Stairway to Heaven! – Boeing Starliner Crew Access Arm’s ‘Awesome’ Launch Pad Installation

A crane lifts the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com
A crane lifts the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41.  Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com
A crane lifts the Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A new ‘Stairway to Heaven’ which American astronauts will soon stride along as “the last place on Earth” departure point aboard our next generation of human spaceships, was at long last hoisted into place at the ULA Atlas rocket launch pad on Florida’s Space Coast on Monday Aug 15, at an “awesome” media event witnessed by space journalists including Universe Today.

“This is awesome,” Chris Ferguson, a former shuttle commander who is now Boeing’s deputy program manager for the company’s Commercial Crew Program told Universe Today in an exclusive interview at the launch pad – after workers finished installing the spanking new Crew Access Arm walkway for astronauts leading to the hatch of Boeing’s Starliner ‘Space Taxi.’

Starliner will ferry crews to and from the International Space Station (ISS) as soon as 2018.

“It’s great to see the arm up there,” Ferguson elaborated to Universe Today. “I know it’s probably a small part of the overall access tower. But it’s the most significant part!”

“We used to joke about the 195 foot level on the shuttle pad as being ‘the last place on Earth.”

“This will now be the new ‘last place on Earth’! So we are pretty charged up about it!” Ferguson gushed.

Up close view of Boeing Starliner Crew Access Arm and White Room craned into place at Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016.   Credit: Dawn Leek Taylor
Up close view of Boeing Starliner Crew Access Arm and White Room craned into place at Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Credit: Dawn Leek Taylor

Under hot sunny skies portending the upcoming restoration of America’s ability to once again launch American astronauts from American soil when American rockets ignite, the newly constructed 50-foot-long, 90,000-pound ‘Crew Access Arm and White Room’ was lifted and mated to the newly built ‘Crew Access Tower’ at Space Launch Complex-41 (SLC-41) on Monday morning, Aug. 15.

“We talked about how the skyline is changing here and this is one of the more visible changes.”

The Boeing CST-100 Starliner crew capsule stacked atop the venerable United Launch Alliance (ULA) Atlas V rocket at pad 41 on Cape Canaveral Air Force Station in Florida will launch crews to the massive orbiting science outpost continuously soaring some 250 miles (400 km) above Earth.

Space workers, enthusiasts and dreamers alike have been waiting years for this momentous day to happen. And I was thrilled to observe all the action firsthand along with the people who made it happen from NASA, United Launch Alliance, Boeing, the contractors – as well as to experience it with my space media colleagues.

“All the elements that we talked about the last few years are now reality,” Ferguson told me.

The Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft approaches the notch for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 at level 13 on Aug. 15, 2016, as workers observe from upper tower level.  Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com
The Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft approaches the notch for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 at level 13 on Aug. 15, 2016, as workers observe from upper tower level. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

Attaching the access arm is vital and visual proof that at long last America means business and that a renaissance in human spaceflight will commence in some 18 months or less when commercially built American crew capsules from Boeing and SpaceX take flight to the heavens above – and a new space era of regular, robust and lower cost space flights begins.

It took about an hour for workers to delicately hoist the gleaming grey steel and aluminum white ‘Stairway to Heaven’ by crane into place at the top of the tower – at one of the busiest launch pads in the world!

It’s about 130 feet above the pad surface since it’s located at the 13th level of the tower.

The install work began at about 7:30 a.m. EDT as we watched a work crew lower a giant grappling hook and attach cables. Then they carefully raised the arm off the launch pad surface by crane. The arm had been trucked to the launch pad on Aug. 11.

The tower itself is comprised of segmented tiers that were built in segments just south of the pad. They were stacked on the pad over the past few months – in between launches. Altogether they form a nearly 200-foot-tall steel structure.

Another crew stationed in the tower about 160 feet above ground waited as the arm was delicately craned into the designated notch. The workers then spent several more hours methodically bolting and welding the arm to the tower to finish the assembly process.

Indeed Monday’s installation of the Crew Access Arm and White Room at pad 41 basically completes the construction of the first new Crew Access Tower at Cape Canaveral Air Force Station since the Apollo moon landing era of the 1960s.

“It is the first new crew access structure at the Florida spaceport since the space shuttle’s Fixed Service Structures were put in place before Columbia’s first flight in 1981,” say NASA officials.

Overall the steel frame of the massive tower weighs over a million pounds. For perspective, destination ISS now weighs in at about a million pounds in low Earth orbit.

Construction of the tower began about 18 months ago.

“You think about when we started building this 18 months ago and now it’s one of the most visible changes to the Cape’s horizon since the 1960s,” said Ferguson at Monday’s momentous media event. “It’s a fantastic day.”

The White Room is an enclosed area at the end of the Crew Access Arm. It big enough for astronauts to make final adjustments to their suits and is spacious enough for technicians to assist the astronauts climbing aboard the spacecraft and get tucked into their seats in the final hours before liftoff.

“You have to stop and celebrate these moments in the craziness of all the things we do,” said Kathy Lueders, manager of NASA’s Commercial Crew Program, at the event. “It’s going to be so cool when our astronauts are walking out across this access arm to get on the spacecraft and go to the space station.”

The Crew Access Arm was built by Saur at NASA’s nearby off site facility at Oak Hill.

And when Starliner takes flight it will hearken back to the dawn of the Space Age.

“John Glenn was the first to fly on an Atlas, now our next leap into the future will be to have astronauts launch from here on Atlas V,” said Barb Egan, program manager for Commercial Crew for ULA.

Boeing is manufacturing Starliner in what is officially known as Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at the Kennedy Space Center in Florida under contract with NASA’s Commercial Crew Program (CCP).

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The Boeing CST 100 Starliner is one of two private astronaut capsules – along with the SpaceX Crew Dragon – being developed under a CCP commercial partnership contract with NASA to end our sole reliance on Russia for crew launches back and forth to the International Space Station (ISS).

The goal of NASA’s Commercial Crew Program since its inception in 2010 is to restore America’s capability to launch American astronauts on American rockets from American soil to the ISS, as soon as possible.

Furthermore when the Boeing Starliner and SpaceX Crew Dragon become operational the permanent resident ISS crew will grow to 7 – enabling a doubling of science output aboard the science laboratory.

This significant growth in research capabilities will invaluably assist NASA in testing technologies and human endurance in its agency wide goal of sending humans on a ‘Journey to Mars’ by the 2030s with the mammoth Space Launch System (SLS) rocket and Orion deep space capsule concurrently under full scale development by the agency.

The next key SLS milestone is a trest firing of the RS-25 main engines at NASA Stennis this Thursday, Aug. 18 – watch for my onsite reports!

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 Starliner space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

Since the retirement of NASA’s space shuttle program in 2011, the US was been 100% dependent on the Russian Soyuz capsule for astronauts rides to the ISS at a cost exceeding $70 million per seat.

When will Ferguson actually set foot inside the walkway?

“I am hoping to get up there and walk through there in a couple of weeks or so when it’s all strapped in and done. I want to see how they are doing and walk around.”

How does the White Room fit around Starliner and keep it climate controlled?

“The end of the white room has a part that slides up and down and moves over and slides on top of the spacecraft when it’s in place.”

“There is an inflatable seal that forms the final seal to the spacecraft so that you have all the appropriate humidity control and the purge without the Florida atmosphere inside the crew module,” Ferguson replied.

Up close, mid-air view of Crew Access Tower and front of White Room during installation.  The White Room will fit snugly against Boeing's CST-100 Starliner spacecraft with inflatable seal to maintain climate control and clean conditions as astronauts board capsule atop Atlas rocket hours before launch on  United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com
Up close, mid-air view of Crew Access Arm and front of White Room during installation. The White Room will fit snugly against Boeing’s CST-100 Starliner spacecraft with inflatable seal to maintain climate control and clean conditions as astronauts board capsule atop Atlas rocket hours before launch on United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

Boeing and NASA are targeting Feb. 2018 for launch of the first crewed orbital test flight on the Atlas V rocket. The Atlas will be augmented with two solid rocket motors on the first stage and a dual engine Centaur upper stage.

How confident is Ferguson about meeting the 2018 launch target?

“The first crew flight is scheduled for February 2018. I am confident.” Ferguson responded.

“And we have a lot of qualification to get through between now and then. But barring any large unforeseen issues we can make it.”

The Crew Access Tower after installation of the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft on Aug. 15, 2016 at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
The Crew Access Tower after installation of the Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft on Aug. 15, 2016 at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

As the Boeing Starliner Crew Access Arm and White Room are bolted into place behind us at Space Launch Complex 41, Chris Ferguson, former shuttle commander and current Boeing deputy program manager for Commercial Crew, and Ken Kremer of Universe Today discuss the details and future of human spaceflight on Aug. 15, 2016 at Cape Canaveral Air Force Station.  Credit: Jeff Seibert
As the Boeing Starliner Crew Access Arm and White Room are bolted into place behind us at Space Launch Complex 41, Chris Ferguson, former shuttle commander and current Boeing deputy program manager for Commercial Crew, and Ken Kremer of Universe Today discuss the future of human spaceflight on Aug. 15, 2016 at Cape Canaveral Air Force Station. Credit: Jeff Seibert

Orbital ATK Antares ‘Return to Flight’ ISS Launch Postponed To September For Further Analysis

Aerial view of Orbital ATK launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA's Wallops Flight Facility. Credit: Credit: Patrick J. Hendrickson / Highcamera.com
Aerial view of Orbital ATK launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA's Wallops Flight Facility.  Credit: Patrick Henderson
Aerial view of Orbital ATK launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA’s Wallops Flight Facility. Credit: Credit: Patrick J. Hendrickson / Highcamera.com

The ‘Return to Flight’ launch of Orbital ATK’s re-engined Antares rocket on a cargo resupply launch for NASA bound for the space station has been postponed for at least another month into September due to the need for further analysis of the revamped booster and other factors.

Today’s announcement by Orbital ATK of a launch delay to mid-September comes barely two weeks before the long hoped for liftoff – which had been scheduled for late afternoon on August 22 from Orbital ATK’s launch base on Virginia’s picturesque eastern shore.

The Antares 230 medium-class commercial launch vehicle rocket has been upgraded with new first stage Russian-built RD-181 engines that must be fully validated before launching NASA’s precious cargo to the International Space Station (ISS).

Almost simultaneously, the Japan Aerospace Exploration Agency (JAXA) decided to postpone the upcoming launch of their next HTV H-11 Transfer Vehicle “KOUNOTORI6” (HTV6) which had been slated for October 1 from the Tanegashima Space Center.

JAXA said a leak was detected during pressure testing which must be fixed before any launch attempt.

Antares could potentially take the launch slot vacated by JAXA.

Orbital ATK cited multiple factors for the launch postponement from NASA’s Wallops Flight Facility in a short statement released today, August 10.

“Due to a variety of interrelated factors, including the company’s continuing processing, inspection and testing of the flight vehicle at Wallops Island, and NASA’s scheduling of crew activities on the International Space Station in preparation for upcoming cargo and crew launches, Orbital ATK is currently working with NASA to target a window in the second half of September for the launch of the OA-5 mission,” Orbital ATK announced.

Also there are reports that the re-engined Antares experience some form of unexpected ‘vibrations’ during the recent static fire test conducted in May.

This is the latest in a string of Antares launch delays, running back to the start of 2016.

Furthermore, a new launch date won’t be announced for at least several more weeks.

“A more specific launch date will be identified in the coming weeks,” said Orbital ATK.

Aerial view of an Orbital ATK Antares rocket on launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA's Wallops Flight Facility.  Credit: Patrick J. Hendrickson / Highcamera.com
Aerial view of an Orbital ATK Antares rocket on launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA’s Wallops Flight Facility. Credit: Patrick J. Hendrickson / Highcamera.com

Orbital ATK’s Antares commercial rocket had to be overhauled with completely new first stage engines following the catastrophic launch failure nearly two years ago on October 28, 2014 just seconds after blastoff that doomed the Orb-3 resupply mission to the space station.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016. Credit: Ken Kremer/kenkremer.com

The goal of the Antares ‘Return to Flight’ mission is to launch Orbital ATK’s Cygnus cargo freighter on the OA-5 resupply mission for NASA to the International Space Station (ISS).

To that end the aerospace firm recently completed a successful 30 second long test firing of the re-engined first stage on May 31 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Launch Pad 0A – as I reported here earlier.

Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A.  Credit: NASA/Orbital ATK
Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A. Credit: NASA/Orbital ATK

Teams from Orbital ATK and NASA have been scrutinizing the data in great detail ever since then to ensure the rocket is really ready before committing to the high stakes launch.

“Orbital ATK completed a stage test at the end of May and final data review has confirmed the test was successful, clearing the way for the Antares return to flight,” said the company.

“Simultaneously, the company has been conducting final integration and check out of the flight vehicle that will launch the OA-5 mission to ensure that all technical, quality and safety standards are met or exceeded.”

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage.   Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in May 2016. New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage. Credit: Ken Kremer/kenkremer.com

Antares launches had immediately ground to a halt following the devastating launch failure 22 months ago which destroyed the rocket and its critical payload of space station science and supplies for NASA in a huge fireball just seconds after blastoff – as witnessed by this author.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

As a direct consequence of the catastrophic launch disaster, Orbital ATK managers decided to outfit the Antares medium-class rocket with new first stage RD-181 engines built in Russia.

The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.

The RD-181 flight engines are built by Energomash in Russia and had to be successfully tested via the static hot fire test to ensure their readiness.

Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit:  Ken Kremer/kenkremer.com
Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit: Ken Kremer/kenkremer.com

Whenever it does fly on the OA-5 mission, Orbital ATK’s Cygnus cargo craft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for space station and its six person crews.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

OA-5 Cargo Resupply Mission Overview launching to the ISS from NASA Wallops in Virginia. Credit: Orbital ATK
OA-5 Cargo Resupply Mission Overview launching to the ISS from NASA Wallops in Virginia. Credit: Orbital ATK

Boeing Starts Assembly of 1st Flightworthy Starliner Crew Taxi Vehicle at Kennedy Spaceport

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The next generation of America’s human spaceships is rapidly taking shape and “making fantastic progress” at the Kennedy Space Center as Boeing and NASA showcased the start of assembly of the first flightworthy version of the aerospace giants Starliner crew taxi vehicle to the media last week. Starliner will ferry NASA astronauts to and from the International Space Station (ISS) by early 2018.

“We are making fantastic progress across the board,” John Mulholland, vice president and program manager of Boeing Commercial Programs, told Universe Today at the July 26 media event in Boeing’s new Starliner factory.

“It so nice to move from design to firm configuration, which was an incredibly important milestone, to now moving into the integrated qual phase of the campaign.”

Boeing is swiftly making tangible progress towards once again flying Americans astronauts to space from American soil as was quite visibly demonstrated when the firm showed off their spanking new Starliner ‘clean-floor factory’ to the media last week, including Universe Today – and it’s already humming with activity by simultaneously building two full scale Starliner crew vehicles.

“We are on track to support launch by the end of 2017 [of the uncrewed orbital test flight],” Mulholland told me.

“The Structural Test Article (STA) crew module is almost ready to be delivered to the test site in California. The service module is already delivered at the test site. So we are ready to move into the qualification campaign.”

“We are also in the middle of component qualification and qualifying more than one component every week as we really progress into assembly, integration and test of flight design spacecrafts.”

Starliner is being manufactured in what is officially known as Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at the Kennedy Space Center in Florida under contract with NASA’s Commercial Crew Program (CCP).

And the Boeing CST-100 Starliner assembly line aiming to send our astronauts to low Earth orbit and the space station is now operating full speed ahead at KSC.

Formerly known as Orbiter Processing Facility-3, or OPF-3, the facility was previously used as a servicing hanger to prepare NASA’s space shuttle orbiters for flight.

NASA-Boeing Mentor NASA, industry and news media representatives visit the modernized high bay in Boeing's Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida.   Credits: NASA/Kim Shiflett
NASA, industry and news media representatives visit the modernized high bay in Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. Credits: NASA/Kim Shiflett

The facility has now been completely renovated and refurbished by removing about 11,000 tons of massive steel work platforms that once enshrouded the space shuttle orbiters for servicing and refurbishment for flight – and been transformed into Boeings gleaming white C3PF Starliner manufacturing facility.

Components for the first Starliner that will actually fly in space – known as Spacecraft 1 – began arriving recently at the C3PF. These include the upper and lower domes, as well as the docking hatch for the spacecrafts pressure vessel.

“You can see the beginning of Spacecraft 1. To build it all of the major structural elements are here,” Mulholland explained.

“The lower dome will be populated and get to first power on early next year. We are really looking forward to that. Then we will mate that to the upper dome and start in on the ground qualification on Spacecraft 1.”

Altogether Boeing is fabricating three Starliner flight spacecraft.

“We will start building Spacecraft 2 in the Fall of this year. And then we will start Spacecraft 3 early next year.”

“So we will have three Starliner spacecraft flight crew module builds as we move into the flight campaign.”

The honeycombed upper dome of a Boeing Starliner spacecraft on a work stand inside the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. The upper dome is part of Spacecraft 1 , the first flightworthy Starliner being developed in partnership with NASA’s Commercial Crew Program.  Credit: Ken Kremer/kenkremer.com
The honeycombed upper dome of a Boeing Starliner spacecraft on a work stand inside the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. The upper dome is part of Spacecraft 1 , the first flightworthy Starliner being developed in partnership with NASA’s Commercial Crew Program. Credit: Ken Kremer/kenkremer.com

Technicians are outfitting these individual components of the pressure vessel with wiring and lines, avionics and other systems, before they are bolted together.

Spacecraft 1 is actually the second Starliner being manufactured at the Kennedy Space Center.

The first full scale Starliner vehicle to be built is known as the Structural Test Article (STA) and is nearing completion.

The lower dome of the Boeing Starliner Spacecraft 1 assembly being outfitted with flight systems like wiring,  lines, avionics in the firm’s Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
The lower dome of the Boeing Starliner Spacecraft 1 assembly being outfitted with flight systems like wiring, lines, avionics in the firm’s Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Notably Spacecraft 1 will be the first Starliner to fly in the company’s pad abort test.

“Spacecraft 1 will go into the ground campaign and then the pad abort,” Mulholland stated.

“The test is designed to prove the launch abort system planned for the spacecraft will be able to lift astronauts away from danger in the event of an emergency during launch operations,” says NASA.

The Pad Abort test is currently slated for October 2017 in New Mexico. Boeing will fly an uncrewed orbital flight test in December 2017 and a crewed orbital flight test in February 2018.

“Spacecraft 3 will be the first to fly in orbit on the uncrewed flight test by the end of 2017,” Mulholland confirmed.

‘Spacecraft 2 will go through a several month long thermal vac testing and EMI and EMC in California in the middle of next year and then go into the crewed flight test [in 2018].”

The rather distinctive, olive colored aluminum domes are manufactured using a weldless spin forming process by Spincraft, based in North Billerica, Massachusetts.

They take on their honeycombed look after being machined for the purposes of reducing weight and increasing strength to handle the extreme stresses of spaceflight. The lower dome is machined by Janicki Industries in Layton, Utah, and the upper dome is machined by Major Tool & Machine in Indianapolis.

Overhead view of the docking hatch for the Boeing Starliner Spacecraft 1 assembly which technicians will soon join to the upper dome in the firm’s Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Overhead view of the docking hatch for the Boeing Starliner Spacecraft 1 assembly which technicians will soon join to the upper dome in the firm’s Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Engineers bolted together the upper and lower domes of Boeings maiden Starliner crew module in early May to form the complete hull of the pressure vessel for the Structural Test Article (STA).

Altogether they are held together by 216 bolts. They have to line up perfectly. And the seals are checked to make sure there are no leaks, which could be deadly in space.

Boeing expects to finish fabricating the STA by August.

The completed Starliner STA will then be transported to Boeing’s facility in Huntington Beach, California for a period of critical stress testing that verifies the capabilities and worthiness of the spacecraft.

“Boeing’s testing facility in Huntington Beach, California has all the facilities to do the structural testing and apply loads. They are set up to test spacecraft,” said Danom Buck, manager of Boeing’s Manufacturing and Engineering team at KSC, during an interview in the C3PF.

“At Huntington Beach we will test for all of the load cases that the vehicle will fly in and land in – so all of the worst stressing cases.”

“So we have predicted loads and will compare that to what we actually see in testing and see whether that matches what we predicted.”

Boeing has also vastly updated the mockup Starliner to reflect the latest spacecraft advances and assist in manufacturing the three planned flight units.

Bastian Technologies built many of the components for the mockup and signed as new 18-month new Mentor-Protégé Program agreement with Boeing and NASA at the media event.

The mock up “is used as a hands-on way to test the design, accessibility and human factors during the early design and development phase of the program. The mock-up is currently being used for rapid fire engineering verification activities, ergonomic evaluations [including the seats and display panels], and crew ingress and egress training,” says NASA.

Looking inside the newly upgraded Starliner mockup with display panel, astronauts seats, gear and hatch at top that will dock to the new International Docking Adapter (IDA) on the ISS.    Credit: Ken Kremer/kenkremer.com
Looking inside the newly upgraded Starliner mockup with display panel, astronauts seats, gear and hatch at top that will dock to the new International Docking Adapter (IDA) on the ISS. Credit: Ken Kremer/kenkremer.com

The Boeing CST 100 Starliner is one of two private astronaut capsules – along with the SpaceX Crew Dragon – being developed under a commercial partnership contract with NASA to end our sole reliance on Russia for crew launches back and forth to the International Space Station (ISS).

The goal of NASA’s Commercial Crew Program (CCP) is to restore America’s capability to launch American astronauts on American rockets from American soil to the ISS, as soon as possible.

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 Starliner space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

Since the retirement of NASA’s space shuttle program in 2011, the US was been 100% dependent on the Russian Soyuz capsule for astronauts rides to the ISS at a cost exceeding $70 million per seat.

Starliners will launch to space atop the United Launch Alliance (ULA) Atlas V rocket from pad 41 on Cape Canaveral Air Force Station in Florida.

A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
The Boeing Starliner will launch on a United Launch Alliance (ULA) Atlas V rocket similar to the one carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing ‘Starliner’ commercial crew space taxi manufacturing facility marks Grand Opening at the Kennedy Space Center on Sept 4. 2015.   Exterior view depicting newly installed mural for the Boeing Company’s newly named CST-100 ‘Starliner’ commercial crew transportation spacecraft on the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer /kenkremer.com
Boeing ‘Starliner’ commercial crew space taxi manufacturing facility at the Kennedy Space Center. Exterior view depicts mural for the Boeing Company’s recently named CST-100 ‘Starliner’ commercial crew transportation spacecraft on the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer /kenkremer.com

John Mulholland, vice president and program manager of Boeing Commercial Programs, and Ken Kremer, Universe Today, discuss status and assembly of 1st flightworthy Boeing Starliner by the new Starliner mockup in the Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Starliner will transport US astronauts to the ISS by 2018.  Credit: Julian Leek
John Mulholland, vice president and program manager of Boeing Commercial Programs, and Ken Kremer, Universe Today, discuss status and assembly of 1st flightworthy Boeing Starliner by the new Starliner mockup in the Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Starliner will transport US astronauts to the ISS by 2018. Credit: Julian Leek

SpaceX Adopts Lessons Learned From Multiple Booster Landings – Test Fires Recovered 1st Stage: Videos

SpaceX completed the first full duration test firing of a landed first stage booster on July 28, 2016 on a test stand at their rocket development facility in McGregor, Texas. Credit: SpaceX
SpaceX completed the first full duration test firing of a landed first booster on July 28, 2016 on a test stand at their rocket development facility in McGregor, Texas.
SpaceX completed the first full duration test firing of a landed first stage booster on July 28, 2016 on a test stand at their rocket development facility in McGregor, Texas. Credit: SpaceX

KENNEDY SPACE CENTER, FL – SpaceX founder Elon Musk’s daring dream of rocket recycling and reusability is getting closer and closer to reality with each passing day. After a breathtaking series of experimental flight tests aimed at safely landing the firms spent Falcon 9 first stages on land and at sea over the past half year the bold effort achieved another major milestone by just completing the first full duration test firing of one of those landed boosters.

On Thursday, July 28, SpaceX engineers successful conducted a full duration static engine test firing of the 156-foot-tall (47-meter) recovered Falcon 9 first stage booster while held down on a test stand at the company’s rocket development test facility in McGregor, Texas. The engines fired up for about two and a half minutes.

The SpaceX team has been perfecting the landing techniques by adopting lessons learned after each landing campaign attempt.

What are the lessons learned so far from the first stage landings and especially the hard landings? Are there any changes being made to the booster structure? How well did the landing burn scenario perform?

During SpaceX’s recent CRS-9 launch campaign media briefings at NASA’s Kennedy Space Center on July 18, I asked SpaceX VP Hans Koenigsmann for some insight.

“We learned a lot … from the landings,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today during the recent media briefings for the SpaceX CRS-9 space station cargo resupply launch on July 18.

“There are no structural changes first of all.”

“The key thing is to protect the engines,” Koenigsmann elaborated, while they are in flight and “during reentry”.

The SpaceX Falcon 9 first stage is outfitted with four landing legs at the base and four grid fins at the top to conduct the landing attempts.

“In general I think the landing concept with the legs, and the number of burns and the way we perform those seems to work OK,” Koenigsmann told Universe Today.

After separating from the second stage at hypersonic speeds of up to some 4000 mph, the first stage engines are reignited to reverse course and do a boost backburn back to the landing site and slow the rocket down for a soft landing, via supersonic retropulsion.

Proper engine performance is critical to enabling a successful touchdown.

“The key thing is to protect the engines – and make sure that they start up well [in space during reentry],” Koenigsmann explained. “And in particular the hot trajectory, so to speak, like the ones that comes in after a fast payload, like the geo-transfer payload basically.”

“Those engines need to be protected so that they start up in the proper way. That’s something that we learned.”

Elon Musk’s goal is to radically slash the cost of launching rockets and access to space via rocket reuse – in a way that will one day lead to his vision of a ‘City on Mars.’

SpaceX hopes to refly a once flown booster later this year, sometime in the Fall, using the ocean landed Falcon from NASA’s CRS-8 space station mission launched in April, says Koenigsmann.

But the company first has to prove that the used vehicle can survive the extreme and unforgiving stresses of the violent spaceflight environment before they can relaunch it.

The July 28 test firing is part of that long life endurance testing and involved igniting all nine used first stage Merlin 1D engines housed at the base of a used landed rocket.

The Falcon 9 first stage generates over 1.71 million pounds of thrust when all nine Merlin engines fire up on the test stand for a duration of up to three minutes – the same as for an actual launch.

Watch the engine test in this SpaceX video:

Video Caption: Falcon 9 first stage from May 2016 JCSAT mission was test fired, full duration, at SpaceX’s McGregor, Texas rocket development facility on July 28, 2016. Credit: SpaceX

The used 15 story Falcon booster had successfully carried out an intact soft landing on an ocean going platform after launching a Japanese commercial telecommunications satellite only two months ago on May 6 of this year.

Just 10 minutes after launching the JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO), the used first stage relit a first stage Merlin 1D engine.

It conducted a series of three recovery burns to maneuver the rocket to a designated landing spot at sea or on land and rapidly decelerate it from supersonic speeds for a propulsive soft landing, intact and upright using a quartet of landing legs that deploy in the final moments before a slow speed touchdown.

However, although the landing was upright and intact, this particular landing was also classed as a ‘hard landing’ because the booster landed at a higher velocity and Merlin 1D first stage engines did sustain heavy damage as seen in up close photos and acknowledged by Musk.

“Most recent rocket took max damage, due to v high entry velocity. Will be our life leader for ground tests to confirm others are good,” Musk tweeted at the time.

Nevertheless it all worked out spectacularly and this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

Indeed prior to liftoff, Musk had openly doubted a successful landing outcome, since this first stage was flying faster and at a higher altitude at the time of separation from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform compared to ISS missions, for example.

So although this one cannot be reflown, it still serves another great purpose for engineers seeking to determining the longevity of the booster and its various components – as now audaciously demonstrated by the July 28 engine test stand firing.

“We learned a lot even on the missions where things go wrong with the landing, everything goes well on the main mission of course,” said Koenigsmann.

Altogether SpaceX has successfully soft landed and recovered five of their first stage Falcon 9 boosters intact and upright since the history making first ever land landing took place just seven months ago in December 2015 at Cape Canaveral Air Force Station in Florida.

The most recent launch and landing occurred last week on July 18, 2016 during the dramatic midnight blastoff of the SpaceX CRS-9 commercial cargo resupply mission to the International Space Station (ISS) under contract for NASA.

See the stupendous events unfold in up close photos and videos herein.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Following each Falcon 9 launch and landing attempt, SpaceX engineers assess the voluminous and priceless data gathered, analyze the outcome and adopt the lessons learned.

Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS).   Credit: Ken Kremer/kenkremer.com
Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

CRS-9 marks only the second time SpaceX has attempted a land landing of the 15 story tall first stage booster back at Cape Canaveral Air Force Station – at the location called Landing Zone 1 (LZ 1).

Watch this exquisitely detailed up close video showing the CRS-9 first stage landing at LZ 1, as shot by space colleague Jeff Seibert from the ITL causeway at CCAFS- which dramatically concluded with multiple shockingly loud sonic booms rocketing across the Space Coast and far beyond and waking hordes of sleepers:

Video caption: This was the second terrestrial landing of a SpaceX Falcon 9 booster on July 18, 2016. It had just launched the CRS9 Dragon mission towards the ISS. The landing took place at LZ1, formerly known as Pad 13, located on CCAFS and caused a triple sonic boom heard 50 miles away. Credit: Jeff Seibert

The history making first ever ground landing successfully took place at Landing Zone 1 (LZ 1) on Dec. 22, 2015 as part of the ORBCOMM-2 mission. Landing Zone 1 is built on the former site of Space Launch Complex 13, a U.S. Air Force rocket and missile testing range.

SpaceX also successfully recovered first stages three times in a row at sea this year on an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.

OCISLY is generally stationed approximately 400 miles (650 kilometers) off shore and east of Cape Canaveral, Florida in the Atlantic Ocean. The barge arrives back in port at Port Canaveral several days after the landing, depending on many factors like weather, port permission and the state of the rocket.

However while trying to extend the touchdown streak to 4 in a row during the latest drone ship landing attempt following the June 15 Eutelsat telecom launch to GTO, the booster basically crashed because it descended too quickly due to insufficient thrust from the Merlin descent engines.

The rocket apparently ran out of liquid oxygen fuel in the final moments before touchdown, hit hard, tipped over and pancaked onto the deck.

“Looks like early liquid oxygen depletion caused engine shutdown just above the deck,” Musk explained via twitter at the time.

“Looks like thrust was low on 1 of 3 landing engines. High g landings v sensitive to all engines operating at max.”

Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016  commercial payload launch.  Credit: Julian Leek
Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016 commercial payload launch. Credit: Julian Leek

“We learned a lot even on the mission where things go wrong with the landing,” Koenigsmann explained. “Everything goes well on the main mission of course.”

“That’s actually something where you have successful deploy and the landing doesn’t quite work- and yet its the landing that gets all the attention.”

“But even on those landings we learned a lot. In particular on the last landing [from Eutelsat launch] we learned a lot.”

“We believe we found a way to operationally protect these engines and to make it safer for them to start up – and to come up to full thrust and stay at full thrust.”

What exactly does “protecting the engines” mean “in flight?”

“Yes I mean protecting the engines during reentry,” Koenigsmann told me.

“That’s when the engines get hot. We enter with the engines facing the flow. So its basically the engines directly exposed to the hot flow. And that’s when you need to protect the engines and the gases and liquids that are in the engines. To make sure that nothing boils off and does funny things.”

“So all in all these series of drone ship landings has been extremely successful, even when we didn’t recover all the first stages [fully intact].”

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing SpaceX and CRS-9 mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Watch my launch pad video of the CRS-9 launch:

Video caption: SpaceX Falcon 9 lifts off with Dragon CRS-9 resupply ship bound for the International Space Station on July 18, 2016 at 12:45 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

Watch this CRS-9 launch and landing video compilation from space colleague Mike Wagner:

Video caption: SpaceX CRS-9 Launch and Landing compilation on 7/18/2016. Local papers reported 911 calls for a loud explosion up to 75 miles away. This sonic boom seemed louder than the first landing at the Cape in Dec. 2015. Credit: USLaunchReport

Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Carnival of Space #468-469

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

Welcome, come in to the 468th and 469th Carnival of Space – we combined these two since it’s summer break for a lot of folks!  The Carnival is a community of space science and astronomy writers and bloggers, who submit their best work each week for your benefit. I’m Susie Murph, part of the team at Universe Today and CosmoQuest. So now, on to this week’s stories!
Continue reading “Carnival of Space #468-469”

Flawless Capture and Berthing of SpaceX Dragon Supply Ship at ISS

The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV
The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV
The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV

KENNEDY SPACE CENTER, FL – Following a flawless post midnight blastoff two mornings ago, a pair of NASA astronauts executed a flawless capture of the newest SpaceX Dragon supply ship at the International Space Station early this morning, July 20, carrying 2.5 tons of priceless research equipment and gear for the resident astronauts and cosmonauts.

As the orbiting outpost was traveling 252 statute miles over the Great Lakes, NASA’s veteran Expedition 48 Commander Jeff Williams and newly arrived NASA Flight Engineer Kate Rubins used the station’s 57.7-foot (17.6-meter) Canadian-built robotic arm to reach out and capture the Dragon CRS-9 spacecraft at 6:56 a.m. EDT.

“Good capture confirmed after a two day rendezvous,” said Houston Mission Control at NASA’s Johnson Space Center, as Dragon was approximately 30 feet (10 meters) away from the station.

“We’ve captured us a Dragon,” radioed Williams.

“Congratulations to the entire team that put this thing together, launched it, and successfully rendezvoused it to the International Space Station. We look forward to the work that it brings.”

The SpaceX Dragon is seen attached to the International Space Station’s Harmony module just before orbital sunrise. Credit: NASA TV
The SpaceX Dragon is seen attached to the International Space Station’s Harmony module just before orbital sunrise. Credit: NASA TV

The events unfolded live on a NASA TV webcast for all to follow along.

Furthermore, today’s dramatic Dragon arrival coincides with a renowned day in the annuls of space history. Today coincides with the 40th anniversary of humanity’s first successful touchdown on the surface of Mars by NASA’s Viking 1 lander on July 20, 1976. It paved the way for many future missions.

And Neil Armstrong and Buzz Aldrin were the first humans to land on another celestial body – the Moon – on July 20, 1969 during NASA’s Apollo 11 lunar landing mission.

Williams was working from a robotics work station in the station’s domed cupola. Rubins was Williams backup. She just arrived at the station on July 9 for a minimum 4 month stay, after launching to orbit on a Russian Soyuz on July 6 with two additional crew mates.

Ground controllers then used the robotic arm to maneuver the Dragon cargo spacecraft closer to its berthing port on the Earth facing side of the Harmony module, located at the front of the station.

Some three hours after the successful grappling, Dragon was joined to the station and bolted into place for initial berthing on the Harmony module at 10:03 a.m. EDT as the station flew about 252 statute miles over the California and Oregon border.

Controllers then activated four gangs of four bolts in the common berthing mechanism (CBM) to complete the second stage capture of the latching and berthing of Dragon to the station with a total of 16 bolts to ensure a snug connection, safety and no pressure leaks.

Crew members Williams and Rubins along with Japanese astronaut Takuya Onishi are now working to install power and data cables from the station to Dragon. They plan to open the hatch tomorrow after pressurizing the vestibule in the forward bulkhead between the station and Dragon.

Dragon reached the station after a carefully choreographed orbital chase and series of multiple thruster firings to propel the cargo ship from its preliminary post launch orbit up to the massive million pound science outpost with six resident crew members from the US, Russia and Japan.

Among the 5000 pounds of equipment on board is the first of two identical docking adapters essential for enabling station dockings next year by NASA’s new commercial astronaut taxis. This mission is all about supporting NASA’s ‘Journey to Mars’ by humans in the 2030s.

Liftoff of the SpaceX Falcon 9 rocket in its upgraded, full thrust version and the Dragon CRS-9 resupply ship took place barely 48 hours ago at 12:45 a.m. EDT Monday, July 18, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Dragon reached its preliminary orbit about 10 minutes after launch and then deployed a pair of solar arrays.

SpaceX also successfully executed a spellbinding ground landing of the Falcon 9 first stage back at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

The dramatic ground landing of the 156 foot tall Falcon 9 first stage at LZ -1 took place about 9 minutes after liftoff. It marks only the second time a spent orbit class booster has touched down intact and upright on land.

Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS).   Credit: Ken Kremer/kenkremer.com
Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

Among the wealth of over 3900 pounds (1790 kg) of research investigations loaded on board Dragon is an off the shelf instrument designed to perform the first-ever DNA sequencing in space and the first international docking adapter (IDA) that is absolutely essential for docking of the SpaceX and Boeing built human spaceflight taxis that will ferry our astronauts to the International Space Station (ISS) in some 18 months.

Other science experiments on board include OsteoOmics to test if magnetic levitation can accurately simulate microgravity to study different types of bone cells and contribute to treatments for diseases like osteoporosis, a Phase Change Heat Exchanger to test temperature control technology in space, the Heart Cells experiments that will culture heart cells on the station to study how microgravity changes the human heart, new and more efficient three-dimensional solar cells, and new marine vessel tracking hardware known as the Automatic Identification System (AIS) that will aid in locating and identifying commercial ships across the globe.

The ring shaped IDA-2 unit is stowed in the Dragon’s unpressurized truck section. It weighs 1029 lbs (467 kg), measures about 42 inches tall and sports an inside diameter of 63 inches in diameter – so astronauts and cargo can easily float through. The outer diameter measures about 94 inches.

“Outfitted with a host of sensors and systems, the adapter is built so spacecraft systems can automatically perform all the steps of rendezvous and dock with the station without input from the astronauts. Manual backup systems will be in place on the spacecraft to allow the crew to take over steering duties, if needed,” says NASA.

View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.  The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017. The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015. Credit: Ken Kremer/kenkremer.com

“It’s a passive system which means it doesn’t take any action by the crew to allow docking to happen and I think that’s really the key,” said David Clemen Boeing’s director of Development/Modifications for the space station.

“Spacecraft flying to the station will use the sensors on the IDA to track to and help the spacecraft’s navigation system steer the spacecraft to a safe docking without astronaut involvement.”

CRS-9 counts as the company’s ninth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The CRS-9 mission is for the crews of Expeditions 48 and 49 to support dozens of the approximately 250 science and research investigations in progress under NASA’s Commercial Resupply Services (CRS) contract.

Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida.   Credit: Ken Kremer/kenkremer.com
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

Dragon will remain at the station until its scheduled departure on Aug. 29 when it will return critical science research back to Earth via a parachute assisted splashdown in the Pacific Ocean off the California coast.

Watch for Ken’s continuing CRS-9 mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Nails Mesmerizing Midnight Launch and Land Landing of Falcon 9 Carrying Critical ISS Science and Docking Port

A team of engineers from the University of Glasgow and the Ukraine have created an engine that could cut costs by "eating itself". Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – In a breathtaking feat mesmerizing hordes of thrilled spectators, SpaceX nailed today’s (July 18) back to back post midnight launch and landing of the firms Falcon 9 first stage tasked to carry a cargo Dragon loaded with over two tons of critical science, supplies and a crew docking port to the space station for NASA.

Liftoff of the SpaceX Falcon 9 rocket in its upgraded, full thrust version and the Dragon CRS-9 resupply ship took place right on time at 12:45 a.m. EDT Monday, July 18, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

SpaceX simultaneously successfully delivered over 5000 pounds (2200 kg) of research supplies to orbit for NASA in a commercial cargo Dragon ship, as the primary mission goal – and soft landed the approximately 60,000 pound Falcon 9 first stage on land, as the experimental secondary mission goal.

“The Falcon 9 first stage we landed is in excellent shape,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today at the 2 a.m. EDT post launch and landing media briefing early this morning.

See my launch and landing streak shot and photos herein, including deployment of the four landing legs in the final seconds before propulsive touchdown.

The twin accomplishments will have far reaching implications for the exploration and exploitation of space for all humanity.

“Each commercial resupply flight to the space station is a significant event. Everything, from the science to the spare hardware and crew supplies, is vital for sustaining our mission,” said Kirk Shireman, NASA’s International Space Station Program manager.

“With equipment to enable novel experiments never attempted before in space, and an international docking adapter vital to the future of U.S. commercial crew spacecraft, we’re thrilled this Dragon has successfully taken flight.”

The CRS-9 mission is to support the resident six-person crew of men and women currently working on the station from the US, Russia and Japan.

The propulsive soft landing of the 156 foot tall Falcon 9 first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

The dramatic ground landing at LZ -1 took place about 9 minutes after liftoff.

Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS).   Credit: Ken Kremer/kenkremer.com
Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

The first and second stages separated about two and a half minutes after liftoff and were easily visible to any eyewitness watching – backdropped by the sunshine states dark skies.

As the second stage soared to orbit, the first stage reignited a first stage engine for a series of burns targeting a return to the Cape.

We spotted the first engine firing about two mintues before landing, as it descended directly overhead of myself and everyone in the Cape Canaveral region.

For a few moments it looked like it was headed right towards us, but then steered away as planned with engines blazing to slow the boosters descent to make a gentle landing at LZ-1.

Finally the Falcon landed, obscured by a big vapor cloud and sonic booms roaring around the space coast – and waking many local residents. Several folks told me they were suddenly woken by the shocking booms reverberating inside their homes.

Some area residents even called 911 not knowing the true nature of the noises.

Streak shot of launch and landing of SpaceX Falcon CRS-9 mission from Cape Canaveral Air Force Station, Florida to the ISS on July 18, 2016 at 12:45 a.m. EDT. View from Satellite Beach, FL.  Credit: John Krauss/johnkraussphotos.com
Streak shot of launch and landing of SpaceX Falcon CRS-9 mission from Cape Canaveral Air Force Station, Florida to the ISS on July 18, 2016 at 12:45 a.m. EDT. View from Satellite Beach, FL. Credit: John Krauss/johnkraussphotos.com

Among the wealth of over 3900 pounds (1790 kg) of research investigations loaded on board Dragon is an off the shelf instrument designed to perform the first-ever DNA sequencing in space, and the first international docking adapter (IDA) that is absolutely essential for docking of the SpaceX and Boeing built human spaceflight taxis that will ferry our astronauts to the International Space Station (ISS) in some 18 months.

Blastoff of SpaceX Falcon 9 on Dragon CRS-9 resupply mission to the  International Space Station (ISS) at 12:45 a.m. EDT on July 18, 2016.   Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 on Dragon CRS-9 resupply mission to the International Space Station (ISS) at 12:45 a.m. EDT on July 18, 2016. Credit: Ken Kremer/kenkremer.com

CRS-9 counts as the company’s ninth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The CRS-9 mission is for the crews of Expeditions 48 and 49 to support dozens of the approximately 250 science and research investigations in progress under NASA’s Commercial Resupply Services (CRS) contract.

Dragon reached its preliminary orbit about 10 minutes after launch. Then it deployed a pair of solar arrays and began a carefully choreographed series of thruster firings to reach the space station.

If all goes well, Dragon is scheduled to arrive at the orbiting outpost on Wednesday, July 20, after a 2 day orbital chase.

NASA astronaut Jeff Williams will then reach out with the station’s 57.7-foot-long Canadian-built robotic arm to grapple and capture the private Dragon cargo ship working from a robotics work station in the station’s cupola. NASA astronaut Kate Rubins will serve as Williams backup. She just arrived at the station last week on July 9 for a minimum 4 month stay, after launching to orbit on a Russian Soyuz on July 6 with two additional crew mates.

Ground commands will be sent from Houston to the station’s arm to install Dragon on the Earth-facing bottom side of the Harmony module for its stay at the space station. The crew expects to open the hatch a day later after pressurizing the vestibule in the forward bulkhead between the station and Dragon.

Live coverage of the rendezvous and capture July 20 will begin at 5:30 a.m. on NASA TV, with installation coverage set to begin at 9:45 a.m.

CRS-9 marks only the second time SpaceX has attempted a land landing of the 15 story tall first stage booster.

The history making first time successfully took place at Landing Zone 1 (LZ 1) on Dec. 22, 2015 as part of the ORBCOMM-2 mission. Landing Zone 1 is built on the former site of Space Launch Complex 13, a U.S. Air Force rocket and missile testing range.

SpaceX also successfully recovered first stages three times in a row at sea this year on an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.

Altogether SpaceX has successfully landed and recovered 5 first stage booster intact and upright.

The International Docking Adapter-2 was tested in the Space Station Processing Facility prior to being loaded for launch into space on the SpaceX CRS-9 mission set for July 18, 2016 from Cape Canaveral, Fl.  Credits: NASA
The International Docking Adapter-2 was tested in the Space Station Processing Facility prior to being loaded for launch into space on the SpaceX CRS-9 mission [set for July 18, 2016 from Cape Canaveral, Fl. Credits: NASA

Watch for Ken’s onsite CRS-9 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Here’s my launch pad video of the blastoff:

Video caption: SpaceX Falcon 9 lifts off with Dragon CRS-9 resupply ship bound for the International Space Station on July 18, 2016 at 12:45 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at the pad. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

July 18, 26-28: “SpaceX launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy and Atlas V spy satellite launches, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

An illustration of how the IDA will look when attached to the International Space Station. Credits: NASA
An illustration of how the IDA will look when attached to the International Space Station.
Credits: NASA
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida.   Credit: Ken Kremer/kenkremer.com
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

ROCKY Exercise Device Will Help Keep Deep Space A Fit Place

NASA has unveiled a new exercise device that will be used by Orion crews to stay healthy on their mission to Mars. Credit: NASA

Going into space comes with its share of risks. In addition to the possibility of a catastrophic failure happening during take-off or landing, and having your craft pinholed by a micrometeorite, there are also the dangers of spending extended periods in space. Beyond that, there are also the slow, degenerative effects that spending an extended amount of time in a weightless environment can have on your body.

While astronauts on the ISS have enough space for the work-out equipment they need to help reduce these effects (i.e. muscle degeneration and loss of bone density), long-range missions are another matter. Luckily, NASA has plans for how astronauts can stay healthy during their upcoming “Journey to Mars“. It’s known as the Resistive Overload Combined with Kinetic Yo-Yo (ROCKY) device, which will be used aboard the Orion spacecraft.

For years, engineers at NASA and in the private sector have been working to create the components that will take astronauts to the Red Planet in the 2030s. These include the Space Launch System (SLS) and the Orion Multi Purpose Crew Capsule. At the same time, scientists and engineers at the Ohio-based Zin Technologies company – with the support of the NASA Human Research Program’s Exploration Exercise Equipment project – were busy developing the equipment needed to keep the Martian crews healthy and fit in space.

In this cutaway of the Orion crew module, the ROCKY exercise device in blue sits below the side hatch astronauts will use to get in and out of the spacecraft. Credit: NASA
Cutaway of the Orion crew module, showing the ROCKY exercise device in blue, below the side hatch that astronauts will use to get in and out of the spacecraft. Credit: NASA

One of the biggest challenges was making a device that is robust enough to provide a solid work-out, but still be compact and light-weight enough to fit inside the space capsule. What they came up with was ROCKY, a rowing machine-like tool that can accommodate both aerobic activity and strength training. Using loads that simulate up to 180 kg (400 pounds) of resistance, astronauts will be able to perform excises like squats, deadlifts and heel raises, as well as upper body exercises like bicep curls and upright rows.

In the past, astronauts aboard the ISS have relied on equipment like the Mini Exercise Device-2 or the Treadmill Vibration Isolation System (TVIS) to reduce the risks of bone-density loss and muscle degeneration. But as Gail Perusek – the deputy project manager for NASA’s Exploration Exercise Equipment project – explained, developing exercise equipment for the Journey to Mars required something new:

“ROCKY is an ultra-compact, lightweight exercise device that meets the exercise and medical requirements that we have for Orion missions. The International Space Station’s exercise devices are effective but are too big for Orion, so we had to find a way to make exercising in Orion feasible.”

The device can also be customized, and incorporates the best features from a second device known as the Device for Aerobic and Resistive Training (DART). These include a servo-motor programmed to deliver a load profile that feels very similar to free weights. The DART was developed by TDA Research, a Denver-based R&D company, with the support of NASA’s Small Business Innovation Research Program. It was evaluated alongside the ROCKY during the equipment selection process.

The ROCKY device in action. Credit: NASA
The ROCKY device in action. Credit: NASA

In addition to being used for the crewed mission to Mars, the ROCKY device is likely to become a permanent feature aboard the Orion capsule, which will make it a mainstay for all of NASA’s proposed long-duration missions.

As Cindy Haven, the project manager for the Exploration Exercise Equipment Project, explained: “Our long-term goal is to develop a device that’s going to work for us for exploration. Between now and the mission, we’ll have different phases where we’re going to evaluate it for functionality, usability and durability to refine its design.”

The ROCKY device will be tested for the first time on Exploration Mission-2 (EM-2), the first mission where the spacecraft will be launched with a crew aboard. Th ROCKY will be located near the side hatch of the spacecraft, which astronauts will use to get in and out of the capsule. After the Orion is launched, the crew’s seats will be collapsed to provide more interior space for the astronauts as they work out.

And while the early missions using the Orion capsule will span only a few weeks at a time, staying fit will be important in the unlikely event that the astronauts need to get out of the crew module unassisted after splashdown. In the meantime, NASA will be spending the next few years refining the device to optimize it not only for near-term crewed Orion missions, but for potential uses on future long-duration missions.

NASA has unveiled a new exercise device that will be used by Orion crews to stay healthy on their mission to Mars. Credit: NASA
The ROCKY is likely to become a mainstay for future long-term missions using the Orion space capsule. Credit: NASA

These will include the all-important launch where the Orion will dock with a habitat in the area of space around the moon. These missions are part of Phase II of NASA’s Mars mission, which is known as the “Proving Ground” phase. Scheduled to begin in 2030, this phase will involve the last elements of the mission being launched to cis-lunar orbit, and then all the equipment being sent to near-Mars space for pre-deployment.

The development team that will oversee future refinements will include engineers and scientists from Glenn Research Center in Cleveland, Ohio, and Johnson Space Center in Houston. In addition to building the hardware and ensuring that it is certified for flight, they will also be responsible for incorporating lessons learned from the development of equipment built for the ISS.

If all goes well in the coming years, the team even plans to include ROCKY into the International Space Station’s already impressive array of workout machines. Just another way for the astronauts to beat the slow, degenerative effects of floating freely in space!

Further Reading: NASA

SpaceX Midnight Launch Carrying Crucial Docking Port and Science to ISS Set for July 18, Plus Loud Land Landing – Watch Live

SpaceX conducts Falcon 9 Dragon CRS-9 mission static fire test ahead of planned 18 July 2016 liftoff from Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT. View from atop Launch Complex 39B at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
SpaceX conducts Falcon 9 Dragon CRS-9 mission static fire test ahead of planned 18 July 2016 liftoff from Cape Canaveral Air Force Station in Florida on 18 July 2016 at 12:45 a.m. EDT.  Credit: Ken Kremer/kenkremer.com
SpaceX conducts Falcon 9 Dragon CRS-9 mission static fire test ahead of planned 18 July 2016 liftoff from Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT. View from atop Launch Complex 39B at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The outlook is outstanding for a dramatic midnight blastoff of the next SpaceX commercial cargo Dragon jam packed with some 5000 pounds of critical payloads and research supplies for NASA and heading to the space station on Monday, July 18 – that also simultaneously features an experimental land landing that promises to rock loudly across the Florida space coast and one day slash launch costs.

Dragon is carrying a crucial crew docking port absolutely essential for conducting future human space missions to the orbiting outpost as well as a host of wide ranging science experiments essential for NASA exploiting the space environment for research in low earth orbit and deep space exploration.

Liftoff of the SpaceX Falcon 9 rocket in its upgraded, full thrust version and the Dragon CRS-9 resupply ship is targeted for 12:45 a.m. EDT Monday, July 18, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The International Docking Adapter-2 was tested in the Space Station Processing Facility prior to being loaded for launch into space on the SpaceX CRS-9 mission set for July 18, 2016 from Cape Canaveral, Fl.  Credits: NASA
The International Docking Adapter-2 was tested in the Space Station Processing Facility prior to being loaded for launch into space on the SpaceX CRS-9 mission set for July 18, 2016 from Cape Canaveral, Fl. Credits: NASA

The CRS-9 mission is to support the resident six-person crew of men and women currently working on the station from the US, Russia and Japan.

Spectators are filling local area hotels in anticipation of a spectacular double whammy sky show comprising a thunderous nighttime launch streaking to orbit – followed minutes later by a brilliant rocket flash and night landing back at the Cape of the Falcon first stage that will send sonic booms roaring all around the coast and surrounding inland areas.

SpaceX has confirmed they are attempting the secondary mission of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

The weather and technical outlook for the 229 foot-tall (70 meter) Falcon 9 looks fantastic at this time, a day before liftoff.

The official weather forecast from Air Force meteorologists with the 45th Space Wing calls for a 90 percent chance of “GO” with extremely favorable conditions at launch time for liftoff of this upgraded, SpaceX Falcon 9.

The only concerns are for Cumulus clouds building up and a chance of precipitation.

And for added stargazers delight the night sky features a full moon.

The SpaceX/Dragon CRS-9 launch coverage will be broadcast on NASA TV beginning at 11:30 p.m. EDT Sunday, July 17, with additional commentary on the NASA launch blog.

SpaceX will also feature their own live webcast beginning approximately 20 minutes before launch at 12:25 a.m. EDT Monday, July 18

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can watch the launch live at SpaceX Webcast at – spacex.com/webcast

The launch window is instantaneous, meaning that any delays due to weather or technical issues will results in a minimum 2 day postponement.

If the launch does not occur Monday, a backup launch opportunity exists on 12 a.m. Wednesday, July 20, just seconds after midnight, with NASA TV coverage starting at 10:45 p.m. EDT Tuesday, July 19.

View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.  The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017. The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015. Credit: Ken Kremer/kenkremer.com

CRS-9 marks only the second time SpaceX has attempted a land landing of the 15 story tall first stage booster.

The history making first time took place at Landing Zone 1 (LZ 1) on Dec. 22, 2015 as part of the ORBCOMM-2 mission. Landing Zone 1 is built on the former site of Space Launch Complex 13, a U.S. Air Force rocket and missile testing range.

SpaceX also successfully recovered first stages three times in a row at sea this year on an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.

SpaceX issued a statement describing how local area residents could hear sonic booms – similar to those heard during landings of NASA’s space shuttles.

“There is the possibility that residents of northern and central Brevard County, Fla. may hear one or more sonic booms during landing. A sonic boom is a brief thunder-like noise a person on the ground hears when an aircraft or other vehicle flies overhead faster than the speed of sound,” said SpaceX.

Who could be affected?

“Residents of the communities of Cape Canaveral, Cocoa, Cocoa Beach, Courtenay, Merritt Island, Mims, Port Canaveral, Port St. John, Rockledge, Scottsmoor, Sharpes, and Titusville in Brevard County, Fla. are most likely to hear a sonic boom, although what residents experience will depend on weather conditions and other factors.”

The sights and sound are certain to be thrilling- so catch it if you can!

CRS-9 counts as the company’s ninth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The CRS-9 mission is for the crews of Expeditions 48 and 49 to support dozens of the approximately 250 science and research investigations in progress under NASA’s Commercial Resupply Services (CRS) contract.

SpaceX engineers conducted their standard static fire hold down test of the first stages Merlin 1D engines with the rocket erect at pad 40, this morning Saturday, July 16.

The customary test lasts a few seconds and was conducted with the Dragon bolted on top at about 9:30 a.m. I saw the test while visiting atop neighboring Launch Complex 39B at the Kennedy Space Center – see photo.

“All looks good,” reported Hans Koenigsmann, SpaceX vice president of Flight Reliability, at a media briefing this afternoon.

“We expect a GO for launch.”

Dragon will reach its preliminary orbit about 10 minutes after launch. Then it will deploy its solar arrays and begin a carefully choreographed series of thruster firings to reach the space station.

If all goes well, Dragon will arrive at the orbiting outpost on Wednesday, July 20, after a 2 day orbital chase.

NASA astronaut Jeff Williams will then reach out with the station’s 57.7-foot-long Canadian-built robotic arm to grapple and capture the private Dragon cargo ship working from a robotics work station in the station’s cupola. NASA astronaut Kate Rubins will serve as Williams backup. She just arrived at the station last week on July 9 for a minimum 4 month stay, after launching to orbit on a Russian Soyuz on July 6 with two additional crew mates.

Ground commands will be sent from Houston to the station’s arm to install Dragon on the Earth-facing bottom side of the Harmony module for its stay at the space station. The crew expects to open the hatch a day later after pressurizing the vestibule in the forward bulkhead between the station and Dragon.

Live coverage of the rendezvous and capture July 20 will begin at 5:30 a.m. on NASA TV, with installation coverage set to begin at 9:45 a.m.

An illustration of how the IDA will look when attached to the International Space Station. Credits: NASA
An illustration of how the IDA will look when attached to the International Space Station.
Credits: NASA

Perhaps the most critical payload relating to the future of humans in space is the 1,020-pound international docking adapter known as IDA-2 or International Docking Adapter-2.

Here’s an early morning video view of Falcon 9 on the pad today.

Video Caption: Early morning shots of CRS-9 ready for flight on Monday July 18 at 12:45 AM. Credit: USLaunchReport

Watch for Ken’s onsite CRS-9 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

July 15-18: “SpaceX launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, surveys the IDA-2 inside the Space Station Processing Facility.  Credits: NASA
Former astronaut Bob Cabana, director of NASA’s Kennedy Space Center in Florida, surveys the IDA-2 inside the Space Station Processing Facility. Credits: NASA
SpaceX Dragon CRS-9 mission logo. Credit: SpaceX
SpaceX Dragon CRS-9 mission logo. Credit: SpaceX

Flawless Shakedown Mission from Modified Soyuz Delivers Multinational Crew to Space Station

Three newly arrived crew of Expedition 48 in Soyuz MS-01 open the hatch and enter the International Space Station after docking on July 9, 2016. Credit: NASA TV
Three newly arrived crew of Expedition 48 in Soyuz MS-01 open the hatch and enter the International Space Station after docking on July 9, 2016.  Credit: NASA TV
Three newly arrived crew of Expedition 48 in Soyuz MS-01 open the hatch and enter the International Space Station after docking on July 9, 2016. Credit: NASA TV

A flawless shakedown mission from Russia’s newly modified Soyuz capsule successfully delivered a new multinational crew to the Space Station early Saturday, July 9 after a two day orbital chase.

The upgraded Soyuz MS-01 spacecraft launching on its maiden flight successfully docked to the International Space Station at 12:06 a.m. EDT Saturday, July 9, while soaring 254 statute miles over the South Pacific.

“Docking confirmed,” said a commentator from Russian mission control at Korolev outside Moscow. “Contact and capture complete.”

The Soyuz was ferrying the new multinational trio of astronauts and cosmonauts comprising Kate Rubins of NASA, Soyuz Commander Anatoly Ivanishin of the Russian space agency Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency on the Expedition 48/49 mission.

The three person crew of two men and one woman had launched flawlessly into picture perfect skies two days earlier from the Baikonur Cosmodrome in Kazakhstan at 9:36 p.m. EDT Wednesday, July 6 (7:36 a.m. Baikonur time, July 7), in the brand new version of the Russian Soyuz capsule that has been significantly upgraded and modified.

NASA’s Kate Rubins was strapped into the right seat, Ivanishin in the center and Onishi on the left.

The Soyuz MS-01 spacecraft, carrying three Expedition 48-49 crew members, launches from the Baikonur Cosmodrome in Kazakhstan at 9:36 p.m. EDT Wednesday, July 6, 2016 (7:36 a.m. Baikonur time, July 7).  Credits: NASA/Bill Ingalls
The Soyuz MS-01 spacecraft, carrying three Expedition 48-49 crew members, launches from the Baikonur Cosmodrome in Kazakhstan at 9:36 p.m. EDT Wednesday, July 6, 2016 (7:36 a.m. Baikonur time, July 7). Credits: NASA/Bill Ingalls

It was a textbook approach on the shakedown mission that culminated in a flawless docking at the Earth-facing Russian Rassvet module on the Russian side of the massive orbiting outpost.

NASA TV carried the whole operation live with beautiful color video imagery streaming from the ISS showing the Soyuz approach and black and white video streaming from the Soyuz.

The Soyuz MS-01 spacecraft is viewed from the International Space Station as it approaches the Rassvet module docking port. Credit: NASA TV
The Soyuz MS-01 spacecraft is viewed from the International Space Station as it approaches the Rassvet module docking port. Credit: NASA TV

The Soyuz performed magnificently. All of the upgraded and modified systems checked out perfectly on this maiden flight of the new version of Russias venerable Soyuz, said NASA commentator Rob Navias.

“All new systems functioning perfectly,” said Navias. “This has been a perfect shakedown mission for the new Soyuz crew docking at the ISS.”

The Soyuz had slowed to an approach velocity of just 0.1 m/s at docking with the forward docking probe extended.

The approach was fully automated under Russian mission control as Ivanishin carefully monitored all spacecraft systems with steady update calls back to ground control.

The fully automated approached utilized the upgraded KURS NA automated rendezvous radar system.

During final approach, the Soyuz conducted a fly around maneuver starting at a distance of 400 meters. It moved 57 degress around the station while closing in to about 250 meters.

After station keeping for about 2 minutes while ground controllers conducted a final evaluation and no issues were detected, Russian mission control at last gave the GO for final approach and the GO command for docking was given.

The Soyuz made contact and completed a perfect docking at Rassvet. The hook and latches were then closed in for a tight grasp onto the station.

The crews then conducted a series of leak and pressurization checks.

After everything checked out, the hatches were finally opened about two and a half hours later at 2:26 a.m. EDT.

The new crew members of Expedition 48 officially floated aboard the International Space Station at about 2:50 a.m. EDT, July 9 with the hatches opened between their Soyuz MS-01 and the space station and after a live video transmission link had been established to show the festivities.

The new six-member Expedition 48 crew join each other for well wishes and congratulations from family, friends and mission officials. In front, from left, are the new crew members Kate Rubins, Anatoly Ivanishin and Takuya Onishi. In the back row are Flight Engineers Oleg Skripochka and Alexey Ovchinin and Commander Jeff Williams. Credit: NASA TV
The new six-member Expedition 48 crew join each other for well wishes and congratulations from family, friends and mission officials. In front, from left, are the new crew members Kate Rubins, Anatoly Ivanishin and Takuya Onishi. In the back row are Flight Engineers Oleg Skripochka and Alexey Ovchinin and Commander Jeff Williams. Credit: NASA TV

They were welcomed aboard with hugs and joined the Expedition 48 Commander Jeff Williams of NASA and Flight Engineers Oleg Skripochka and Alexey Ovchinin of Roscosmos.

With the arrival of Rubins, Ivanishin and Onishi, the stations resident crew is beefed up to its normal six person crew complement.

They soon held the traditional video telecon for well wishes and congratulations from family, friends and mission officials.

The new trio will spend at least four months at the orbiting lab complex conducting more than 250 science investigations in fields such as biology, Earth science, human research, physical sciences, and technology development.

Rubins is on her rookie space mission. She holds a bachelor’s degree in molecular biology and a doctorate in cancer biology which will be a big focus of her space station research activities.

The new trio will join Expedition 48 Commander Jeff Williams of NASA and Flight Engineers Oleg Skripochka and Alexey Ovchinin of Roscosmos.

“The approximately 250 research investigations and technology demonstrations – not possible on Earth – will advance scientific knowledge of Earth, space, physical, and biological sciences. Science conducted on the space station continues to yield benefits for humanity and will enable future long-duration human and robotic exploration into deep space, including the agency’s Journey to Mars,” says NASA.
The newly upgraded Soyuz offers increased reliability and enhanced performance.

Many changes were instituted including enhanced structural performance to minimize chances of micrometeoroid penetration. Engineers also added a fifth battery for more power and storage capacity. The solar arrays are also about one square meter larger and the efficiency of the solar cells increased about 2 percent.

Also a more modern command and telemetry system to interact with a new series of new Russian communications satellites that will offer greatly increased the coverage by ground control. This was previously only about 20 minutes per orbit while over Russian ground stations and will now increase up to 45 to 90% of orbital coverage via the Russian comsat system.

A phased array antenna was also added with increased UHF radio capability in the Soyuz descent module that now also include a GPS system to improve search and rescue possibilities.

The newly upgraded KURS rendezvous radar system will weigh less, use less power and overall will be less complicated. For example it doesn’t have to be moved out of the way before docking. Weighs less and uses less power.

New approach and attitude control thrusters were installed. The new configuration uses 28 thrusters with a redundant thruster for each one – thus two fully redundant manifolds of 28 thrusters each.
All of these modification were tested out on the last two progress vehicles.

Multiple unmanned cargo ships carrying tons of essential supplies and science experiments are also scheduled to arrive from Russia, the US and Japan over the next few months.

A SpaceX Dragon is scheduled to launch as soon as July 18 and an Orbital ATK Cygnus should follow in August.
The SpaceX Dragon CRS-9 mission is slated to deliver the station’s first International docking adapter (IDA) to accommodate the future arrival of U.S. commercial crew spacecraft, including the Boeing built Starliner and SpaceX built Crew Dragon.

A Japanese HTV cargo craft will carry lithium ion batteries to replace the nickel-hydrogen batteries currently used on station to store electrical energy generated by the station’s huge rotating solar arrays.

Two Russian Progress craft with many tons of supplies are also scheduled to arrive.

The Soyuz MS-01 spacecraft launches from the Baikonur Cosmodrome with Expedition 48-49 crewmembers Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) onboard, Thursday, July 7, 2016 , Kazakh time (July 6 Eastern time), Baikonur, Kazakhstan.  Photo Credit: NASA/Bill Ingalls
The Soyuz MS-01 spacecraft launches from the Baikonur Cosmodrome with Expedition 48-49 crewmembers Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) onboard, Thursday, July 7, 2016 , Kazakh time (July 6 Eastern time), Baikonur, Kazakhstan. Photo Credit: NASA/Bill Ingalls

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer