighth on the all-time space endurance list – just 8 days behind her Russian crewmate and Soyuz Commander Fyodor Yurchikhin who now ranks 7th on the all-time list with 673 days in space on his five flights. She has exceeded the endurance record of her next closest NASA competitor by 131 days – namely NASA astronaut Jeff Williams.

The remarkable 57-year-old Ph.D biochemist by training has spent nearly 2 years of her entire life in space and she holds several other prestigious records as well – including more accumulated time in space than any other woman and the longest single spaceflight by a women – 288 days!

During this mission Whitson became the first woman to serve twice as space station commander. Indeed in 2008 Whitson became the first woman ever to command the space station during her prior stay on Expedition 16 a decade ago. Her second stint as station commander this mission began earlier this year on April 9.

Whitson also holds the record for the most spacewalks and the most time spent spacewalking by a female astronaut. Altogether she has accumulated 60 hours and 21 minutes of EVA time over ten spacewalks -ranking her third most experienced in the world.

Notably Soyuz Commander Yurchikhin ranks fourth in spacewalking experience. Only Russia’s Anatoly Solovyev and NASA’s Michael Lopez-Alegria have more spacewalking time to their credit.

NASA’s Jack Fischer completed his rookie spaceflight accumulating 136 days in space aboard the ISS.

Astronaut Peggy Whitson is pictured May 12, 2017, during the 200th spacewalk at the International Space Station. Credit: NASA

Whitson originally launched to the ISS on Nov 17, 2016 aboard the Russian Soyuz MS-03 spacecraft from the Baikonur Cosmodrome in Kazakhstan, as part of the three person Expedition 50 crew including flight engineers Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency).

Her flight was unexpectedly extended in flight after the Russian government decided to cut back on the number of space station crew cosmonauts this year from three to two to save money. Thus a return seat became available on this Soyuz MS-04 return flight after NASA negotiated an extension with Rosmoscos in April enabling Whitson to remain on board the orbiting outpost an additional three months beyond her than planned June return home.

Whitson’s mission extension proved to be a boon for NASA and science research enabling the US/partner USOS crew complement to be enlarged from three to four full time astronauts much earlier than expected. This allowed NASA to about double the weekly time devoted to research aboard station – a feat not expected to happen until America’s commercial crew vehicles, namely Boeing Starliner and SpaceX Crew Dragon – finally begin inaugural launches next year from the Kennedy Space Center in mid-2018.

NASA Astronaut Peggy Whitson after safe return to Earth on Sept. 2, 2017 ET. Credit: NASA

Descending dramatically while hanging below a single gigantic orange-and-white parachute the scorched Russian Soyuz vehicle fired its braking rockets just moments before touchdown in Kazakhstan to cushion the crew for a gentle landing under beautifully sunny skies.

A live NASA TV video feed captured the thrilling descent for over 14 minutes after the main parachute deployed all the way to the ground under clear blue sunny Sunday morning weather conditions and comfortably local Kazakh temperatures of 77 degrees F.

“Everything today went in perfect fashion from the undocking, to the deorbit burn to landing,” said Navias. “It went by the book with no issues.”

“We saw a spectacular 14 minute long live video of the Soyuz descent and landing.”

The Soyuz MS-04 carrying NASA astronauts Peggy Whitson and Jack Fischer and Fyodor Yurchikin of Roscosmos back to Earth from the International Space Station touched down at at 9:21 p.m. EDT Saturday, Sept. 2 (7:21 a.m. Kazakhstan time, Sunday, Sept. 3), southeast of the remote town of Dzhezkazgan in Kazakhstan. Credits: NASA TV

Russian search and recovery forces quickly arrived via a cluster of MI-8 helicopters after the soft landing to begin their normal procedures to extract the three Expedition 52 crew members from their cramped Soyuz descent module.

Soyuz Commander Yurchikhin in the center seat was hauled out first, followed by Fischer in the left side seat and lastly Whitson in the right seat. All 3 were placed on reclining seats sitting side by side and appeared quite well, conversing and speaking via satellite phones.

A group of Russian and US medical teams were on hand to check the astronauts and cosmonauts health and help the crewmates begin readapting to the tug of Earth’s gravity they have not experienced after many months of weightlessness in space.

Whitson’s final planned news conference from space with the media to sum up her experiences this past Wednesday had to be cancelled due to the catastrophic flooding events from Hurricane Harvey impacting Houston and elsewhere in Texas – including Mission Control which was forced to close multiple days.

The crews had bid their final farewells earlier and closed the hatches between the Soyuz and station at 2:40 p.m. EDT Saturday.

After conducting final spacecraft systems checks the trio unhooked the latches and undocked from the International Space Station at 5:58 p.m. EDT to begin their voyage home through the scorching heats of reentry in the Earth’s atmosphere that reached over 2500 degrees F (1400 degrees C) on the outside.

“While living and working aboard the world’s only orbiting laboratory, Whitson and Fischer contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science, welcomed several cargo spacecraft delivering tons of supplies and research experiments, and conducted a combined six spacewalks to perform maintenance and upgrades to the station,” said NASA.

“Among their scientific exploits, Whitson and Fischer supported research into the physical changes to astronaut’s eyes caused by prolonged exposure to a microgravity environment. They also conducted a new lung tissue study that explored how stem cells work in the unique microgravity environment of the space station, which may pave the way for future stem cell research in space.”

“Additional research included an antibody investigation that could increase the effectiveness of chemotherapy drugs for cancer treatment, and the study of plant physiology and growth in space using an advanced plant habitat. NASA also attached the Cosmic Ray Energetics and Mass Investigation (ISS CREAM) on the outside of the space station in August, which is now observing cosmic rays coming from across the galaxy.”

Astronaut Peggy Whitson signs her autograph near an Expedition 50 mission patch attached to the inside the International Space Station. Credit: NASA

ISS Expedition 53 began at the moment of undocking from the space station, now under the command of veteran NASA astronaut Randy Bresnik since the official change of command ceremony on Friday.

Along with his crewmates Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of ESA (European Space Agency), the three-person crew will operate the station for the next 10 days until the imminent arrival of three new crew members.

The station will get back to a full complement of six crewmembers after the upcoming Sept. 12 launch and fast track 4 orbit 6 hour docking of NASA astronauts Mark Vande Hei and Joe Acaba of NASA and Alexander Misurkin of Roscosmos aboard the next Soyuz MS-06 spacecraft departing from the Baikonur Cosmodrome, Kazakhstan.

Meanwhile the next launch from the Kennedy Space Center is slated for this Thursday, Sept.7 is the SpaceX Falcon 9 carrying the USAF X-37B OTV-5 military mini-shuttle to low Earth orbit -detailed here.

Peggy Whitson set the record on Sept. 2, 2017, for most cumulative days living and working in space by a NASA astronaut at 665 days. Credit: NASA
Expedition 52 Flight Engineer Peggy Whitson of NASA, Commander Fyodor Yurchikhin of the Russian space agency Roscosmos and Flight Engineer Jack Fischer of NASA float through the Harmony module of the International Space Station. Credits: NASA

Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

Soyuz has split into 3 modules 139.8 km above Earth. Crew parachutes to landing inside Descent Module at 9:22 pm ET Sept. 2, 2017. Credit: NASA
Expedition 52 crew returns to Earth Sept. 2, 2017. Credit: NASA
Peggy Whitson @AstroPeggy is 3rd place all-time for cumulative spacewalk time with 10 spacewalks totaling 60 hours, 21 minutes. Credit: NASA