If humanity is going to become a spare-faring and interplanetary species, one of the most important things will be the ability of astronauts to see to their needs independently. Relying on regular shipments of supplies from Earth is not only inelegant; it’s also impractical and very expensive. For this reason, scientists are working to create technologies that would allow astronauts to provide for their own food, water, and breathable air.
To this end, a team of researchers from Tomsk Polytechnic University in central Russia – along with scientists from other universities and research institutes in the region – recently developed a prototype for an orbital greenhouse. Known as the Orbital Biological Automatic Module, this device allows plants to be grown and cultivated in space and could be heading to the International Space Station (ISS) in the coming years.
Robotic helpers are becoming an increasingly important element aboard the International Space Station. It is here where robots like the Robonaut, CIMON, FEDOR, Canadarm2, Dextre, and CIMON 2 (which is currently on its way to the ISS) were tested and validated for space operations. In recent years, the Robotic External Leak Locators (RELL) also proved their worth by conducting extra-vehicular activities (EVAs) and finding leaks.
Unfortunately, sending these robots out to do their tasks has been a long and complicated process. For this reason, NASA has created a new housing unit called the Robotic Tool Stowage (RiTS). Developed by the Satellite Servicing Projects Division at NASA’s Goddard Space Flight Center (with support from the Johnson Space Center), this “robot hotel” launched yesterday (Dec. 4th) and will soon be integrated with the station.
There are a number of health risks that come with going to space. Aside from the increased exposure to solar radiation and cosmic rays, there are the notable effects that microgravity can have on human physiology. As Scott Kelly can attest, these go beyond muscle and bone degeneration and include diminished organ function, eyesight, and even changes at the genetic level.
Interestingly enough, there are also a number of potential medical benefits to microgravity. Since 2014, Dr. Joshua Choi, a senior lecturer in biomedical engineering at the University of Technology Sydney, has been investigating how microgravity affects medicine and cells in the human body. Early next year, he and his research team will be traveling to the ISS to test a new method for treating cancer that relies on microgravity.
A team of Japanese researchers have used sperm from mice that spent time aboard the International Space Station (ISS) to fertilize female mice back on Earth. While previous research has shown that freeze-dried mouse sperm stored in space can experience radiation damage, these results show that the sperm from live mice may not suffer the same damage.
In the digital age, connectivity and bandwidth are important, even if you’re in Low Earth Orbit (LEO). And when you’re performing research and experiments that could help pave the way for future missions to the Moon, to Mars, and other deep-space destinations, it’s especially important. Hence why NASA recently upgraded the ISS’ connection, effectively doubling the rate at which it can send and receive data.
May is graduation month, and with it, school star party season is about to conclude. If you happen to be out this coming weekend showing the sky off to the public, keep an eye out for one of the top celestial sights that you won’t see at the eyepiece, as we’re in for a slew of good visible passes of the International Space Station worldwide.
When planning for long-duration crewed missions, one of the most important things is to make sure that the crews have enough of the bare essentials to last. This is no easy task, since a crewed spacecraft will be a crew’s entire world for months on end. That means that a sufficient amount of food, water and oxygen will need to be brought along.
According to a new investigation being conducted aboard the International Space Station, a possible solution could lie with a hybrid life support system (LSS). In such a system, which could be used aboard spacecraft and space stations in the near future, microalgae would be used to clean the air and water, and possibly even manufacture food for the crew.
For years, scientists have been conducting studies aboard the International Space Station (ISS) to determine the effects of living in space on humans and micro-organisms. In addition to the high levels of radiation, there are also worries that long-term exposure to microgravity could cause genetic mutations. Understanding these, and coming up with counter-measures, is essential if humanity is to become a truly space-faring species.
Interestingly enough, a team of researchers from Northwestern University recently conducted a study with bacteria that was kept aboard the ISS. Contrary to what many suspected, the bacteria did not mutate into a drug-resistant super strain, but instead mutated to adapt to its environment. These results could be vital when it comes to understanding how living beings will adapt to the stressful environment of space.
