100th Blastoff from Historic Pad 39A Features SpaceX Resupply to Space Station and Land Landing June 1: Watch Live

SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The 100th blastoff from NASA’s historic pad 39A features a SpaceX Dragon resupply mission carrying three tons of science and crew supplies to the International Space Station (ISS) as well as another unfathomable ground landing of the Falcon 9 rockets first stage. UPDATE: Stormy weather and lightning scrubs launch until Saturday, June 3 at 5:07 p.m. EDT

40 micetonauts are also aboard for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. Update: The rocket was lowered into horizontal position in order to swap out the 40 micetonauts and other time critial cargo items.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside pad 39A at NASA’s Kennedy Space Center in Florida is slated for 5:55 p.m. EDT Thursday, June 1.

Everything is on track for Thursday’s dinnertime launch of the 230 foot tall SpaceX Falcon 9 on the NASA contracted SpaceX CRS-11 resupply mission to the million pound orbiting lab complex.

However since the launch window is instantaneous there is no margin. In case any delays arise during the countdown due to technical or weather issues a 48 hour scrub to Saturday will result.

The launch is coincidently scheduled for dinnertime offering a spectacular opportunity for fun for the whole family as space enthusiasts flock in from around the globe.

Plus SpaceX will attempt a land landing of the 156 foot tall first stage back at the Cape at Landing Zone 1 some 9 minutes after liftoff.

To date SpaceX has successfully recovered 10 boosters, 4 by land and 6 by sea, over the past 18 months – in a feat straight out of science fiction but aimed at drastically slashing the cost of access to space.

If you can’t personally be here to witness the launch in Florida, you can watch NASA’s live coverage on NASA Television and the agency’s website.

The SpaceX/Dragon CRS-11 launch coverage will be broadcast on NASA TV beginning 5:15 p.m. on June 1. with additional commentary on the NASA launch blog.

SpaceX will also feature their own live webcast beginning approximately 20 minutes before launch at 5:35 p.m. EDT.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can watch the launch live at SpaceX Webcast at – spacex.com/webcast

In the event of delay for any reason, the next launch opportunity is 5:07 p.m. Saturday, June 3, with NASA TV coverage starting at 4:30 p.m.

Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

The weather looks somewhat iffy at this time with a 70% chance of favorable conditions at launch time according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base. The primary concerns on June 1 are for afternoon thunderstorms, anvil clouds and cumulus clouds.

The odds drop to 60% favorable for the scrub day on June 3.

The Dragon resupply ship dubbed Dragon CRS-11 counts as SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

The 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science research, crew supplies and hardware to the orbiting laboratory in support of Expedition 52 and 53 crew members.

The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

The unpressurized trunk of the spacecraft also will transport 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

Dragon CRS-11 will be the second SpaceX resupply mission to launch this year.

The prior SpaceX cargo ship launched on Feb 19, 2017 on the CRS-10 mission to the space station. It was also the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Another significant milestone for this flight is that it features the first reuse of a previously launched Dragon. It previously launched on the CRS-4 resupply mission.

The recycled Dragon has undergone some refurbishments to requalify it for flight.

If all goes well, Dragon will arrive at the ISS 2 days after launch and be grappled by Expedition 51 astronauts Peggy Whitson and Jack Fischer using the 57 foot long (17 meter long) Canadian-built robotic arm.

They will berth Dragon at the Earth-facing port of the Harmony module. .

Overall CRS-11 marks the 100th launch from pad 39A and the sixth SpaceX launch from this pad.

SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011. To date this is the sixth SpaceX launch from this pad.

Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission took place on 19 Feb 2017 in this file photo. Credit: Ken Kremer/Kenkremer.com
The NASA KSC prelaunch briefing for the SpaceX Dragon CRS-11 launch held on May 31, 2017 at NASA’s Kennedy Space Center Press Site. Credit: Ken Kremer/kenkremer.com

KSC Director/Shuttle Commander Robert Cabana Talks NASA 2018 Budget- ‘Stay on the path’ with SLS, Orion, Commercial Crew: One-on-One Interview

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Following up last week’s announcement of NASA’s proposed Fiscal Year 2018 top line budget of $19.1 Billion by the Trump Administration, Universe Today spoke to NASA’ s Kennedy Space Center (KSC) Director Robert Cabana to get his perspective on the new budget and what it means for NASA and KSC; “Stay on the path!” – with SLS, Orion, ISS and Commercial Crew was his message in a nutshell.

The highlights of NASA’s $19.1 Billion FY 2018 budget request were outlined last week by NASA Acting Administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV on May 23.

In order to get a better idea of the implications of the 2018 NASA budget proposal for KSC, I spoke one-on-one with Robert Cabana – one of NASA’s top officials, who currently serves as Director of the Kennedy Space Center (KSC) as well as being a former astronaut and Space Shuttle Commander. Cabana is a veteran of four space shuttle missions.

How did NASA and KSC fare with the newly announced 2018 Budget?

“We at KSC and NASA as a whole did very well with the 2018 budget,” KSC Director Robert Cabana explained during an interview with Universe Today by the Rocket Garden at the Kennedy Space Center Visitor Complex (KSCVC) in Florida.

“I think it really solidifies that the President has confidence in us, on the path that we are on,” Cabana noted while attending a student robotics competition at KSCVC sponsored by NASA.

“With only a 1 percent cut – when you look at what other agency’s got cut – this budget allows us to stay on the path that we are on.”

Trump cut NASA’s 2018 budget request by $0.5 Billion compared to the recently enacted FY 2017 budget of $19.6 Billion approved by the US Congress and signed by the President.

Other Federal science agency’s also critically vital to the health of US scientific research such as the NIH, the NSF, the EPA, DOE and NIST suffered terrible double digit slashes of 10 to 20% or more.

KSC is the focal point for NASA’s human spaceflight programs currently under intense development by NASA – namely the Space Launch System (SLS) Mars megarocket, the Orion deep space crew capsule to be launched beyond Earth orbit (BEO) atop SLS, and the duo of Commercial Crew Program (CCP) space taxis being manufactured by Boeing and SpaceX that will ferry our astronauts to low Earth orbit (LEO) and the International Space Station (ISS).

Numerous NASA science missions also launch from the Florida Space Coast.

“At KSC the budget keeps us on a path that continues to provide a commercial crew vehicle to fly crews to the ISS in 2018,” Cabana stated.

“The budget also keeps us on track to launch SLS and Orion in 2019.”

“I think that’s really important – along with all the other stuff we are doing here at KSC.”

“From our point of view it’s a good budget. We need to press ahead and continue on with what we promised.”

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

What’s ahead for commercial crew at KSC?

“We are moving forward with commercial crew,” Cabana told me.

“Within the next calendar year [2018] we are moving ahead with flying the first certification flight with crew to the ISS. So that’s test flights and by the end of the year an actual crewed flight to the ISS. I want to see that happen.”

