Antares Return to Flight Set for Magnificent Monday Night Launch – Watch Live

The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

NASA WALLOPS FLIGHT FACILITY, VA – The ‘Return to Flight’ blastoff of Orbital ATK’s upgraded Antares rocket will have to wait one more day to come to fruition with a magnificent Monday night launch – after a technical scrub was called this afternoon, Oct. 16, at NASA’s Virginia launch base due to a faulty cable.

The launch potentially offers a thrilling skyshow to millions of US East Coast spectators if all goes well.

Antares Launch Viewing Map. This “first-sight” map indicates potential to see Orbital ATK’s Antares rocket in the minutes following its launch on the OA-5 mission to the ISS on October 16, 2016. Credit: Orbital ATK
Antares Launch Viewing Map. This “first-sight” map indicates potential to see Orbital ATK’s Antares rocket in the minutes following its launch on the OA-5 mission to the ISS on October 16, 2016. Credit: Orbital ATK

Despite picture perfect Fall weather, technical gremlins intervened to halt Sunday nights planned commercial cargo mission for NASA carrying 2.5 tons of science and supplies bound for the International Space Station (ISS).

The launch of the Orbital ATK CRS-5 mission is now scheduled for October 17 at 7:40 p.m. EDT, from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.

You can watch the launch live on NASA TV as well as the agency’s website beginning at 6:30 p.m. EDT Oct 17.

Mondays liftoff is slated to take place approximately 23 minutes earlier then Sunday’s hoped for time of 8:03 p.m. EDT in order to match the moment when the orbital plane of the station passes on NASA Wallops.

The weather outlook on Monday remains extremely favorable with a 95 percent chance of acceptable conditions at launch time.

A nearly full moon has risen over Antares the past few days at the launch pad.

2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA's Wallops Flight Facility in Virginia in this water reflection shot.  Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer
2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA’s Wallops Flight Facility in Virginia in this water reflection shot. Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer

Announcement of the launch scrub of the mission – also known as OA-5 – came just as the six hour countdown was set to begin after engineers discovered the bad cable.

“Today’s launch of Orbital ATK’s Antares rocket is postponed 24 hours due to a ground support equipment (GSE) cable that did not perform as expected during the pre-launch check out,” officials at NASA Wallops said.

The faulty cable was a component of the rocket’s hold down system at the pad, Orbital ATK officials told Universe Today after the scrub was announced.

Technicians have spares on hand and are working now to replace the cable in time to permit a Monday evening launch.

“We have spares on hand and rework procedures are in process. The Antares and Cygnus teams are not currently working any technical issues with the rocket or the spacecraft.”

Besides the cable the rocket is apparently in perfect shape.

“The Antares and Cygnus teams are not currently working any technical issues with the rocket or the spacecraft.”

Antares launches have been on hold for two years after it was grounded following its catastrophic failure just moments after liftoff on Oct. 28, 2014 that doomed the Orb-3 resupply mission to the space station – as witnessed by this author.

Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines- fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.

The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines designed and manufactured by Energomesh.

The 133-foot-tall (40-meter) Antares was rolled out to pad 0A on Thursday, Oct. 13 – three days prior to Sunday’s intended launch date. It was raised to the vertical launch position on Friday.

The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

The two stage Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.

The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.

The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Antares and the Moon at the pad at NASA's Wallops Flight Facility in Virginia as seen from a boat off shore in the Atlantic Ocean on Oct. 15, 2016. Credit: © Patrick J. Hendrickson / Highcamera.com
Antares and the Moon at the pad at NASA’s Wallops Flight Facility in Virginia as seen from a boat off shore in the Atlantic Ocean on Oct. 15, 2016. Credit: © Patrick J. Hendrickson / Highcamera.com

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Antares Raised to Launch Position for Sunday Night Launch to ISS

The Orbital ATK Antares rocket, with the Cygnus spacecraft onboard, is raised into the vertical position on launch Pad-0A, Friday, Oct. 14, 2016 at NASA's Wallops Flight Facility in Virginia. Credit: NASA/Bill Ingalls
The Orbital ATK Antares rocket, with the Cygnus spacecraft onboard, is raised into the vertical position on launch Pad-0A, Friday, Oct. 14, 2016 at NASA's Wallops Flight Facility in Virginia.  Credit: NASA/Bill Ingalls
The Orbital ATK Antares rocket, with the Cygnus spacecraft onboard, is raised into the vertical position on launch Pad-0A, Friday, Oct. 14, 2016 at NASA’s Wallops Flight Facility in Virginia. Credit: NASA/Bill Ingalls

NASA WALLOPS FLIGHT FACILITY, VA – After a two year stand down, an upgraded commercial Antares rocket was rolled out to the NASA Wallops launch pad on Virginia’s eastern shore and raised to its launch position today in anticipation of a spectacular Sunday night liftoff, Oct. 16, to the International Space Station (ISS) on a critical resupply mission for NASA.

Blastoff of the re-engined Orbital ATK Antares rocket is slated for 8:03 p.m. EDT on Oct. 16 from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.

The two year lull in Antares launches followed the rockets immediate grounding after its catastrophic failure just moments after liftoff on Oct. 28, 2014 that doomed the Orb-3 resupply mission to the space station – as witnessed by this author.

Officials had to postpone this commercial resupply mission – dubbed OA-5 – from mid-week due to Cat 3 Hurricane Nicole which slammed into Bermuda yesterday, Oct. 13, packing winds of about 125 mph, and is home to a critical NASA launch tracking station.

After the storm passed, engineers found the tracking station only suffered minor damage – so the GO was given to proceed with preparation for Sunday’s nighttime launch.

“Repairs to the station have been made and the team is currently readying to support the launch,” according to NASA officials.

Engineers are still testing the station to ensure its readiness.

“The Bermuda site provides tracking, telemetry and flight terminations support for Antares launches from NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Final testing is scheduled to be conducted the morning of Oct. 15 prior to the launch readiness review later that day.”

The Orbital ATK Antares rocket, with the Cygnus spacecraft onboard, is rolled out of the Horizontal Integration Facility (HIF) to begin the approximately half-mile journey to launch Pad-0A, Thursday, Oct. 13, 2016 at NASA's Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station.  Credit: (NASA/Bill Ingalls)
The Orbital ATK Antares rocket, with the Cygnus spacecraft onboard, is rolled out of the Horizontal Integration Facility (HIF) to begin the approximately half-mile journey to launch Pad-0A, Thursday, Oct. 13, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: (NASA/Bill Ingalls)

If all goes well Antares is sure to provide a dazzling nighttime skyshow from NASA’s Virginia launch base Sunday night – and potentially offering a thrilling spectacle to millions of US East Coast spectators.

The launch window last five minutes and the weather outlook is currently favorable.

The launch will air live on NASA TV and the agency’s website beginning at 7 p.m. EDT Oct 16.

Antares rocket stands erect, reflecting off the calm waters the night before a launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014.    Credit: Ken Kremer/kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before a launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer/kenkremer.com

The 133-foot-tall (40-meter) Antares was rolled out to pad 0A on Thursday, Oct. 13 – three days prior to the anticipated launch date – and raised to the vertical launch position this afternoon.

The two stage Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.

On-Ramp to the Orbital Sciences Antares rocket and International Space Station - ready for blastoff from NASA Wallops in this file photo.  Credit: Ken Kremer – kenkremer.com
On-Ramp to the Orbital Sciences Antares rocket and International Space Station – ready for blastoff from NASA Wallops in this file photo. Credit: Ken Kremer – kenkremer.com

The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.

The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines.

Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines – fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.

The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.

The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and caused Antares launches to immediately grind to a halt.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage.   Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016. New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage. Credit: Ken Kremer/kenkremer.com

For the OA-5 mission, the Cygnus advanced maneuvering spacecraft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for the International Space Station (ISS).

“Cygnus is loaded with the Saffire II payload and a nanoracks cubesat deployer,” Frank DeMauro, Orbital ATK Cygnus program manager, told Universe Today in a interview.

Among the science payloads aboard the Cygnus OA-5 mission is the Saffire II payload experiment to study combustion behavior in microgravity. Data from this experiment will be downloaded via telemetry. In addition, a NanoRack deployer will release Spire Cubesats used for weather forecasting. These secondary payload operations will be conducted after Cygnus departs the space station.

Other experiments include a study on the effect of lighting on sleep and daily rhythms, collection of health-related data, and a new way to measure neutrons.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

The Orbital ATK Antares rocket, with the Cygnus spacecraft aboard. Credit: NASA/Bill Ingalls
The Orbital ATK Antares rocket, with the Cygnus spacecraft aboard. Credit: NASA/Bill Ingalls

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

First Antares Liftoff in 2 Years Targeted for Dazzling Nighttime Leap from Virginia on Oct. 13

Antares rocket stands erect, reflecting off the calm waters the night before a launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer/kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before a launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014.    Credit: Ken Kremer/kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before a launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer/kenkremer.com

The first Antares rocket liftoff in nearly two years is now being targeted for Oct. 13 on what is sure to be a dazzling nighttime leap from NASA’s Virginia launch base – and potentially offering a thrilling skyshow to millions of US East Coast spectators, if all goes well.

Top NASA and Orbital ATK managers formally approved the launch of the upgraded commercial Antares rocket for next Thursday evening, Oct. 13, on a cargo resupply mission to the International Space Station (ISS). The announcement follows on the heels of a successful joint pre-launch Flight Readiness Review (FRR).

Blastoff of the Orbital ATK Antares rocket is slated for 9:13 p.m. EDT on Oct. 13 from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.

Antares will be rolled out to the pad 0A on Oct. 11 – two days prior to the anticipated launch date.

Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.

The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.

The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines.

For the OA-5 mission, the Cygnus advanced maneuvering spacecraft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for the International Space Station (ISS).

“Cygnus is loaded with the Saffire II payload and a nanoracks cubesat deployer,” Frank DeMauro, Orbital ATK Cygnus program manager, told Universe Today in a interview.

Among the science payloads aboard the Cygnus OA-5 mission is the Saffire II payload experiment to study combustion behavior in microgravity. Data from this experiment will be downloaded via telemetry. In addition, a NanoRack deployer will release Spire Cubesats used for weather forecasting. These secondary payload operations will be conducted after Cygnus departs the space station.

If Cygnus launches as planned on Oct. 13, it is scheduled to arrive at the station on Sunday, Oct. 16. Astronauts will use the space station’s robotic arm to grapple Cygnus at approximately about 6:45 a.m. EDT and berth it to the bottom of the station’s Unity module.

NASA TV will provide live coverage of the launch as well as the rendezvous and grappling activities.

Pre-launch seaside panorama of Orbital ATK Antares rocket at the NASA's Wallops Flight Facility launch pad.    Credit: Ken Kremer - kenkremer.com
Pre-launch seaside panorama of an Orbital ATK Antares rocket at the NASA’s Wallops Flight Facility launch pad. Credit: Ken Kremer – kenkremer.com

The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

The 2 year lull in Antares launches followed the rockets immediate grounding after its catastrophic failure just moments after liftoff on Oct. 28, 2014 that doomed the Orb-3 resupply mission to the space station – as witnessed by this author.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines following the destruction of the Antares rocket and Cygnus supply ship two years ago.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage.   Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016. New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage. Credit: Ken Kremer/kenkremer.com

In light of the grounding of the SpaceX Falcon 9 and Dragon cargo flights following the catastrophic Sept.1 launch pad disaster, and the catastrophic Antares launch failure in Oct. 2014, this Orbital ATK mission becomes more critical than ever to keep that station stocked and fully operational for the resident crews with a reliable American supply train.

Aerial view of NASA Wallops launch site on Virginia shore shows launch pads for both suborbital and orbital rockets. The Antares rocket Pad 0A for missions to the ISS is in the foreground.  Suborbital rockets blast off just behind the Pad 0A water tower. This photo was snapped from on top of Pad 0B that launched NASA‘s LADEE orbiter to the Moon. Credit: Ken Kremer- kenkremer.com
Aerial view of NASA Wallops launch site on Virginia shore shows launch pads for both suborbital and orbital rockets. The Antares rocket Pad 0A for missions to the ISS is in the foreground. Suborbital rockets blast off just behind the Pad 0A water tower. This photo was snapped from on top of Pad 0B that launched NASA‘s LADEE orbiter to the Moon. Credit: Ken Kremer- kenkremer.com

In the meantime, Orbital ATK has successfully resumed launches of their Cygnus cargo freighters to the ISS utilizing the United Launch Alliance (ULA) Atlas V rocket as an interim measure until Antares is returned to flight status

They utilized the ULA Atlas V rocket to successfully deliver two Cygnus vessels to the ISS on the OA-4 flight in Dec 2015 and OA-6 flight in March 2016.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Aerial view of an Orbital ATK Antares rocket on launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA's Wallops Flight Facility.  Credit: Patrick J. Hendrickson / Highcamera.com
Aerial view of an Orbital ATK Antares rocket on launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA’s Wallops Flight Facility. Credit: Patrick J. Hendrickson / Highcamera.com

Apollo 11 Moonwalker Buzz Aldrin Talks to Universe Today about ‘Destination Mars’

Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Sending humans on a ‘Journey to Mars’ and developing strategies and hardware to accomplish the daunting task of getting ‘Humans to Mars’ is NASA’s agency wide goal and the goal of many space enthusiasts – including Apollo 11 moonwalker Buzz Aldrin.

NASA is going full speed ahead developing the SLS Heavy lift rocket and Orion crew module with a maiden uncrewed launch from the Kennedy Space Center set for late 2018 to the Moon. Crewed Mars missions would follow by the 2030s.

In the marketplace of ideas, there are other competing and corollary proposals as well from government, companies and private citizens on pathways to the Red Planet. For example SpaceX CEO Elon Musk wants to establish a colony on Mars using an Interplanetary Transport System of SpaceX developed rockets and spaceships.

Last week I had the opportunity to ask Apollo 11 Moonwalker Buzz Aldrin for his thoughts about ‘Humans to Mars’ and the role of commercial space – following the Grand Opening ceremony for the new “Destination Mars’ holographic exhibit at the Kennedy Space Center visitor complex in Florida.

Moonwalker Aldrin strongly advocated for more commercial activity in space and that “exposure to microgravity” for “many commercial products” is good, he told Universe Today.

More commercial activities in space would aid space commerce and getting humans to Mars.

“We need to do that,” Aldrin told me.

Apollo 11 moonwalker Buzz Aldrin describes newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin describes newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

Buzz Aldrin is the second man to set foot on the Moon. He stepped onto the lunar soil a few minutes after Apollo 11 Commander Neil Armstrong, on July 20, 1969 in the Sea of Tranquility.

Aldrin also strongly supports some type of American space station capability “beyond the ISS” to foster the Mars capability.

And we need to be thinking about that follow on “US capability” right now!

“I think we need to have a US capability beyond the ISS to prepare for future activities right from the beginning,” Aldrin elaborated.

Currently the ISS partnership of the US, Russia, ESA, Japan and Canada has approved extending the operations of the International Space Station (ISS) until 2024. What comes after that is truly not known.

NASA is not planning for a follow-on space station in low Earth orbit at this time. The agency seems to prefer development of a commercial space station, perhaps with core modules from Bigelow Aerospace and/or other companies.

So that commercial space station will have to be designed, developed and launched by private companies. NASA and others would then lease space for research and other commercial activities and assorted endeavors on the commercial space station.

For example, Bigelow wants to dock their privately developed B330 habitable module at the ISS by 2020, following launch on a ULA Atlas V. And then spin it off as an independent space station when the ISS program ends – see my story.

Only China has firm plans for a national space station in the 2020’s. And the Chinese government has invited other nations to submit proposals. Russia’s ever changing space exploration plans may include a space station – but that remains to be actually funded and seen.

Regarding Mars, Aldrin has lectured widely and written books about his concept for “cycling pathways to occupy Mars,” he explained.

Watch this video of Apollo 11 moonwalker Buzz Aldrin speaking to Universe Today:

Video Caption: Buzz Aldrin at ‘Destination Mars’ Grand Opening at KSCVC. Apollo 11 moonwalker Buzz Aldrin talks to Universe Today/Ken Kremer during Q&A at ‘Destination Mars’ Holographic Exhibit Grand Opening ceremony at Kennedy Space Center Visitor Complex (KSCVC) in Florida on 9/18/16. Credit: Ken Kremer/kenkremer.com

Here is a transcript:

Universe Today/Ken Kremer: Can you talk about the role of commercial space [in getting humans to Mars]. Elon Musk wants to try and send people to Mars, maybe even before NASA. What do you think?

Buzz Aldrin: “Well, being a transportation guy in space for humans – well commercial, what that brings to mind is tourism plus space travel.

And there are many many more things commercial that are done with products that can be fine tuned by exposure to microgravity. And we need to do that.”

“I think we need to have a US capability beyond the ISS to prepare for future activities right from the beginning.”

“And that’s why what has sort of fallen into place is the name for my plan for the future – which is ‘cycling pathways to occupy Mars.’”

“A cycler in low Earth orbit, one in lunar orbit, and one to take people to Mars.”

“And they are utilized in evolutionary fashion.”

Apollo 11 moonwalker Buzz Aldrin during media preview of newly opened ‘Destination Mars’ holographic experience at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit Julian Leek
Apollo 11 moonwalker Buzz Aldrin during media preview of newly opened ‘Destination Mars’ holographic experience at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit Julian Leek

Meanwhile, be sure to visit the absolutely spectacular “Destination Mars” holographic exhibit before it closes on New Year’s Day 2017 – because it is only showing at KSCVC.

A scene from ‘Destination Mars’ of Buzz Aldrin and  NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft
A scene from ‘Destination Mars’ of Buzz Aldrin and NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft

You can get more information or book a visit to Kennedy Space Center Visitor Complex, by clicking on the website link:

https://www.kennedyspacecenter.com/things-to-do/destination-mars.aspx

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

Big Breach In 2nd Stage Helium System Likely Triggered Catastrophic Falcon 9 Explosion: SpaceX

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

Investigators have determined that a “large breach” in the second stage helium system likely triggered the catastrophic Falcon 9 launch pad explosion that suddenly destroyed the rocket and Israeli commercial payload during a routine fueling test three weeks ago, SpaceX announced today, Friday, Sept. 23.

However, the root cause of the rupture and Sept. 1 disaster have not been determined, according to SpaceX, based on the results thus far discerned by the official accident investigation team probing the incident that forced an immediate halt to all SpaceX launches.

The Accident Investigation Team (AIT) is composed of SpaceX, the FAA, NASA, the U.S. Air Force, and industry experts.

“At this stage of the investigation, preliminary review of the data and debris suggests that a large breach in the cryogenic helium system of the second stage liquid oxygen tank took place,” SpaceX reported on the firm’s website in today’s anomaly update dated Sept. 23- the first in three weeks.

The helium system is used to pressurize the liquid oxygen tank from inside.

The explosion took place without warning at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Sept. 1 on Cape Canaveral Air Force Station, Fl, during a routine fueling test and engine firing test as liquid oxygen and RP-1 propellants were being loade into the 229-foot-tall (70-meter) Falcon 9. Launch of the AMOS-6 comsat was scheduled two days later.

Indeed the time between the first indication of an anomaly to loss of signal was vanishingly short – only about “93 milliseconds” of elapsed time, SpaceX reported.

93 milliseconds amounts to less than 1/10th of a second. That conclusion is based on examining 3,000 channels of data.

SpaceX reported that investigators “are currently scouring through approximately 3,000 channels of engineering data along with video, audio and imagery.”

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016  after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com
Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload and damaged the pad at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Both the $60 million SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in a massive fireball that erupted suddenly during the planned pre-launch fueling and hot fire engine ignition test at pad 40. There were no injuries since the pad had been cleared.

The Sept. 1 calamity also counts as the second time a Falcon 9 has exploded in 15 months and the second time it originated in the second stage and will call into question the rocket’s reliability.

The first failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, when a strut holding the helium tank inside the liquid oxygen tank failed in flight during the Dragon CRS-7 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

However SpaceX says that although both incidents involved the second stage, they are unrelated – even as they continue seeking to determine the root cause.

“All plausible causes are being tracked in an extensive fault tree and carefully investigated. Through the fault tree and data review process, we have exonerated any connection with last year’s CRS-7 mishap.”

And they are thoroughly reviewing all rocket components.

“At SpaceX headquarters in Hawthorne, CA, our manufacturing and production is continuing in a methodical manner, with teams continuing to build engines, tanks, and other systems as they are exonerated from the investigation.”

But SpaceX will have to conduct an even more thorough analysis of every aspect of their designs and manufacturing processes and supply chain exactly because the cause of this disaster is different and apparently went undetected during the CRS-7 accident review.

And before Falcon 9 launches are allowed to resume, the root cause must be determined, effective fixes must be identified and effective remedies must be verified and implemented.

Large scale redesign of the second stage helium system may be warranted since two independent failure modes have occurred. Others could potentially be lurking. It’s the job of the AIT to find out – especially because American astronauts will be flying atop this rocket to the ISS starting in 2017 or 2018 and their lives depend on its being reliable and robust.

After the last failure in June 2015, it took nearly six months before Falcon 9 launches were resumed.

Launches were able to recommence relatively quickly because the June 2015 disaster took place at altitude and there was no damage to pad 40.

That’s not the case with the Sept. 1 calamity where pad 40 suffered significant damage and will be out of action for quite a few months at least as the damage is catalogued and evaluated. Then a repair, refurbishment, testing and recertification plan needs to be completed to rebuild and return pad 40 to flight status. Furthermore SpaceX will have to manufacture a new transporter-erector.

Since the explosion showered debris over a wide area, searchers have been prowling surrounding areas and other nearby pads at the Cape and Kennedy Space Center, hunting for evidentiary remains that could provide clues or answers to the mystery of what’s at the root cause this time.

Searchers have recovered “the majority of debris from the incident has been recovered, photographed, labeled and catalogued, and is now in a hangar for inspection and use during the investigation.”

To date they have not found any evidence for debris beyond the immediate area of LC-40, the company said.

SpaceX CEO Elon Musk had previously reported via twitter that the rocket failure originated somewhere in the upper stage near the liquid oxygen (LOX) tank during fueling test operations at the launch pad, for what is known as a hot fire engine ignition test of all nine first stage Merlin 1D engines.

Engineers were in the final stages of loading the liquid oxygen (LOX) and RP-1 kerosene propellants that power the Falcon 9 first stage for the static fire test which is a full launch dress rehearsal. The anomaly took place about 8 minutes before the planned engine hot fire ignition.

And the incident took place less than two days before the scheduled Falcon 9 launch of AMOS-6 on Sept. 3 from pad 40.

The explosion also caused extensive damage to the launch pad as well as to the rockets transporter erector, or strongback, that holds the rocket in place until minutes before liftoff, and ground support equipment (GSE) around the pad – as seen in my recent photos of the pad taken a week after the explosion during the OSIRIS-REx launch campaign.

Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com

Fortunately, many other pad areas and infrastructure survived intact or in “good condition.”

“While substantial areas of the pad systems were affected, the Falcon Support Building adjacent to the pad was unaffected, and per standard procedure was unoccupied at the time of the anomaly. The new liquid oxygen farm – e.g. the tanks and plumbing that hold our super-chilled liquid oxygen – was unaffected and remains in good working order. The RP-1 (kerosene) fuel farm was also largely unaffected. The pad’s control systems are also in relatively good condition.”

The rocket disaster was coincidentally captured as it unfolded in stunning detail in a spectacular up close video recorded by my space journalist colleague Mike Wagner at USLaunchReport.

Watch this video:

Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport

Even as investigators and teams of SpaceX engineers sift through the data and debris looking for the root cause of the helium tank breach, other SpaceX engineering teams and workers prepare to restart launches from the other SpaceX pad on the Florida Space Coast- namely Pad 39A on the Kennedy Space Center.

So the ambitious aerospace firm is already setting its sights on a ‘Return to Flight’ launch as early as November of this year, SpaceX President Gwynne Shotwell said on Sept. 13 at a French space conference.

“We’re anticipating getting back to flight, being down for about three months, so getting back to flight in November, the November timeframe,” Shotwell announced during a panel discussion at the World Satellite Business Week Conference in Paris, France – as reported here last week.

SpaceX reconfirmed the November target today.

“We will work to resume our manifest as quickly as responsible once the cause of the anomaly has been identified by the Accident Investigation Team.”

“Pending the results of the investigation, we anticipate returning to flight as early as the November timeframe.”

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

As SpaceX was launching from pad 40, they have been simultaneously renovating and refurbishing NASA’s former shuttle launch pad at Launch Complex 39A at the Kennedy Space Center (KSC) – from which the firm hopes to launch the new Falcon Heavy booster in 2017 as well as human rated launches of the Falcon 9 with the Crew Dragon to the ISS.

So now SpaceX will utilize pad 39A for commercial Falcon 9 launches as well. But much works remains to finish pad work as I recently witnessed.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Overview schematic of SpaceX Falcon 9. Credit: SpaceX
Overview schematic of SpaceX Falcon 9. Credit: SpaceX

New Soyuz Mission A Go After Technical Delays

The Soyuz MS-01 spacecraft preparing to launch from the Baikonur Cosmodrome, in Kazakhstan, on Monday, July 4th, 2016. Credit: (NASA/Bill Ingalls)

On Saturday, September 17th, the Russian space agency (Roscosmos) stated that it would be delaying the launch of the crewed spacecraft Soyuz MS-02. The rocket was scheduled to launch on Friday, September 23rd, and would be carrying a crew of three astronauts – two Russia and one American – to the ISS.

After testing revealed technical flaws in the mission (which were apparently due to a short circuit), Rocosmos decided to postpone the launch indefinitely. But after after days of looking over the glitch, the Russians space agency has announced that it is prepared for a renewed launch on Nov. 1st.

The mission crew consists of mission commander Sergey Ryzhikov, flight engineer Andrey Borisenko and NASA astronaut Shane Kimbrough. Originally scheduled to launch on Sept. 23rd, the mission would spend the next two days conducting a rendezvous operation before docking with the International Space Station on Sept. 25th.

The crew of MS-02 (from left to right) - Shane Kimgrough, Sergey Ryzhikov and Andrey Borisenko, pictured in Red Square in Moscow. Credit: NASA/Bill Ingalls
The crew of MS-02 (from left to right): Shane Kimgrough, Sergey Ryzhikov and Andrey Borisenko, pictured in Red Square in Moscow. Credit: NASA/Bill Ingalls

The station is currently being staffed by three crew members – MS-01 commander Anatoly Ivanishin, NASA astronaut Kate Rubins and Japanese astronaut Takuya Onish. These astronauts arrived on the station on Sept.6th, and all three were originally scheduled to return to Earth on October 30th.

Meanwhile, three more astronauts – commander Oleg Novitskiy, ESA flight engineer Thomas Pesquet and NASA astronaut Peggy Whitson – were supposed to replace them as part of mission MS-03, which was scheduled to launch on Nov. 15th. But thanks to the technical issue that grounded the MS-02 flight, this schedule appeared to be in question.

However, the news quickly began to improve after it seemed that the mission might be delayed indefinitely. On Sept.18th, a day after the announcement of the delay, the Russian International News Agency (RIA Novosti) cited a source that indicated that the spacecraft could be replaced and the mission could be rescheduled for next month:

“RIA Novosti’s source noted that the mission was postponed indefinitely because of an identified short circuit during the pre-launch checks. It is possible that the faulty ship “MS – 02 Alliance” can be quickly replaced on the existing same rocket, and then the launch to the ISS will be held in late October.”

Three newly arrived crew of Expedition 48 in Soyuz MS-01 open the hatch and enter the International Space Station after docking on July 9, 2016. Credit: NASA TV
Three newly arrived crew of Expedition 48 in Soyuz MS-01 open the hatch and enter the International Space Station after docking on July 9, 2016. Credit: NASA TV

Then, on Monday, Sept.19th, another source cited by RIA Novosti said that the State Commission responsible for the approval of a new launch date would be reaching a decision no sooner than Tuesday, Sept. 20th. And as of Tuesday morning, a new launch date appears to have been set.

According to news agency, Roscomos notified NASA this morning that the mission will launch on Nov.1st. Sputnik International confirmed this story, claiming that the source was none other than Alexander Koptev – a NASA representative with the Russian Mission Control Center.

“The Russian side has informed the NASA central office of the preliminary plans to launch the manned Soyuz MS-02 on November 1,” he said.

It still not clear where the technical malfunction took place. Since this past Saturday, Russian engineers have been trying to ascertain if the short circuit occurred in the descent module or the instrument module. However, the Russians are already prepared to substitute the Soyuz spacecraft for the next launch, so there will be plenty of time to locate the source of the problem.

The Soyuz MS-01 spacecraft launches from the Baikonur Cosmodrome with Expedition 48-49 crewmembers Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) onboard, Thursday, July 7, 2016 , Kazakh time (July 6 Eastern time), Baikonur, Kazakhstan. Photo Credit: NASA/Bill Ingalls
The Soyuz MS-01 spacecraft launches from the Baikonur Cosmodrome on July 7th, 2016. Credit: NASA/Bill

The Soyuz MS is the latest in a long line of revisions to the venerable Soyuz spacecraft, which has been in service with the Russians since the 1960s. It is perhaps the last revision as well, as Roscosmos plans to develop new crewed spacecraft in the coming decades.

The MS is an evolution of the Soyuz TMA-M spacecraft, another modernized version of the old spacecraft. Compared to its predecessor, the MS model’s comes with updated communications and navigation subsystems, but also boasts some thruster replacements.

The first launch of the new spacecraft – Soyuz MS-01 – took place on July 7th, 2016, aboard a Soyuz-FG launch vehicle, which is itself an improvement on the traditional R-7 rockets. Like the MS-02 mission, MS-01 spent two days undergoing a checkout phase in space before rendezvousing with the ISS.

As such, it is understandable why the Russians would like to get this mission underway and ensure that the latest iteration of the Soyuz MS performs well in space. Until such time as the Russians have a new crewed module to deliver astronauts to the ISS, all foreseeable missions will come down to craft like this one.

Further Reading: Roscosmos, Spaceflightnow.com

How High is Space?

The edge of space. Credit: NASA
The edge of space. Credit: NASA

Look up at the night sky, and what do you see? Space, glittering and gleaming in all its glory. Astronomically speaking, space is really quite close, lingering just on the other side of that thin layer we call an atmosphere. And if you think about it, Earth is little more than a tiny island in a sea of space. So it is quite literally all around us.

By definition, space is defined as being the point at which the Earth’s atmosphere ends, and the vacuum of space begins. But exactly how far away is that? How high do you need to travel before you can actually touch space? As you can probably imagine, with such a subjective definition, people tend to disagree on exactly where space begins.

Definition:

The first official definition of space came from the National Advisory Committee for Aeronautics (the predecessor to NASA), who decided on the point where atmospheric pressure was less than one pound per square foot. This was the altitude that airplane control surfaces could no longer be used, and corresponded to roughly 81 kilometers (50 miles) above the Earth’s surface.

The Bell X-1, in which Chuck Yeager “broke” the sound barrier in 1947. Credit: NASA
The Bell X-1, in which Chuck Yeager “broke” the sound barrier in 1947. Credit: NASA

Any NASA test pilot or astronaut who crosses this altitude is awarded their astronaut wings. Shortly after that definition was passed, the aerospace engineer Theodore von Kármán calculated that above an altitude of 100 km, the atmosphere would be so thin that an aircraft would need to be traveling at orbital velocity to derive any lift.

This altitude was later adopted as the Karman Line by the World Air Sports Federation (Fédération Aéronautique Internationale, FAI). And in 2012, when Felix Baumgartner broke the record for the highest freefall, he jumped from an altitude of 39 kilometers (24.23 mi), less than halfway to space (according to NASA’s definition).

By the same token, space is often defined as beginning at the lowest altitude at which satellites can maintain orbits for a reasonable time – which is approximately 160 kilometers (100 miles) above the surface. These varying definitions are complicated when one takes the definition of the word “atmosphere” into account.

Earth’s Atmosphere:

When we talk about Earth’s atmosphere, we tend to think of the region where air pressure is still high enough to cause air resistance, or where the air is simply thick enough to breath. But in truth, Earth’s atmosphere is made up of five main layers – the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere – the latter of which extend pretty far out into space.

Space Shuttle Endeavour sillouetted against the atmosphere. The orange layer is the troposphere, the white layer is the stratosphere and the blue layer the mesosphere.[1] (The shuttle is actually orbiting at an altitude of more than 320 km (200 mi), far above all three layers.) Credit: NASA
Space Shuttle Endeavor silhouetted against Earth’s atmosphere. The orange layer is the troposphere, the white layer is the stratosphere and the blue layer the mesosphere. Credit: NASA
The Thermosphere, the second highest layer of the atmosphere, extends from an altitude of about 80 km (50 mi) up to the thermopause, which is at an altitude of 500–1000 km (310–620 mi). The lower part of the thermosphere, – from 80 to 550 kilometers (50 to 342 mi) – contains the ionosphere, which is so named because it is here in the atmosphere that particles are ionized by solar radiation.

Hence, this is where the phenomena known as Aurora Borealis and Aurara Australis are known to take place. The International Space Station also orbits in this layer, between 320 and 380 km (200 and 240 mi), and needs to be constantly boosted because friction with the atmosphere still occurs.

The outermost layer, known as the exosphere, extends out to an altitude of 10,000 km (6214 mi) above the planet. This layer is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules (nitrogen, oxygen, CO²). The atoms and molecules are so far apart that the exosphere no longer behaves like a gas and the particles constantly escape into space.

It is here that Earth’s atmosphere truly merges with the emptiness of outer space, where there is no atmosphere. Hence why the majority of Earth’s satellites orbit within this region. Sometimes, the Aurora Borealis and Aurora Australis occur in the lower part of the exosphere, where they overlap into the thermosphere. But beyond that, there is no meteorological phenomena in this region.

Interplanetary vs. Interstellar:

Another important distinction when discussing space is the difference between that which lies between planets (interplanetary space) and that which lies between star systems (interstellar space) in our galaxy. But of course, that’s just the tip of the iceberg when it comes to space.

If one were to cast the net wider, there is also the space which lies between galaxies in the Universe (intergalactic space). In all cases, the definition involves regions where the concentration of matter is significantly lower than in other places – i.e. a region occupied centrally by a planet, star or galaxy.

In addition, in all three definitions, the measurements involved are beyond anything that we humans are accustomed to dealing with on a regular basis. Some scientists believe that space extends infinitely in all directions, while others believe that space is finite, but is unbounded and continuous (i.e. has no beginning and end).

In other words, there’s a reason they call it space – there’s just so much of it!

Exploration:

The exploration of space (that is to say, that which lies immediately beyond Earth’s atmosphere) began in earnest with what is known as the “Space Age“, This newfound age of exploration began with the United States and Soviet Union setting their sights on placing satellites and crewed modules into orbit.

The first major event of the Space Age took place on October 4th, 1957, with the launch of Sputnik 1 by the Soviet Union – the first artificial satellite to be launched into orbit. In response, then-President Dwight D. Eisenhower signed the National Aeronautics and Space Act on July 29th, 1958, officially establishing NASA.

Sputnik 1
Photograph of a Russian technician putting the finishing touches on Sputnik 1, humanity’s first artificial satellite. Credit: NASA/Asif A.

Immediately, NASA and the Soviet space program began taking the necessary steps towards creating manned spacecraft. By 1959, this competition resulted in the creation of the Soviet Vostok program and NASA’s Project Mercury. In the case of Vostok, this consisted of developing a space capsule that could be launched aboard an expendable carrier rocket.

Along with numerous unmanned tests, and a few using dogs, six Soviet pilots were selected by 1960 to be the first men to go into space. On April 12th, 1961, Soviet cosmonaut Yuri Gagarin was launched aboard the Vostok 1 spacecraft from the Baikonur Cosmodrome, and thus became the fist man to go into space (beating American Alan Shepard by just a few weeks).

On June 16th, 1963, Valentina Tereshkova was sent into orbit aboard the Vostok 6 craft (which was the final Vostok mission), and thus became the first woman to go into space. Meanwhile, NASA took over Project Mercury from the US Air Force and began developing their own crewed mission concept.

Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti
Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti

Designed to send a man into space using existing rockets, the program quickly adopted the concept of launching ballistic capsules into orbit. The first seven astronauts, nicknamed the “Mercury Seven“, were selected from from the Navy, Air Force and Marine test pilot programs.

On May 5th, 1961, astronaut Alan Shepard became the first American in space aboard the Freedom 7 mission. Then, on February 20th, 1962, astronaut John Glenn became the first American to be launched into orbit by an Atlas launch vehicle as part of Friendship 7. Glenn completed three orbits of planet Earth, and three more orbital flights were made, culminating in L. Gordon Cooper’s 22-orbit flight aboard Faith 7, which flew on May 15th and 16th, 1963.

In the ensuing decades, both NASA and Soviets began to develop more complex, long-range crewed spacecraft. Once the “Race to the Moon” ended with the successful landing of Apollo 11 (followed by several more Apollo missions), the focus began to shift to establishing a permanent presence in space.

For the Russians, this led to the continued development of space station technology as part of the Salyut program. Between 1972 and 1991, they attempted to orbit seven separate stations. However, technical failures and a failure in one rocket’s second stage boosters caused the first three attempts after Salyut 1 to fail or result in the station’s orbits decaying after a short period.

Skylab, America’s First manned Space Station. Photo taken by departing Skylab 4 crew in Feb. 1974. Credit: NASA
Skylab, America’s First manned Space Station. Photo taken by departing Skylab 4 crew in Feb. 1974. Credit: NASA

However, by 1974, the Russians managed to successfully deploy Salyut 4, followed by three more stations that would remain in orbit for periods of between one and nine years. While all of the Salyuts were presented to the public as non-military scientific laboratories, some of them were actually covers for the military Almaz reconnaissance stations.

NASA also pursued the development of space station technology, which culminated in May of 1973 with the launch of Skylab, which would remain America’s first and only independently-built space station. During deployment, Skylab suffered severe damage, losing its thermal protection and one of its solar panels.

This required the first crew to rendezvous with the station and conduct repairs. Two more crews followed, and the station was occupied for a total of 171 days during its history of service. This ended in 1979 with the downing of the station over the Indian Ocean and parts of southern Australia.

By 1986, the Soviets once again took the lead in the creation of space stations with the deployment of Mir. Authorized in February 1976 by a government decree, the station was originally intended to be an improved model of the Salyut space stations. In time, it evolved into a station consisting of multiple modules and several ports for crewed Soyuz spacecraft and Progress cargo spaceships.

The Mir Space Station and Earth limb observed from the Orbiter Endeavour during NASA's STS-89 mission in 1998. Credit: NASA
The Mir Space Station and Earth limb observed from the Orbiter Endeavour during NASA’s STS-89 mission in 1998. Credit: NASA

The core module was launched into orbit on February 19th, 1986; and between 1987 and 1996, all of the other modules would be deployed and attached. During its 15-years of service, Mir was visited by a total of 28 long-duration crews. Through a series of collaborative programs with other nations, the station would also be visited by crews from other Eastern Bloc nations, the European Space Agency (ESA), and NASA.

After a series of technical and structural problems caught up with the station, the Russian government announced in 2000 that it would decommission the space station. This began on Jan. 24th, 2001, when a Russian Progress cargo ship docked with the station and pushed it out of orbit. The station then entered the atmosphere and crashed into the South Pacific.

By 1993, NASA began collaborating with the Russians, the ESA and the Japan Aerospace Exploration Agency (JAXA) to create the International Space Station (ISS). Combining NASA’s Space Station Freedom project with the Soviet/Russian Mir-2 station, the European Columbus station, and the Japanese Kibo laboratory module, the project also built on the Russian-American Shuttle-Mir missions (1995-1998).

With the retirement of the Space Shuttle Program in 2011, crew members have been delivered exclusively by Soyuz spacecraft in recent years. Since 2014, cooperation between NASA and Roscosmos has been suspended for most non-ISS activities due to tensions caused by the situation in the Ukraine.

However, in the past few years, indigenous launch capability has been restored to the US thanks to companies like SpaceX, United Launch Alliance, and Blue Origin stepping in to fill the void with their private fleet of rockets.

The ISS has been continuously occupied for the past 15 years, having exceeded the previous record held by Mir; and has been visited by astronauts and cosmonauts from 15 different nations. The ISS program is expected to continue until at least 2020, but may be extended until 2028 or possibly longer, depending on the budget environment.

As you can clearly see, where our atmosphere ends and space begins is the subject of some debate. But thanks to decades of space exploration and launches, we have managed to come up with a working definition. But whatever the exact definition is, if you can get above 100 kilometers, you have definitely earned your astronaut wings!

We have written many interesting articles about space here at Universe Today. Here is Why is Space Black?, How Cold is Space?, Space Debris Illustrated: The Problem in Pictures, What is Interplanetary Space?, What is Interstellar Space?, and What is Intergalactic Space?

For more information, check out NASA Reveals Mysteries of Interstellar Space and this list of Deep Space Missions.

Astronomy Cast has episodes on the subject, like the Space Stations Series, Episode 82: Space Junk, Episode 281: Explosions in Space, Episode 303: Equilibrium in Space, and Episode 311: Sound in Space.

Sources:

SES Boldly Goes Where No Firm Has Gone Before, Inks Deal to Fly on 1st SpaceX ‘Flight-Proven’ Booster

First launch of flight-proven Falcon 9 first stage will use CRS-8 booster that delivered Dragon to the International Space Station in April 2016. Credit: SpaceX
First launch of flight-proven Falcon 9 first stage will use CRS-8 booster that delivered Dragon to the International Space Station in April 2016. Credit: SpaceX
First launch of flight-proven Falcon 9 first stage will use CRS-8 booster that delivered Dragon to the International Space Station in April 2016. Credit: SpaceX

CAPE CANAVERAL, FL — The telecommunications giant SES is boldly going where no company has gone before by making history in inking a deal today, Aug. 30, to fly the expensive SES-10 commercial satellite on the first ever launch of a ‘Flight-Proven’ SpaceX booster – that’s been used and recovered.

Luxembourg-based SES and Hawthrone, CA-based SpaceX today jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster” before the end of this year.

“The satellite, which will be in a geostationary orbit and expand SES’s capabilities across Latin America, is scheduled for launch in Q4 2016. SES-10 will be the first-ever satellite to launch on a SpaceX flight-proven rocket booster,” according to a joint statement.

That first launch of a flight-proven Falcon 9 first stage will use the CRS-8 booster that delivered a SpaceX Dragon to the International Space Station in April 2016. The reflight could happen as soon as October 2016.

Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral,  Florida on April 12, 2016.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket from NASA CRS-8 cargo mission is moved by crane from drone ship to an upright storage cradle on land at Port Canaveral, Florida on April 12, 2016. Credit: Julian Leek

The deal marks a major milestone and turning point in SpaceX CEO and billionaire founder Elon Musk’s long sought endeavor to turn the science fictionesque quest of rocket reusability into the scientific fact of reality.

“Thanks for the longstanding faith in SpaceX,” tweeted SpaceX CEO Elon Musk after today’s joint SES/SpaceX announcement.

“We very much look forward to doing this milestone flight with you.”

Elon Musk’s goal is to radically slash the cost of launching rockets and access to space via rocket recycling – in a way that will one day lead to his vision of a ‘City on Mars.’

Over just the past 8 months, SpaceX has successfully recovered 6 of the firms Falcon 9 first stage boosters intact – by land and by sea since December 2015 – in hopes of recycling and reusing them with new payloads from paying customers daring enough to take the risk of stepping into the unknown!

SES is that daring company and has repeatedly shown faith in SpaceX. They were the first commercial satellite operator to launch with SpaceX with SES-8 back in October 2013. Earlier this year the firm also launched SES-9 on the recently upgraded full thrust version of Falcon 9 in March 2016.

Upgraded SpaceX Falcon 9 awaits launch of SES-9 communications satellite on Feb. 25, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 prior to launch of SES-9 communications satellite on Mar. 4, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

“Having been the first commercial satellite operator to launch with SpaceX back in 2013, we are excited to once again be the first customer to launch on SpaceX’s first ever mission using a flight-proven rocket. We believe reusable rockets will open up a new era of spaceflight, and make access to space more efficient in terms of cost and manifest management,” said Martin Halliwell, Chief Technology Officer at SES, in the statement.

“This new agreement reached with SpaceX once again illustrates the faith we have in their technical and operational expertise. The due diligence the SpaceX team has demonstrated throughout the design and testing of the SES-10 mission launch vehicle gives us full confidence that SpaceX is capable of launching our first SES satellite dedicated to Latin America into space.”

SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station.   Credit: Julian Leek
SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credit: Julian Leek

But the company first has to prove that the used vehicle can survive the extreme and unforgiving stresses of the violent spaceflight environment before they can relaunch it. So they have been carefully inspecting it for structural integrity, checking all the booster systems, plumbing, avionics, etc and retesting the first stage Merlin 1D engines.

Multiple full duration hot fire tests of the fully integrated booster have been conducted at the SpaceX test facility in McGregor, Texas as part of long life endurance testing. This includes igniting all nine used first stage Merlin 1D engines housed at the base of a landed rocket for approximately three minutes.

For the SES-10 launch, SpaceX plans to use the Falcon 9 booster that landed on an ocean going drone ship from NASA’s CRS-8 space station mission launched in April 2016, said Hans Koenigsmann, SpaceX vice president of Flight Reliability, to reporters recently at the Kennedy Space Center during NASA’s CRS-9 cargo launch to the ISS.

SpaceX has derived many lessons learned on how to maximize the chances for a successful rocket recovery, Koenigsmann explained to Universe Today at KSC when I asked for some insight.

“We learned a lot … from the landings,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today during the media briefings for the SpaceX CRS-9 space station cargo resupply launch on July 18.

“There are no structural changes first of all.”

“The key thing is to protect the engines- and make sure that they start up well [in space during reentry],” Koenigsmann elaborated, while they are in flight and “during reentry.”

“And in particular the hot trajectory, so to speak, like the ones that comes in after a fast payload, like the geo-transfer payload basically.”

“Those engines need to be protected so that they start up in the proper way. That’s something that we learned.”

The SpaceX Falcon 9 first stage is outfitted with four landing legs at the base and four grid fins at the top to conduct the landing attempts.

“In general I think the landing concept with the legs, and the number of burns and the way we perform those seems to work OK,” Koenigsmann told me.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

“Re-launching a rocket that has already delivered spacecraft to orbit is an important milestone on the path to complete and rapid reusability,” said Gwynne Shotwell, President and Chief Operating Officer of SpaceX.

“SES has been a strong supporter of SpaceX’s approach to reusability over the years and we’re delighted that the first launch of a flight-proven rocket will carry SES-10.”

Remote camera photo from "Of Course I Still Love You" droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX
Remote camera photo from “Of Course I Still Love You” droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX

How much money will SES save by using a spent, recycled first stage Falcon 9 booster?

SpaceX says the price of a completely new Falcon 9 booster is approximately $60 million.

Shotwell has said SpaceX will reduce the cost about 30%. So SES might be saving around $20 million – but there are no published numbers regarding this particular launch contract.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL,  atop droneship platform on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

SES-10 will be the first SES satellite wholly dedicated to Latin America.

“The satellite will provide coverage over Mexico, serve the Spanish speaking South America in one single beam, and cover Brazil with the ability to support off-shore oil and gas exploration,” according to SES.

It will replace capacity currently provided by two other satellites, namely AMC-3 and AMC-4, and will “provide enhanced coverage and significant capacity expansion over Latin America – including Mexico, Central America, South America and the Caribbean. The high-powered, tailored and flexible beams will provide direct-to-home broadcasting, enterprise and mobility services.”

It is equipped with a Ku-band payload of 55 36MHz transponder equivalents, of which 27 are incremental. It will be stationed at 67 degrees West.

SES-10 was built by Airbus Defence and Space and is based on the Eurostar E3000 platform. Notably it will use “an electric plasma propulsion system for on-orbit manoeuvres and a chemical system for initial orbit raising and some on-orbit manoeuvres.”

SES-10 satellite mission artwork. Credit: SES
SES-10 satellite mission artwork. Credit: SES

The most recent SpaceX Falcon 9 booster to be recovered followed the dramatic overnight launch of the Japanese JCSAT-16 telecom satellite on Aug. 14.

Port Canaveral aerial view showing SpaceX Falcon 9 first stage back on land in storage cradle after arriving back into port and craning off droneship barge it propulsively soft landed on after launching JCSAT-16 Japanese comsat on Aug. 14, 2016 from Cape Canaveral Air Force Station, Fl. NASA’s.  Credit: Ken Kremer/kenkremer.com
Port Canaveral aerial view showing SpaceX Falcon 9 first stage back on land in storage cradle after arriving back into port and craning off droneship barge it propulsively soft landed on after launching JCSAT-16 Japanese comsat on Aug. 14, 2016 from Cape Canaveral Air Force Station, Fl. NASA’s. Credit: Ken Kremer/kenkremer.com

It was towed back into port on atop the diminutive OCISLY ocean landing platform that measures only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The 6 successful Falcon upright first stage landings are part of a continuing series of SpaceX technological marvels/miracles rocking the space industry to its core.

SpaceX had already successfully recovered first stages three times in a row at sea earlier this year on the ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27, prior to JCSAT-16 on Aug. 14.

Two land landings back at Cape Canaveral Landing Zone-1 were accomplished on Dec. 21, 2015 and July 18, 2016.

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX SES-9 launch from Cape Canaveral AFS, FL on March 4, 2016.    Credit:  Julian Leek
SpaceX SES-9 launch from Cape Canaveral AFS, FL on March 4, 2016. Credit: Julian Leek
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40.  Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon Splashes Down with NASA’s Station Science Cargo

SpaceX Dragon CRS-9 returned to Earth with a splash down in the Pacific Ocean on Friday, Aug. 26, 2016 after more than a month stay at the International Space Station. Credit: SpaceX
SpaceX Dragon CRS-9 returned to Earth with a splash down in the Pacific Ocean on Friday, Aug. 26, 2016 after more than a month stay at the International Space Station.  Credit: SpaceX
SpaceX Dragon CRS-9 returned to Earth with a splash down in the Pacific Ocean on Friday, Aug. 26, 2016 after more than a month stay at the International Space Station. Credit: SpaceX

A SpaceX commercial Dragon cargo ship returned to Earth today, Friday, Aug. 26, 2016, by splashing down safely in the Pacific Ocean – thus concluding more than a month long stay at the International Space Station (ISS). The vessel was jam packed with some 1.5 tons of NASA cargo and critical science samples for eagerly waiting researchers.

The parachute assisted splashdown of the Dragon CRS-9 cargo freighter took place at 11:47 a.m. EDT today in the Pacific Ocean – located some 326 miles (520 kilometers) southwest of Baja California.

Dragon departed after spending more than five weeks berthed at the ISS.

This image, captured from NASA Television's live coverage, shows SpaceX's Dragon spacecraft departing the International Space Station at 6:10 am EDT Friday, Aug. 26, 2016, after successfully delivering almost 5,000 pounds of supplies and scientific cargo on its ninth resupply mission to the orbiting laboratory.  Credits: NASA Television
This image, captured from NASA Television’s live coverage, shows SpaceX’s Dragon spacecraft departing the International Space Station at 6:10 am EDT Friday, Aug. 26, 2016, after successfully delivering almost 5,000 pounds of supplies and scientific cargo on its ninth resupply mission to the orbiting laboratory. Credits: NASA Television

It was loaded with more than 3,000 pounds of NASA cargo and critical research samples and technology demonstration samples accumulated by the rotating six person crews of astronauts and cosmonauts living and working aboard the orbiting research laboratory.

This station based research will contribute towards NASA’s strategic plans to send astronauts on a ‘Journey to Mars’ by the 2030s.

It arrived at the station on July 20 ferrying over 2.5 tons of priceless research equipment, gear, spare parts and supplies, food, water and clothing for the station’s resident astronauts and cosmonauts as well as the first of two international docking adapters (IDAs) in its unpressurized cargo hold known as the “trunk.”

The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV
The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV

Dragon was launched on July 18 during a mesmerizing post midnight, back-to-back liftoff and landing of the SpaceX Falcon 9 rocket in its upgraded, full thrust version.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

The SpaceX Falcon 9 blasted off at 12:45 a.m. EDT July 18, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida and successfully delivered the Dragon CRS-9 resupply ship to its preliminary orbit about 10 minutes later.

SpaceX also successfully executed a spellbinding ground landing of the Falcon 9 first stage back at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

The dramatic ground landing of the 156 foot tall Falcon 9 first stage at LZ -1 took place about 9 minutes after liftoff. It marked only the second time a spent, orbit class booster has touched down intact and upright on land.

Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS).   Credit: Ken Kremer/kenkremer.com
Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

The stage was set for today’s return to Earth when ground controllers robotically detached Dragon from the Earth-facing port of the Harmony module early this morning using the station’s 57.7-foot (17.6-meter) long Canadian-built robotic arm.

Expedition 48 Flight Engineers Kate Rubins of NASA and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) then used Canadarm 2 to release Dragon from the grappling snares at about 6:10 a.m. EDT (1011 GMT) this morning.

“Houston, station, on Space to Ground Two, Dragon depart successfully commanded,” radioed Rubins.

The ISS was soaring some 250 miles over the Timor Sea, north of Australia.

“Congratulations to the entire team on the successful release of the Dragon. And thank you very much for bringing all the science, and all the important payloads, and all the important cargo to the station,” Onishi said. “We feel really sad to see it go because we had a great time and enjoyed working on all the science that the Dragon brought to us.”

Dragon then backed away and moved to a safe distance from the station via a trio of burns using its Draco maneuvering thrusters.

The de-orbit burn was conducted at 10:56 a.m. EDT (1456 GMT) to drop Dragon out of orbit and start the descent back to Earth.

SpaceX contracted recovery crews hauled Dragon aboard the recovery ship and are transporting it to a port near Los Angeles, where some time critical cargo items and research samples will be removed and returned to NASA for immediate processing.

SpaceX plans to move Dragon back to the firms test facility in McGregor, Texas, for further processing and to remove the remaining cargo cache.

Among the wealth of over 3900 pounds (1790 kg) of research investigations loaded on board Dragon was an off the shelf instrument designed to perform the first-ever DNA sequencing in space and the first international docking adapter (IDA) that is absolutely essential for docking of the SpaceX and Boeing built human spaceflight taxis that will ferry our astronauts to the International Space Station (ISS) in some 18 months.

During a spacewalk last week on Aug. 19, the initial docking adapter known as International Docking Adapter-2 (IDA-2) was installed Expedition 48 Commander Jeff Williams and Flight Engineer Kate Rubins of NASA.

Other science experiments on board included OsteoOmics to test if magnetic levitation can accurately simulate microgravity to study different types of bone cells and contribute to treatments for diseases like osteoporosis, a Phase Change Heat Exchanger to test temperature control technology in space, the Heart Cells experiments that will culture heart cells on the station to study how microgravity changes the human heart, new and more efficient three-dimensional solar cells, and new marine vessel tracking hardware known as the Automatic Identification System (AIS) that will aid in locating and identifying commercial ships across the globe.

The ring shaped IDA-2 unit was stowed in the Dragon’s unpressurized truck section. It weighs 1029 lbs (467 kg), measures about 42 inches tall and sports an inside diameter of 63 inches in diameter – so astronauts and cargo can easily float through. The outer diameter measures about 94 inches.

“Outfitted with a host of sensors and systems, the adapter is built so spacecraft systems can automatically perform all the steps of rendezvous and dock with the station without input from the astronauts. Manual backup systems will be in place on the spacecraft to allow the crew to take over steering duties, if needed,” says NASA.

“It’s a passive system which means it doesn’t take any action by the crew to allow docking to happen and I think that’s really the key,” said David Clemen Boeing’s director of Development/Modifications for the space station.

“Spacecraft flying to the station will use the sensors on the IDA to track to and help the spacecraft’s navigation system steer the spacecraft to a safe docking without astronaut involvement.”

CRS-9 counts as the company’s ninth of 26 scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The CRS-9 mission was launched for the crews of Expeditions 48 and 49 to support dozens of the approximately 250 science and research investigations in progress under NASA’s Commercial Resupply Services (CRS) contract.

Watch for Ken’s continuing SpaceX and CRS mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

An illustration of how the IDA will look when attached to the International Space Station. Credits: NASA
An illustration of how the IDA will look when attached to the International Space Station.
Credits: NASA
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida.   Credit: Ken Kremer/kenkremer.com
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.  The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017. The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015. Credit: Ken Kremer/kenkremer.com

A New NASA Cumulative Time in Space Record

Astronaut Jeff Williams just established a new record for most time spent in space by a NASA astronaut. Credit: NASA

The International Space Station has provided astronauts and space agencies with immense opportunities for research during the decade and a half that it has been in operation. In addition to studies involving meteorology, space weather, materials science, and medicine, missions aboard the ISS has also provided us with valuable insight into human biology.

For example, studies conducted aboard the ISS’ have provided us with information about the effects of long-term exposure to microgravity. And all the time, astronauts are pushing the limits of how long someone can healthily remain living under such conditions. One such astronauts is Jeff Williams, the Expedition 48 commander who recently established a new record for most time spent in space.

This record-breaking feat began back in 2000, when Williams spent 10 days aboard the Space Shuttle Atlantis for mission STS-101. At the time, the International Space Station was still under construction, and as the mission’s flight engineer and spacewalker, Williams helped prepare the station for its first crew.

Station Commander Jeff Williams passed astronaut Scott Kelly, also a former station commander, on Aug. 24, 2016, for most cumulative days living and working in space by a NASA astronaut (520 days and counting). Williams is scheduled to land Sept. 6, 2016, for a record total of 534 days in space. Credit: NASA
Station Commander Jeff Williams passed astronaut Scott Kelly, also a former station commander, on Aug. 24, 2016, for most cumulative days living and working in space by a NASA astronaut. Credit: NASA

This was followed up in 2006, where Williams’ served as part of Expedition 13 to the ISS. The station had grown significantly at this point with the addition of Russian Zvezda service module, the U.S. Destiny laboratory, and the Quest airlock. Numerous science experiments were also being conducted at this time, which included studies into capillary flow and the effects of microgravity on astronauts’ central nervous systems.

During the six months he was aboard the station, Williams was able to get in two more spacewalks, set up additional experiments on the station’s exterior, and replaced equipment. Three years later, he would return to the station as part of Expedition 21, then served as the commander of Expedition 22, staying aboard the station for over a year (May 27th, 2009 to March 18th, 2010).

By the time Expedition 48’s Soyuz capsule launched to rendezvous with the ISS on July 7th, 2016, Williams had already spent more than 362 days in space. By the time he returns to Earth on Sept. 6th, he will have spent a cumulative total of 534 days in space. He will have also surpassed the previous record set by Scott Kelly, who spent 520 days in space over the course of four missions.

 Expedition 48 crew portrait with 46S crew (Jeff Williams, Oleg Skripochka, Aleksei Ovchinin) and 47S crew (Anatoli Ivanishin, Kate Rubins, Takuya Onishi). Credit: NASA

Expedition 48 crew portrait with 46S crew (Jeff Williams, Oleg Skripochka, Aleksei Ovchinin) and 47S crew (Anatoli Ivanishin, Kate Rubins, Takuya Onishi). Credit: NASA

On Wednesday, August 24th, the International Space Station raised its orbit ahead of Williams’ departure. Once he and two of his mission colleagues – Oleg Skripochka and Alexey Ovchinin – undock in their Soyuz TMA-20M spacecraft, they begin their descent towards Kazakhstan, arriving on Earth roughly three and a half hours later.

Former astronaut Scott Kelly was a good sport about the passing of this record, congratulating Williams in a video created by the Johnson Space Center (see below). Luckily, Kelly still holds the record for the longest single spaceflight by a NASA astronaut – which lasted a stunning 340 days.

And Williams may not hold the record for long, as astronaut Peggy Whitson is scheduled to surpass him in 2017 during her next mission (which launches this coming November). And as we push farther out into space in the coming years, mounting missions to NEOs and Mars, this record is likely to be broken again and again.

NASA's Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL
NASA’s Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

In the meantime, Williams and his crew will continue to dedicate their time to a number of crucial experiments. In the course of this mission, they have conducted research into human heart function, plant growth in microgravity, and executed a variety of student-designed experiments.

Like all research conducted aboard the ISS, the results of this research will be used to improve health treatments, have numerous industrial applications here on Earth, and will help NASA plan mission farther into space. Not the least of which will be NASA’s proposed (and rapidly approaching) crewed mission to Mars.

In addition to spending several months in zero-g for the sake of the voyage, NASA will need to know how their astronauts will fair when conducting research on the surface of Mars, where the gravity is roughly 37% that of Earth (0.376 g to be exact).

And be sure to enjoy this video of Scott Kelly congratulating Williams on his accomplishment, courtesy of the Johnson Space Center:

Further Reading: NASA