Let’s be honest, launching things into space with rockets is a pretty inefficient way to do things. Not only are rockets expensive to build, they also need a ton of fuel in order to achieve escape velocity. And while the costs of individual launches are being reduced thanks to concepts like reusable rockets and space planes, a more permanent solution could be to build a Space Elevator.
And while such a project of mega-engineering is simply not feasible right now, there are many scientists and companies around the world that are dedicated to making a space elevator a reality within our lifetimes. For example, a team of Japanese engineers from Shizuoka University‘s Faculty of Engineering recently created a scale model of a space elevator that they will be launching into space tomorrow (on September 11th).
Life aboard the International Space Station is characterized by careful work and efficiency measures. Not only do astronauts rely on an average of 12 metric tons of supplies a year – which is shipped to the station from Earth – they also produce a few metric tons of garbage. This garbage must be carefully stored so that it doesn’t accumulate, and is then sent back to the surface on commercial supply vehicles.
This system works well for a station in orbit. But what about spacecraft that are conducted long-duration missions? These ships will not have the luxury of meeting with a regular cadence of commercial ships that will drop off supplies and haul away their garbage. To address this, NASA is investigating possible solutions for how to handle space trash for deep space missions.
For this purpose, NASA is turning to its partners in the commercial sector to develop concepts for Trash Compaction and Processing Systems (TCPS). In a solicitation issued through the Next Space Technologies for Exploration Partnerships (NextSTEP), NASA recently issued a Board Agency Announcement that called for the creation of prototypes and eventually flight demonstrations that would fly to the ISS.
“NASA’s ultimate goal is to develop capabilities to enable missions that are not reliant on resupply from Earth thus making them more sustainable and affordable. NASA is implementing this by employing a capability-driven approach to its human spaceflight strategy. The approach is based on developing a suite of evolving capabilities that provide specific functions to solve exploration challenges. These investments in initial capabilities can continuously be leveraged and reused, enabling more complex operations over time and exploration of more distant solar system destinations.”
When it comes right down to it, storing trash inside a spacecraft is serious challenge. Not only does it consume precious volume, it can also create physical and biological hazards for the crew. Storing garbage also means that leftover resources can not be repurposed or recycled. All told, the BAA solicitation is looking for solutions that will compact trash, remove biological and physical hazards, and recover resources for future use.
To this end, they are looking for ideas and technologies for a TCPS that could operate on future generations of spaceships. As part of the Advanced Exploration Systems (AES) Habitat’s Logistics Reduction (LR), the TCPS is part of NASA’s larger goal of identifying and developing technologies that reduce logistical mass, volume, and the amount of time the crew dedicates to logistics management.
The objectives of the TCPS , as is stated in the Appendix, are fourfold:
“(1) trash compaction to a suitable form for efficient long-endurance storage; (2) safe processing of trash to eliminate and/or reduce the risk of biological activity; (3) stabilize the trash physically, geometrically, and biologically; and (4) manage gaseous, aqueous, and particulate effluents. The TCPS will be the first step toward development and testing of a fully-integrated unit for further Exploration Missions and future space vehicles.”
The development will occur in two phases. In Phase A, selected companies will create a concept TCPS system, conduct design reviews with NASA, and validate them through prototype ground demonstrations. In Phase B, a system will be prepared for transport to the ISS so that a demonstration cant take place aboard the station as early as 2022.
The various companies that submit proposals will not be working in the dark, as NASA has been developing waste management systems since the 1980s. These include recent developments like the Heat Melt Compactor (HMC) experiment, a device that will recover residual water from astronaut’s garbage and compact trash to provide volume reduction (or perhaps an ionizing radiation shield).
Other examples include the “trash to gas” technologies, which are currently being pursued under the Logistics Reduction and Repurposing project (LRR). Using the HMC, this process involves creating methane gas from trash to make rocket propellant. Together, these technologies would not only allow astronauts on long-duration spaceflights to conserve room, but also extract useful resources from their garbage.
NASA plans to host an industry day on July 24th in order to let potential industry partners know exactly what they are looking for, describe available NASA facilities, and answer questions from potential respondents. Official proposals from aspiring partners are due no later than August 22nd, 2018, and whichever proposals make the cut will be tested on the ISS in the coming decade!