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2018. Credit: NASA

Industry partners Boeing and SpaceX are building the private CST-100 Starliner and Crew Dragon spaceships respectively, as part of NASA’s commercial crew initiative aimed at restoring America’s human spaceflight capability to launch our astronauts aboard American spaceships on American rockets from American soil.

Commercial Crew is a public/private partnership initiative with commercial contracts valued at $4.2 Billion and signed by Boeing and SpaceX with NASA in September 2014 under the Obama Administration.

The goal of commercial crew is to end our sole reliance on the Russian Soyuz capsule for astronaut flights to the space station since the retirement of the space shuttles back in 2011 – by manufacturing indigenous rockets and human rated spaceships.

However the CCP program suffered severe budget reductions by the US Congress for several years which forced significant work stretch-outs and delays in the maiden crew launches by both companies from 2015 to 2018 – and thus forced additional payments to the Russians for Soyuz seat purchases.

Both the Boeing Starliner and SpaceX Dragon crew vehicles can carry 4 or more astronauts to the ISS. This will enable NASA to add another crew member and thereby enlarge the ISS crew from 6 to 7 permanent residents after they become operational.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Meanwhile NASA is focusing on developing the SLS heavy lift rocket and Orion crew capsule with prime contractors Boeing and Lockheed Martin in an agency wide effort to send humans on a ‘Journey to Mars’ in the 2030s.

The European Space Agency(ESA) is also partnered with NASA and providing the service module for Orion.

What’s the status of the delivery of the European Space Agency’s service module?

“The service module will be here sometime next year,” Cabana said.

He noted that the details and exact timing are yet to be determined.

The first integrated launch of SLS and Orion on the unpiloted Exploration Mission-1 (EM-1) is now slated for sometime in 2019 after NASA recently slipped the date to the right from Fall 2018.

At the request of the Trump Administration, NASA also just completed a detailed study to ascertain the feasibility of adding a crew of two NASA astronauts to the EM-1 flight and launch it by the end of 2019.

In the end, NASA officials decided to stick with the baselined plan of no crew on EM-1 for a variety of technical and safety reasons, as well as cost – as I reported here.

I asked Cabana for his insight and opinion on NASA not adding crew to Orion on the EM-1 flight.

“No we are not launching crew on the first flight [EM-1],” Cabana stated.

“With the budget that we have and what we need to do, this is the answer we got to at the end.”

“You know the crew study was still very important. It allowed us to find some things that we should still do on [EM-1], even though we are not going to launch crew on that flight.

“So we will make some further modifications that will reduce the risk even further when we do fly crew [on the next flight of EM-2].”

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

So for 2017 what are the major milestone you hope to complete here at KSC for SLS and Orion?

“So for me here at the Kennedy Space Center, my goal for the end of this calendar year 2017 we will have completed all of the construction of all of the [ground systems] hardware and facilities that are necessary to process and launch the Space Launch System (SLS) and Orion,” Cabana elaborated.

‘We will still have a lot of work to do with the software for the spacecraft command and control systems and the ground systems.”

“But my goal is to have the hardware for the ground systems complete by the end of this year.”

What are those KSC facilities?

“Those facilities include the VAB [Vehicle Assembly Building] which will be complete to accept the mobile launcher in September and pad 39B will be complete in August,” Cabana said.

“The RPSF is already complete. The NPFF is already complete and we are doing testing in there. The LASF [Launch Abort System Facility] is complete – where they put the abort rocket on.”

“The Mobile Launcher will be complete from a structural point of view, with all the systems installed by the end of the year [including the umbilical’s and while room].”

Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft for launches from Space Launch Complex 39B the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

View of the Vehicle Assembly Building (VAB), Launch Control Center and Mobile Launcher from the KSC Launch Complex 39 Press Site. NASA is upgrading the VAB with new platforms to assemble and launch NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

.……….

Learn more about the SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

May 30/31: “SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Robert Cabana, Director of NASA’s Kennedy Space Center (KSC) and former Space Shuttle Commander, and Ken Kremer/Universe Today discuss the newly proposed NASA FY2018 budget backdropped by the Rocket Garden at the Kennedy Space Center Visitor Complex, FL in May 2017. Credit: Ken Kremer/kenkremer.com

SpaceX Targets June 1 Launch of Space Station Cargo Delivery Mission for NASA

SpaceX conducted a successful static fire test of the Falcon 9 rocket on May 28, 2017 at Launch Complex 39A on NASA’s Kennedy Space Center, Fl. Liftoff of the uncrewed Dragon resupply mission to the ISS is scheduled for June 1, 2017. Credit: SpaceX
SpaceX conducted a successful static fire test of the Falcon 9 rocket on May 28, 2017 at Launch Complex 39A on NASA’s Kennedy Space Center, Fl. Liftoff of the uncrewed Dragon resupply mission to the ISS is scheduled for June 1, 2017. Credit: SpaceX

SpaceX is targeting a June 1 blastoff for the firms next cargo delivery mission to the International Space Station (ISS) for NASA following today’s (May 28) successful test firing of the Falcon 9 booster’s main engines on the Florida Space Coast under sunny skies.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside pad 39A at NASA’s Kennedy Space Center in Florida is slated for 5:55 p.m. EDT Thursday, June 1.

“Static fire test of Falcon 9 complete,” SpaceX confirmed via Twitter soon after completion of the test at noon today 12 p.m. EDT.

“Targeting June 1 launch from historic Pad 39A for Dragon’s next resupply mission to the @Space_Station.”

The static fire test also apparently set off a brush fire near the pad which required a response from firefighters to douse the blaze with water bucket drops from helicopters.

“#USFWS firefighters are responding to a new wildfire at Merritt Island NWR caused by a static rocket test fire #FLfire,” tweeted the US Fish and Wildlife Service.

The wildfire stretched to 4 acres on Merritt Island and was successfully contained, the US Fish and Wildlife Service said.

Firefighters drop numerous buckets of water to douse brush fire near pad 39A on the Kennedy Space Center and Merritt Island after SpaceX static fire test on May 28, 2017. Credit: US Fish and Wildlife Service.

With the launch conveniently coinciding with dinnertime, it will offer prime time viewing thrills for spectators and space enthusiasts coming from near and far.

The weather outlook for Thursday is currently promising with mostly sunny conditions but can change at a moments notice.

And to top that off SpaceX will attempt a land landing of the first stage back at the Cape at Landing Zone 1 some 9 minutes after liftoff.

The Dragon resupply ship dubbed Dragon CRS-11 counts as SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

It is carrying almost 6,000 pounds of science research, crew supplies and hardware to the orbiting laboratory in support of Expedition 52 and 53 crew members. The unpressurized trunk of the spacecraft also will transport solar panels, tools for Earth-observation and equipment to study neutron stars.

Dragon CRS-11 will be the second SpaceX resupply mission to launch this year.

The prior SpaceX cargo ship launched on Feb 19, 2017 on the CRS-10 mission to the space station. It was also the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

Another significant milestone for this flight is that it features the first reuse of a previously launched Dragon. It previously launched on the CRS-4 resupply mission.

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

Sunday’s brief static fire test involved a successful hot fire ignition test of the two stage rocket and all nine first stage Merlin 1D engines Sunday afternoon while the rocket was firmly held down at the pad.

The hold down engine test is routinely conducted to confirm the readiness of the engines and rocket for flight.

The nine Merlin 1D engines generate 1.7 million pounds of thrust for approximately three seconds.

The test simulates all the conditions of flight except liftoff, and involves loading of the densified liquid oxygen and RP-1 propellants into the first and second stages starting about 70 minutes prior to ignition.

The engine test was run without the Dragon cargo ship bolted on top.

The rocket was rolled out of the SpaceX processing hangar at the perimeter fence early this morning and then up the slight incline to the top of pad 39A. It was erected vertical to launch position using a dedicated transporter-erector.

With the successful completion of the static fire test, the booster will be rolled back to the big processing hangar and Dragon CRS-11 will be integrated on top.

NASA will offer live launch coverage on NASA Television and the agency’s website at beginning 5:15 p.m. on June 1.

In case of a delay for any reason, the next launch opportunity is 5:07 p.m. Saturday, June 3, with NASA TV coverage starting at 4:30 p.m.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about the SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

May 30/31: “SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer
NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs such as human spaceflight, planetary science and the Webb telescope, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

Overall NASA’s FY 2018 budget is cut approximately 3%, or $560 million, for the upcoming fiscal year starting in October 2017 as part of the Trump Administration’s US Federal Budget proposal rolled out on May 23, and quite similar to the initial outline released in March.

The cuts to NASA are smaller compared to other Federal science agencies also absolutely vital to the health of US scientific research – such as the NIH, the NSF, the EPA, DOE and NIST which suffer unconscionable double digit slashes of 10 to 20% or more.

The highlights of NASA’s FY 2018 Budget were announced by NASA acting administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV.

Lightfoot’s message to NASA and space enthusiasts was upbeat overall.

“What this budget tells us to do is to keep going!” NASA acting administrator Robert Lightfoot said.

“Keep doing what we’ve been doing. It’s very important for us to maintain that course and move forward as an agency with all the great things we’re doing.”

“I want to reiterate how proud I am of all of you for your hard work – which is making a real difference around the world. NASA is leading the world in space exploration, and that is only possible through all of your efforts, every day.”

“We’re pleased by our top line number of $19.1 billion, which reflects the President’s confidence in our direction and the importance of everything we’ve been achieving.”

Lightfoot recalled the recent White House phone call from President Trump to NASA astronaut & ISS Station Commander Peggy Whitson marking her record breaking flight for the longest cumulative time in space by an American astronaut.

Thus Lightfoot’s vision for NASA has three great purposes – Discover, Explore, and Develop.

“NASA has a historic and enduring purpose. It can be summarized in three major strategic thrusts: Discover, Explore, and Develop. These correspond to our missions of scientific discovery, missions of exploration, and missions of new technology development in aeronautics and space systems.”

Lightfoot further recounted the outstanding scientific accomplishments of NASA’s Mars rover and orbiters paving the path for the agencies plans to send humans on a ‘Journey to Mars’ in the 2030s.

“We’ve had a horizon goal for some time now of reaching Mars, and this budget sustains that work and also provides the resources to keep exploring our solar system and look beyond it.”

Lightfoot also pointed to upcoming near term science missions- highlighting a pair of Mars landers – InSIGHT launching next year as well as the Mars 2020 rover. Also NASA’s next great astronomical observatory – the James Webb Space Telescope (JWST).

“In science, this budget supports approximately 100 missions: 40 missions currently preparing for launch & 60 operating missions.”

“The James Webb Space Telescope is built!” Lightfoot gleefully announced.

“It’s done testing at Goddard and now has moved to Johnson for tests to simulate the vacuum of space.”

JWST is the scientific successor to the Hubble Space Telescope and slated for launch in Oct. 2018. The budget maintains steady support for Webb.

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Planetary Sciences division receives excellent support with a $1.9 Billion budget request. It includes solid support for the two flagship missions – Mars 2020 and Europa Clipper as well as the two new Discovery class missions selected -Lucy and Psyche.

“The budget keeps us on track for the next selection for the New Frontiers program, and includes formulation of a mission to Jupiter’s moon Europa.”

SLS and Orion are making great progress. They are far beyond concepts, and as I mentioned, components are being tested in multiple ways right now as we move toward the first flight of that integrated system.”

NASA is currently targeting the first integrated launch of SLS and Orion on the uncrewed Exploration Mission-1 (EM-1) for sometime in 2019.

Top NASA managers recently decided against adding a crew of two astronauts to the flight after conducting detailed agency wide studies at the request of the Trump Administration.

NASA would have needed an additional $600 to $900 to upgrade EM-1 with humans.

Unfortunately Trump’s FY 2018 NASA budget calls for a slight reduction in development funding for both SLS and Orion – thus making a crewed EM-1 flight fiscally unviable.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The budget request does maintain full funding for both of NASA’s commercial crew vehicles planned to restore launching astronauts to low Earth orbit (LEO) and the ISS from US soil on US rockets – namely the crewed Dragon and CST-100 Starliner – currently under development by SpaceX and Boeing – thus ending our sole reliance on Russian Soyuz for manned launches.

“Working with commercial partners, NASA will fly astronauts from American soil on the first new crew transportation systems in a generation in the next couple of years.”

“We need commercial partners to succeed in low-Earth orbit, and we also need the SLS and Orion to take us deeper into space than ever before.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

However the Trump Administration has terminated NASA’s somewhat controversial plans for the Asteroid Redirect Mission (ARM) – initiated under the Obama Administration – to robotically retrieve a near Earth asteroid and redirect it to lunar orbit for a visit by a crewed Orion to gather unique asteroidal samples.

“While we are ending formulation of a mission to an asteroid, known as the Asteroid Redirect Mission, many of the central technologies in development for that mission will continue, as they constitute vital capabilities needed for future human deep space missions.”

Key among those vital capabilities to be retained and funded going forward is Solar Electric Propulsion (SEP).

“Solar electric propulsion (SEP) for our deep space missions is moving ahead as a key lynchpin.”

The Trump Administration’s well known dislike for Earth science and disdain of climate change has manifested itself in the form of the termination of 5 current and upcoming science missions.

NASA’s FY 2018 Earth Science budget suffers a $171 million cut to $1.8 Billion.

“While we are not proposing to move forward with Orbiting Carbon Observatory-3 (OCO-3), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), Climate Absolute Radiance and Refractivity Observatory Pathfinder (CLARREO PF), and the Radiation Budget Instrument (RBI), this budget still includes significant Earth Science efforts, including 18 Earth observing missions in space as well as airborne missions.”

The DSCOVR Earth-viewing instruments will also be shut down.

NASA’s Office of Education will also be terminated completely under the proposed FY 2018 budget and the $115 million of funding excised.

“While this budget no longer supports the formal Office of Education, NASA will continue to inspire the next generation through its missions and the many ways that our work excites and encourages discovery by learners and educators. Let me tell you, we are as committed to inspiring the next generation as ever.”

Congress will now have its say and a number of Senators, including Republicans says Trumps budget is DOA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Mouse Sperm Went to Space and Produced Healthy Mice

Freeze-dried mice sperm that spent nine months in space aboard the iSS were sucessfully used to create healthy offspring. Credit: Sayaka Wakayama/University of Yamanashi via AP

With proposed missions to Mars and plans to establish outposts on the Moon in the coming decades, there are several questions about what effects time spent in space or on other planets could have on the human body. Beyond the normal range of questions concerning the effects of radiation and lower-g on our muscles, bones, and organs, there is also the question of how space travel could impact our ability to reproduce.

Earlier this week – on Monday, May 22nd – a team of Japanese researchers announced findings that could shed light on this question. Using a sample of freeze-dried mouse sperm, the team was able to produce a litter of healthy baby mice. As part of a fertility study, the mouse sperm had spent nine months aboard the International Space Station (between 2013 and 2014). The real question now is, can the same be done for human babies?

The study was led by Sayaka Wakayama, a student researcher at the University of Yamanashi‘s Advanced Biotechnology Center. As she and her colleagues explain in their study – which was recently published in the Proceedings of the National Academy of Sciences – assisted reproductive technology will be needed if humanity ever intends to live in space long-term.

The International Space Station (ISS), seen here with Earth as a backdrop. Credit: NASA

As such, studies that address the effect that living in space could have on human reproduction are needed first. These need to address the impact microgravity (or low-gravity) could have on fertility, human abilities to conceive, and the development of children. And more importantly, they need to deal with one of the greatest hazards of spending time in space – which is the threat posed by solar and cosmic radiation.

To be fair, one need not go far to feel the effects of space radiation. The ISS regularly receives more than 100 times the amount of radiation that Earth’s surface does, which can result in genetic damage if sufficient safeguards are not in place. On other Solar bodies – like Mars and the Moon, which do not have a protective magnetosphere – the situation is similar.

And while the effects of radiation on adults has been studied extensively, the potential damage that could be caused to our offspring has not. How might solar and cosmic radiation affect our ability to reproduce, and how might this radiation affect children when they are still in the womb, and once they are born? Hoping to take the first steps in addressing these questions, Wakayama and her colleagues selected the spermatozoa of mice.

They specifically chose mice since they are a mammalian species that reproduces sexually. As Sayaka Wakayama explained Universe Today via email:

“So far, only fish or salamanders were examined for reproduction in space. However, mammalian species are very different compared to those species, such as being born from a mother (viviparity). To know whether mammalian reproduction is possible or not, we must use mammalian species for experiments. However, mammalian species such as mice or rats are very sensitive and difficult to take care of by astronauts aboard the ISS, especially for a reproduction study. Therefore, we [have not conducted these studies] until now. We are planning to do more experiments such as the effect of microgravity for embryo development.”

Human sperm stained for semen quality testing in the clinical laboratory. Credit: Bobjgalindo/Wikipedia Commons

The samples spent nine months aboard the ISS, during which time they were kept at a constant temperature of -95 °C (-139 °F). During launch and recovery, however, they were at room temperature. After retrieval, Wakayama and her team found that the samples had suffered some minor damage,.

“Sperm preserved in space had DNA damage even after only 9 months by space radiation,” said Wakayama. “However, that damage was not strong and could be repaired when fertilized by oocytes capacity. Therefore, we could obtain normal, healthy offspring. This suggests to me that we must examine the effect when sperm are preserved for longer periods.”

In addition to being reparable, the sperm samples were still able to fertilize mouse embryos (once they were brought back to Earth) and produce mouse offspring, all of which grew to maturity and showed normal fertility levels. They also noted that the fertilization and birth rates were similar to those of control groups, and that only minor genomic differences existed between those and the mouse created using the test sperm.

From all this, they demonstrated that while exposure to space radiation can damage DNA, it need not affect the production of viable offspring (at least within a nine month period). Moreover, the results indicate that human and domestic animals could be produced from space-preserved spermatozoa, which could be mighty useful when it comes to colonizing space and other planets.

A Pacific pocket mouse pup and its mother appear outside their artificial burrow at the San Diego Zoo. Credit: Ken Bohn/San Diego Zoo/AP

As Wakayama put it, this research builds on fertilization practices already established on Earth, and demonstrated that these same practices could be used in space:

“Our main subject is domestic animal reproduction. In the current situation on the ground, many animals are born from preserves spermatozoa. Especially in Japan, 100% of milk cows were born from preserved sperm due to economic and breeding reasons. Sometimes, sperm that has been stored for more than 10 years was used to produce cows. If humans live in space for many years, then, our results showed that we can eat beefsteak in the space. For that purpose, we did this study. For humans, our finding will probably help infertile couples.”

This research also paves the way for additional tests that would seek to measure the effects of space radiation on ova and the female reproduction system. Not only could these tests tell us a great deal about how time in space could affect female fertility, it could also have serious implications for astronaut safety. As Ulrike Luderer, a professor of medicine at the University of California and one of the co-authors on the paper said in a statement to the AFP:

“These types of exposures can cause early ovarian failure and ovarian cancer, as well as other osteoporosis, cardiovascular disease and neurocognitive diseases like Alzheimer’s. Half the astronauts in the NASA’s new astronaut classes are women. So it is really important to know what chronic health effects there could be for women exposed to long-term deep space radiation.”

Future space colonies could rely on frozen sperm and ova to produce livestock, and maybe even humans. Credit: Rick Guidice/NASA Ames Research Center

However, a lingering issue with these sorts of tests is being able to differentiate between the effects of microgravity and radiation. In the past, research has been conducted that showed how exposure to simulated microgravity can reduce DNA repair capacity and induce DNA damage in humans. Other studies have raised the issue of the interplay between the two, and how further experiments are needed to address the precise impact of each.

In the future, it may be possible to differentiate between the two by placing samples of spermatazoa and ova in a torus that is capable of simulating Earth gravity (1 g). Similarly, shielded modules could be used to isolate the effects of low or even micro-gravity. Beyond that, there will likely be lingering uncertainties until such time as babies are actually born in space, or in a lunar or Martian environment.

And of course, the long-terms impact of reduced gravity and radiation on human evolution remains to be seen. In all likelihood, that won’t become clear for generations to come, and will require multi-generational studies of children born away from Earth to see how they and their progeny differ.

Further Reading: PNAS, AFP

2 US Astronauts Conduct Unplanned, Rapidly Executed Contingency Space Walk on Space Station

Astronaut Jack Fischer waves while attached to the Destiny laboratory during a spacewalk on May 23, 2017 to replace a failed data relay box and install a pair wireless antennas. Credit: NASA
Astronaut Jack Fischer waves while attached to the Destiny laboratory during a spacewalk on May 23, 2017 to replace a failed data relay box and install a pair wireless antennas. Credit: NASA

In the space of just 3 days, a pair of NASA astronauts conducted an unplanned and rapidly executed contingency space walk on the exterior of the space station on Tuesday, May 23 in order to replace a critical computer unit that failed over the weekend.

The spacewalk was conducted by Expedition 51 Commander Peggy Whitson – NASA’s most experienced astronaut – and Flight Engineer Jack Fischer aboard the International Space Station (ISS).

This marked the 10th spacewalk for Whitson – who already has the most cumulative spacewalk time by a female and the most time in space by a NASA astronaut. This was Fischer’s second spacewalk.

Furthermore Whitson now moves into third place all-time for cumulative spacewalking time totaling 60 hours, 21 minutes. Only Russia’s Anatoly Solovyev and NASA’s Michael Lopez-Alegria have more spacewalking time to their credit.

Peggy Whitson @AstroPeggy is 3rd place all-time for cumulative spacewalk time with 10 spacewalks totaling 60 hours, 21 minutes. Credit: NASA

NASA managers ordered the spacewalk over the weekend when a computer unit known as multiplexer-demultiplexer-1 (MDM-1) unexpectedly failed Saturday morning, May 20 at 1:13 p.m. Central time.

The cause of the MDM failure is not known, says NASA. Multiple attempts by NASA flight controllers to restore power to the MDM-1 relay box were not successful.

The US dynamic duo successfully changed out the MDM computer relay box with a spare unit on board the station. They also installed a pair of antennas on the station on the U.S. Destiny Laboratory module to enhance wireless communication for future spacewalks.

The MDM functions as a data relay box and is located on the S0 truss on the exterior of the US segment of the ISS, thereby necessitating a spacewalk by astronaut crew members.

After NASA engineers thoroughly assessed the situation and reviewed spacewalk procedures on Sunday, May 21, they gave the go ahead for Whitson and Fischer to carry out the hurriedly arranged extravehicular activity (EVA) spacewalk on Tuesday.

Meanwhile, Whitson worked on Sunday to prepare the spare data relay box and test its components to ensure it was ready for Tuesdays swap out of the failed unit.

“The relay box, known as a multiplexer-demultiplexer (MDM), is one of two units that regulate the operation of radiators, solar arrays and cooling loops.” says NASA.

“Because each MDM is capable of performing the critical station functions, the crew on the station was never in danger and station operations have not been affected.”

The two MDM’s housed in the truss are fully redundant systems.

“The other MDM in the truss is functioning perfectly, providing uninterrupted telemetry routing to the station’s systems.”

The spacewalk began Tuesday morning, May 23 at 7:20 a.m. EDT when the two NASA astronauts switched their spacesuits to battery power.

While Whitson focused on the MDM swap, Fischer worked on the antenna installation.

The unplanned spacewalk marks the second this month by Whitson and Fischer. The first was on May 12 and the 200th overall. The Destiny module antenna installation was deferred from the May 12 spacewalk.

Astronaut Peggy Whitson is pictured May 12, 2017, during the 200th spacewalk at the International Space Station. Credit: NASA

The relatively short EVA lasted a total of two hours and 46 minutes. It concluded at 10:06 a.m. EDT.

Overall this was the 201st spacewalk in support of the space station assembly, maintenance and upgrade. Spacewalkers have now spent a total of 1,250 hours and 41 minutes working outside the orbiting lab complex since its inception.

Spacewalk 201 was also the sixth spacewalk conducted from the Quest airlock in 2017 aboard the ISS.

The International Space Station with its prominent solar arrays and radiators attached to the truss structure was pictured May 2010 from space shuttle Atlantis. Credit: NASA

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Two Veteran NASA Astronauts Michael Foale and Ellen Ochoa Inducted into U.S. Astronaut Hall of Fame at KSC

Two veteran retired NASA astronauts - Michael Foale and Ellen Ochoa - were inducted into the U.S. Astronaut Hall of Fame on May 22, 2017 during induction ceremony held below Space Shuttle Atlantis in the display pavilion at the Kennedy Space Center Visitor Complex in Florida. Credit: Ken Kremer/kenkremer.com
Two veteran retired NASA astronauts – Michael Foale and Ellen Ochoa – were inducted into the U.S. Astronaut Hall of Fame on May 19, 2017 during induction ceremony held below Space Shuttle Atlantis in the display pavilion at the Kennedy Space Center Visitor Complex in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – In a moving ceremony, a pair of veteran NASA astronauts – Michael Foale and Ellen Ochoa – who once flew together on a space shuttle mission, were inducted into the U. S. Astronaut Hall of Fame at the Kennedy Space Center Visitor Complex, Florida, on May 19.

Between them, Foale and Ochoa flew to space a combined total of ten times – 6 for Foale and 4 for Ochoa.

They flew together as crewmates on the STS-56 space shuttle mission aboard Space Shuttle Discovery which launched from the Kennedy Space Center, Florida, on 8 April 1993.

The nine day STS-56 mission was Ochoa’s rookie flight and Foale’s second flight. It was the second of the shuttle’s ATLAS series of Earth science missions – dubbed Atlas-2 – whose purpose was to study the atmosphere and solar interactions.

“I was so happy to hear he and I were going to be inducted together,” Ochoa said during her acceptance speech. “He’d already had one mission and he passed along all kinds of helpful information that helped a rookie like me know where to focus and hopefully not be too surprised when the flight happened. Because being surprised in space is really not a good thing, as Mike found out.”

Ellen Ochoa counts as the first Hispanic woman to travel to space and currently serves as the 11th director of NASA’s Johnson Space Center in Houston.

Michael Foale counts as the only U.S. astronaut to serve on both the International Space Station (ISS) and Russian space station Mir.

Foale was on board Mir in June 1997 during one of the worst disasters in space when an out of control unmanned Russian Progress cargo ship collided with the station’s Spektr module causing its air depressurization and sent Mir tumbling and rolling. He and his two Russian crewmates rapidly went into action to seal the leak, to stabilize and save Mir and themselves. He spent four months on Mir during the Mir 23 and Mir 24 missions.

The induction ceremony was held in a truly magnificent setting below NASA’s retired Space Shuttle Atlantis orbiter now on permanent display in a dedicated pavilion at the Kennedy Space Center Visitor Complex in Florida.

Two veteran NASA astronauts joined the ranks of the U.S. Astronaut Hall of Fame, Ellen Ochoa, the first Hispanic woman to travel to space and current JSC Director, and Michael Foale, the only U.S. astronaut to serve on both the International Space Station and Russian space station Mir. Credit: NASA

Ochoa and Foale joined the ranks of 93 prestigious American space heroes who have previously received the same honor over the years since the U. S. Astronaut Hall of Fame was established in its current incarnation more than 30 years ago by the founders of the Astronaut Scholarship Foundation, the six surviving Mercury 7 astronauts.

The new duo comprise the 16th group of space shuttle astronauts to be inducted into the Hall of Fame.

Thus the Astronaut Hall of Fame now numbers 95 heroic and famous space explorers.

Foale and Ochoa unveiled their new ‘Hall of Fame’ commemorative plaques during the ceremony.

The plaques will be put on public display for all to see where they will join the others at the new U.S. Astronaut Hall of Fame (AHOF) pavilion – which had its Grand Opening in November 2016 as part of the new Heroes & Legends attraction located at the entrance to the Kennedy Space Center Visitor Complex.

The Astronaut Scholarship Foundation has awarded more than $4 million in merit-based scholarships to more than 400 brilliant students since its inception.

Group shot of 21 NASA astronauts posing with the two new NASA astronauts – Michael Foale and Ellen Ochoa – who were inducted into the U.S. Astronaut Hall of Fame on May 19, 2017 during induction ceremony held below Space Shuttle Atlantis in the display pavilion at the Kennedy Space Center Visitor Complex in Florida. Credit: Ken Kremer/kenkremer.com

Some 21 legendary NASA astronauts were on hand for the induction ceremony, including: Robert Cabana, Dan Brandenstein, Al Worden, Charlie Duke, Karol “Bo” Bobko, Brian Duffy, Scott Altman, Michael Bloomfield, Charles Bolden, Ken Bowersox, Curtis Brown, Michael Coats, Robert Crippen, Sam Durrance, Robert Gibson, Fred Gregory, Rhea Seddon, Brewster Shaw, Loren Shriver, Kathryn Thornton, and James Wetherbee.

Two veteran retired NASA astronauts – Michael Foale and Ellen Ochoa – were inducted into the U.S. Astronaut Hall of Fame on May 19, 2017 and show their medals to the media after induction ceremony held below Space Shuttle Atlantis in the display pavilion at the Kennedy Space Center Visitor Complex in Florida. Credit: Ken Kremer/kenkremer.com

Here is a description of their space flight accomplishments from NASA:

“Ochoa joined NASA in 1988 as a research engineer at NASA’s Ames Research Center in California after earning a doctorate in electrical engineering from Stanford University. She joined Johnson in 1990, when she was selected as an astronaut candidate. After completing astronaut training, she served on the nine-day STS-56 mission aboard the space shuttle Discovery in 1993, conducting atmospheric studies to better understand the effect of solar activity on Earth’s climate and environment.

Ochoa has flown in space four times, including the STS-66, STS-96 and STS-110 missions, logging nearly 1,000 hours in orbit. She is Johnson’s first Hispanic director and its second female director. She also has served as the center’s deputy director and director of Flight Crew Operations.”

“Foale, whose hometown is Cambridge, England, earned a doctorate in laboratory astrophysics from the University of Cambridge, Queens’ College. A naturalized U.S. citizen, Foale was selected as an astronaut candidate in June 1987. Before his first spaceflight, he tested shuttle flight software in the Shuttle Avionics Integration Laboratory simulator.

Foale was a crew member on six space missions, including STS-45, STS-56, STS-63, STS-84, STS-103 and Soyuz TMA-3. During STS-84, he helped reestablish the Russian Space Station Mir after it was degraded by a collision and depressurization. Foale logged more than 374 days in space, including four spacewalks totaling 22 hours and 44 minutes.

Foale also served as chief of the Astronaut Office Expedition Corps, assistant director (technical) of Johnson, and deputy associate administrator for exploration operations at NASA Headquarters in Washington. His last assignment at Johnson was as chief of the Soyuz Branch, Astronaut Office, supporting Soyuz and International Space Station operations and space suit development. Foale retired from NASA in 2013.”

Read this description of the U.S. Astronaut Hall of Fame Induction Process and Eligibility:

“Each year, inductees are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Grand opening ceremony for the ‘Heroes and Legends’ attraction on Nov. 11, 2016 at the Kennedy Space Center Visitor Complex in Florida and attended by more than 25 veteran and current NASA astronauts. It includes the new home of the U.S. Astronaut Hall of Fame, presented by Boeing. In addition to displays honoring the 93 Americans currently enshrined in the hall, the facility looks back to the pioneering efforts of Mercury, Gemini and Apollo. It provides the background and context for space exploration and the legendary men and women who pioneered the nation’s journey into space. Credit: Ken Kremer/kenkremer.com

Space Station-Based Experiment Might Have Found Evidence of Dark Matter Destroying Itself

The AMS-02 instrument, shown here attached to the outer hull of the ISS. Credit: BASA

Since it was first proposed in the 1960s to account for all the “missing mass” in the Universe, scientists have been trying to find evidence of dark matter. This mysterious, invisible mass theoretically accounts for 26.8% of the baryonic matter (aka. visible matter) out there. And yet, despite almost fifty years of ongoing research and exploration, scientists have not found any direct evidence of this missing mass.

However, according to two new research papers that were recently published in the journal Physical Review Letters, we may have gotten our first glimpse of dark matter thanks to an experiment aboard the International Space Station. Known as the Alpha Magnetic Spectrometer (AMS-02), this a state-of-the-art particle physics detector has been recording cosmic rays since 2011 – which some theorize are produced by the annihilation of dark matter particles.

Like its predecessor (the AMS), the AMS-02 is the result of collaborative work and testing by an international team composed of 56 institutes from 16 countries. With sponsorship from the US Department of Energy (DOE) and overseen by the Johnson Space Center’s AMS Project Office, the AMS-02 was delivered to the ISS aboard the Space Shuttle Endeavour on May 16th, 2011.

Artist’s impression of the AMS-02 instrument. Credit: NASA/JSC

Ostensibly, the AMS-02 is designed to monitor cosmic rays to see how much in the way of antiprotons are falling to Earth. But for the sake of their research, the two science teams also been consulted the data it has been collecting to test theories about dark matter. To break it down, the WIMPs theory of dark matter states that it is made up of Weakly-Interacted Massive Particles (WIMPS), protons and antiprotons are the result of WIMPs colliding.

By monitoring the number of antiprotons that interact with the AMS-02, two science teams (who were working independently of each other) hoped to infer whether or not any of the antiprotons being detected could be caused by WIMP collisions. The difficulty in this, however, is knowing what would constitute an indication, as cosmic rays have many sources and the properties of WIMPs are not entirely defined.

To do this, the two teams developed mathematical models to predict the cosmic ray background, and thus isolate the number of antiprotons that AMS-02 would detect. They further incorporated fine-tuned estimates of the expected mass of the WIMPs, until it fit with the AMS-02 data. One team, led by Alessandro Cuoco, was made up of researchers from the Institute for Theoretical Particle Physics and Cosmology.

Using computer simulations, Cuoco and his colleagues examined the AMS-02 data based on two scenarios – one which accounted for dark matter and one which did not. As they indicate in their study, they not only concluded that the presence of antiprotons created by WIMP collisions better fit the data, but they were also able to constrain the mass of dark matter to about 80 GeV (about 85 times the mass of a single proton or antiproton).

According to supersymmetry, dark-matter particles known as WIMPs annihilate each other, creating a cascade of particles and radiation. Credit: Sky & Telescope / Gregg Dinderman.

As they state in their paper:

“[T]he very accurate recent measurement of the CR antiproton flux by the AMS-02 experiment allows [us] to achieve unprecedented sensitivity to possible DM signals, a factor ~4 stronger than the limits from gamma-ray observations of dwarf galaxies. Further, we find an intriguing indication for a DM signal in the antiproton flux, compatible with the DM interpretation of the Galactic center gamma-ray excess.”

The other team was made up of researchers from the Chinese Academy of Sciences, Nanjing University, the University of Science and Technology of China, and the National Center for Theoretical Sciences. Led by Ming-Yang Cui of Nanjing University, this team made estimates of the background parameters for cosmic rays by using prior data from previous boron-to-carbon ratio and proton measurements.

These measurements, which determine the rate at which boron decays into carbon, can be used to guage the distance that boron molecules travel through space. In this case, they were combined with proton measurements to determine background levels for cosmic rays. They incorporated this data into a Bayesian Analysis framework (i.e. a statistical model used to determine probabilities) to see how many antiprotons could be attributed to WIMP collisions.

The results, as they state it in their paper were quite favorable and produced similar mass estimates to the study led by Cuoco’s team. “Compared with the astrophysical background only hypothesis, we find that a dark matter signal is favored,” they write. “The rest mass of the dark matter particles is ?20 – 80 GeV.”

 

The AMS being delivered to the ISS by the Space Shuttle Endeavour in 2011. Credit: NASA

What’s more, both scientific teams obtained similar estimates when it came to cross-section measurements of dark matter – i.e. the likelihood of collisions happening based on how densely dark matter is distributed. For example, Cuoco’s team obtained a cross-section estimate of 3 x 10-26 per cm³ while Cui’s team obtained an estimate that ranged from 0.2 5 × 10-26 per cm³.

The fact that two scientific teams, which were operating independently of each other, came to very similar conclusions based on the same data is highly encouraging. While it is not definitive proof of dark matter, it is certainly a step in the right direction. At best, it shows that we are getting closer to creating a detailed picture of what dark matter looks like.

And in the meantime, both teams acknowledge that further work is necessary. Cuoco and his team also suggest what further steps should be taken. “Confirmation of the signal will require a more accurate study of the systematic uncertainties,” they write, “i.e., the antiproton production cross-section, and the modeling of the effect of solar modulation.”

While scientists have attempted to find evidence of dark matter by monitoring cosmic rays in the past, the AMS-02 stands apart because of its extreme sensitivity. As of May 8th, the spectrometer has conducted measurements on 100 billion particles. As of the penning of this article, that number has increased to over 100,523,550,000!

Further Reading: PBS Nova Next, Ars Technica, Physical Review Letters, (2)

What’s that Strange Glowing Mold? Astronauts will Soon be Able to Sequence Unknown Space Organisms

NASA astronaut Kate Rubins poses for a picture with the minION device during the first sample initialization run of the Biomolecular Sequencer investigation. Credits: NASA

Seeking to understand more about space-born microbes, NASA has initiated a program known as Genes in Space-3 – a collaborative effort that will prepare, sequence and identify unknown organisms, entirely from space. For those who might be thinking that this sounds a lot like the film Life – where astronauts revive an alien organism on the International Space Station and everyone dies! – rest assured, this is not the setup for some horror movie.

In truth, it represents a game-changing development that builds on recent accomplishments, where DNA was first synthesized by NASA astronaut Kate Rubin aboard the International Space Station in 2016. Looking ahead, the Genes in Space-3 program will allow astronauts aboard the ISS to collect samples of microbes and study them in-house, rather than having to send them back to Earth for analysis.

The previous experiments performed by Rubin – which were part of the Biomolecule Sequencer investigation – sought to demonstrate that DNA sequencing is feasible in an orbiting spacecraft. The Genes in Space-3 seeks to build on that by establishing a DNA sample-preparation process that would allow ISS crews to identify microbes, monitor crew health, and assist in the search for DNA-based life elsewhere in the Solar System.

NASA astronaut Kate Rubins became the first person to sequence DNA in space and sequenced more than a billion bases during her time aboard the ISS. Credits: NASA

As Sarah Wallace – a NASA microbiologist and the project’s Principal Investigator (PI) at the Johnson Space Center – said in a recent press release:

“We have had contamination in parts of the station where fungi was seen growing or biomaterial has been pulled out of a clogged waterline, but we have no idea what it is until the sample gets back down to the lab. On the ISS, we can regularly resupply disinfectants, but as we move beyond low-Earth orbit where the ability for resupply is less frequent, knowing what to disinfect or not becomes very important.”

Developed in partnership by NASA’s Johnson Space Center and Boeing (and sponsored by the ISS National Lab), this project brings together two previously spaceflight-tested molecular biology tools. First, there is miniPCR, a device which copies targeted pieces of DNA in a process known as Polymerase Chain Reaction (PCR) to create thousands of copies.

This device was developed as part of the student-designed Genes in Space competition, and was successfully tested aboard the ISS during the Genes in Space-1 experiment. Running from September to March of 2016, this experiment sought to test if the alterations to DNA and the weakening of the immune system (both of which happen during spaceflight) are in fact linked.

Student Anna-Sophia Boguraev, winner of the Genes in Space competition, is pictured with the miniPCR device. Credits: NASA

This test will be followed-up this summer with Genes in Space-2 experiment. Running from April to September, this experiment will measure how spaceflight affects telomeres – the protective caps on our chromosomes that are associated with cardiovascular disease and cancers.

The MinION, meanwhile, is a handheld device developed by Oxford Nanopore Technologies. Capable of analyzing DNA and RNA sequences, this technology allows for rapid analysis that is also portable and scalable. It has already been used here on Earth, and was successfully tested aboard the ISS as part of the Biomolecule Sequencer investigation earlier this year.

Combined with some additional enzymes to demonstrate DNA amplification, the Genes in Space-3 experiment will allow astronauts to bring the lab to the microorganisms, rather than the reverse. This will consist of crew members collecting samples from within the space station and then culturing them aboard the orbiting laboratory. The samples will then be prepared for sequencing using the miniPCR and sequenced and identified using the MinION.

As Sarah Stahl, a microbiologist and project scientist, explained, this will allow crews to combat the spread of infectious diseases and bacteria. “The ISS is very clean,” she said. “We find a lot of human-associated microorganisms – a lot of common bacteria such as Staphylococcus and Bacillus and different types of familiar fungi like Aspergillus and Penicillium.”

In addition to being able to diagnose illnesses and infections in real-time, the experiment will allow for new and exciting research aboard the ISS. This could include identifying DNA-based life on other planets, the samples of which would be returned to the ISS via probe. In addition, if and hen microbes are found floating around in space, they could be returned to the ISS for swift analysis.

Another benefit of the program will come from Earth-based scientists being able to access the experiments going on aboard the ISS in real-time. And scientists here on Earth will also benefit from the tools being employed, which will allow for cheap and effective ways to diagnose viruses, especially in parts of the world where access to a laboratory is not possible.

Once more, the development of systems and tools for use in space – an environment that is not typically conducive to Earth-based technologies – is offering up applications that go far beyond space travel. And in the coming years, ISS-based genetic research could help in the ongoing search for extra-terrestrial life, as well as provide new insights into theories like panspermia (i.e. the cosmos being seeded with life by comets, asteroids and planetoids).

Be sure to enjoy this video titled “Cosmic Carpool”, courtesy of NASA’s Johnson Space Center:

Further Reading: NASA

NASA Astronaut Peggy Whitson Sets US Space Endurance Record, Speaks to President Trump

NASA astronaut Peggy Whitson, currently living and working aboard the International Space Station, broke the record Monday for cumulative time spent in space by a U.S. astronaut – an occasion that was celebrated with a phone call from President Donald Trump, First Daughter Ivanka Trump, and fellow astronaut Kate Rubins. Credits: NASA TV
NASA astronaut Peggy Whitson, currently living and working aboard the International Space Station, broke the record Monday for cumulative time spent in space by a U.S. astronaut – an occasion that was celebrated with a phone call from President Donald Trump, First Daughter Ivanka Trump, and fellow astronaut Kate Rubins. Credits: NASA TV

NASA Astronaut Peggy Whitson set the endurance record for time in space by a U.S, astronaut today, Monday, April 24, during her current stint of living and working aboard the International Space Station (ISS) along with her multinational crew of five astronauts and cosmonauts.

Furthermore Whitson received a long distance phone call of exuberant congratulations from President Donald Trump, First Daughter Ivanka Trump, and fellow astronaut Kate Rubins direct from the Oval Office in the White House to celebrate the momentous occasion.

“This is a very special day in the glorious history of American spaceflight!” said President Trump during the live phone call to the ISS broadcast on NASA TV.

As of today, Whitson exceeded 534 cumulative days in space by an American astronaut, breaking the record held by NASA astronaut Jeff Williams.

“Today Commander Whitson you have broken the record for the most total time spent in space by an American astronaut. 534 days and counting,” elaborated President Trump.

“That’s an incredible record to break. And on behalf of the nation and frankly the world I would like to congratulate you. That is really something!”

“You’re an incredible inspiration to us all.”

Trump noted that thousands of school students were listening in to the live broadcast which also served to promote students to study STEM subjects.

“Peggy is a phenomenal role model for young women, and all Americans, who are exploring or participating in STEM education programs and careers,” said President Trump.

“As I have said many times before, only by enlisting the full potential of women in our society will we be truly able to make America great again. When I signed the INSPIRE Women Act in February, I did so to ensure more women have access to STEM education and careers, and to ensure America continues to benefit from the contributions of trailblazers like Peggy.”

How does it feel to break the endurance record? Trump asked Whitson.

“It’s actually a huge honor to break a record like this, but it’s an honor for me basically to be representing all the folks at NASA who make this spaceflight possible and who make me setting this record feasible,” Whitson replied from orbit to Trump.

“And so it’s a very exciting time to be at NASA. We are all very much looking forward, as directed by your new NASA bill — we’re excited about the missions to Mars in the 2030s. And so we actually, physically, have hardware on the ground that’s being built for the SLS rocket that’s going to take us there.”

“It’s a very exciting time, and I’m so proud of the team.”

“We have over 200 investigations ongoing onboard the space station, and I just think that’s a phenomenal part of the day.”

NASA astronaut Jack Fischer is also serving aboard the station on his rookie flight and also took part in the phone call with President Trump.

Whitson is currently serving as Space Station Commander of Expedition 51. She most recently launched to the ISS on Nov 17, 2016 aboard a Russian Soyuz capsule from the Baikonur Cosmodrome in Kazakhstan, as part of a three person crew.

At the time of her Soyuz launch she had accumulated 377 total days in space.

She holds several other prestigious records as well. Whitson is the first woman to serve twice as space station commander.

Indeed in 2008 Whitson became the first woman ever to command the space station during her prior stay on Expedition 16 a decade ago. Her second stint as station commander began earlier this month on April 9.

Whitson also holds the record for most spacewalks by a female astronaut. Altogether she has accumulated 53 hours and 23 minutes of EVA time over eight spacewalks.

Overall, Expedition 51 involved her third long duration stay aboard the massive orbiting laboratory complex.

Seen here on a spacewalk in March 2017, NASA astronaut Peggy Whitson holds the record for most spacewalks conducted by a female astronaut. Credits: NASA

“This is an inspirational record Peggy is setting today, and she would be the first to tell you this is a record that’s absolutely made to be broken as we advance our knowledge and existence as both Americans and humans,” said NASA acting Administrator Robert Lightfoot, in a statement.

“The cutting-edge research and technology demonstrations on the International Space Station will help us go farther into our solar system and stay there longer, as we explore the mysteries of deep space first-hand. Congratulation to Peggy, and thank you for inspiring not only women, but all Americans to pursue STEM careers and become leaders.”

When she returns to Earth in September she will have accumulated some 666 days in space.

On her 2007 mission aboard the International Space Station, NASA astronaut Peggy Whitson, Expedition 16 commander, worked on the Capillary Flow Experiment (CFE), which observes the flow of fluid, in particular capillary phenomena, in microgravity. Credits: NASA

Trump made note of the science and commercial industrial work being carried out aboard the station.

“Many American entrepreneurs are racing into space. I have many friends that are so excited about space. They want to get involved in space from the standpoint of entrepreneurship and business,” said President Trump.

“And I’m sure that every student watching wants to know, what is next for Americans in space.”

Indeed the private SS John Glenn Cygnus cargo freighter just arrived at the ISS on Saturday, April 22, carrying nearly 4 tons or science experiments, hardware, parts and provisions.

Whitson was one of two ISS astronauts involved in capturing Cygnus with the Canadian built robotic arm for attachment to the stations Unity node.

Trump also mentioned his strong support for sending humans on a mission to Mars in the 2030s and for NASA’s development of the SLS heavy lift rocket and Orion deep space capsule.

“I’m very proud that I just signed a bill committing NASA to the aim of sending America astronauts to Mars. So we’ll do that. I think we’ll do it a lot sooner than we’re even thinking.”

“Well, we want to try and do it during my first term or, at worst, during my second term. So we’ll have to speed that up a little bit, okay?”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer