Who Are The Most Famous Astronauts?

Apollo 11 Crew Photo. Credit: NASA

There have been many astronauts who have made tremendous contributions to our knowledge of space. But asking “who is the most famous?” is somewhat tricky. For one, its a bit subjective. And second, it can be hard to objectively measure just how important and individuals contributions really are. Surely, all astronauts are deserving of recognition and respect for their bravery and contributions to the pursuit of knowledge.

Nevertheless, in the course of human space exploration, some names do stand out more than others. And some have made such immense contributions that their names will live on long after we too have passed away. So without further ado, here are just a few of the most famous astronauts, along with a list of their accomplishments.

Yuri Gagarin:

As the first man to ever go into space, no list of famous astronauts would be complete without Yuri Gagarin. Born in the village of Klushino in the Smolensk Oblast on March 9th, 1934, Gagarin was drafted into the Soviet Air Force in 1955 and trained in the use of jet fighters. In 1960, he was selected alongside 19 other pilots to join the newly-formed Soviet Space Program.

Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti
Yuri Gagarin before a space flight aboard the Vostok 1 spacecraft, April 12th, 1961. Credit: RIA Novosti

Gagarin was further selected to become part of the Sochi Six, an elite group of cosmonauts who formed the backbone of the Vostok program. Due to his training, physical size (as the spacecraft were quite cramped), and favor amongst his peers, Gagarin was selected to be the first human cosmonaut (they had already sent dogs) to make the journey.

On April 12th, 1961, Gagarin was launched aboard the Vostok 1 spacecraft from the Baikonur Cosmodrome, and thus became the fist man to go into space. During reentry, Gagarin claimed to have whistled “The Motherland Hears, The Motherland Knows”, and reportedly said, “I don’t see any God up here” when he reached suborbital altitude (which was falsely attributed).

Afterwards, he toured the world and became a celebrity at home, commemorated with stamps, statues, and the renaming of his ancestral village to Gagarin. The 12th of April is also known as “Cosmonauts Day” in Russia and many former Soviet-states in his honor.

Gagarin died during a routine training exercise in March 27th, 1968. The details of his death were not released until June of 2013, when a declassified report indicated that Gagarin’s death was caused by the error of another pilot.

Alan B. Shepard Jr.:

In addition to being an astronaut and one of the Mercury Seven – the first seven pilots selected by NASA to go into space – Shepard was also the first American man to go into space. He was born November 18th, 1923 in Pebble, California and graduated from the United States Naval Academy with a Bachelor of Science degree. While in the Navy, Shepard became a fighter pilot and served aboard several aircraft carriers in the Mediterranean.

Alan Shepard prepares for his historic flight on May 5, 1961. Credit: NASA
Alan Shepard prepares for his historic flight on May 5, 1961. Credit: NASA

In 1959, he was selected as one of 110 military test pilots to join NASA. As 0ne of the seven Mercury astronauts, Shepard was selected to be the first to go up on May 5th, 1961. Known as the Freedom 7 mission, this flight placed him into a suborbital flight around Earth. Unfortunately, Alan was beaten into space by Soviet cosmonaut Yuri Gagarin by only a few weeks, and hence became the first American to go into space.

Shepard went on to lead other missions, including the Apollo 14 mission – which was the third mission to land on the Moon. While on the lunar surface, he was photographed playing a round of golf and hit two balls across the surface. After leaving NASA, he became a successful businessman. He died of leukemia on July 21st, 1998, five weeks before the death of his wife of 53 years.

Valentina Tereshkova:

Another famous Russian cosmonaut, Tereshkova is also internationally renowned for being the first woman to go into space. Born in the village of Maslennikovo in central Russia on March 6th, 1937, Tereshkova became interested in parachuting from a young age and began training at the local aeroclub.

After Gagarin’s historic flight in 1961, the Soviets hopes to also be the first country to put a woman into space. On 16 February 1962, Valentina Tereshkova was selected to join the female cosmonaut corps, and was selected amongst hundreds to be one of five women who would go into space.

In addition to her expertise in parachuting (which was essential since Vostok pilots were to parachute from the capsule after reentry), her background as a “proletariat”, and the fact that her father was a war hero from the Russo-Finnish War, led to her being selected.

Soviet Cosmonaut Valentina Tereshkova photographed inside the Vostok-6 spacecraft on June 16, 1963. Credit: Roscosmos
Soviet Cosmonaut Valentina Tereshkova photographed inside the Vostok-6 spacecraft on June 16, 1963. Credit: Roscosmos

Her mission, Vostok 6, took place on June 16th, 1963. During her flight, Tereshkova orbited Earth forty-eight times, kept a flight log and took photographs that would prove useful to atmospheric studies. Aside from some nausea (which she later claimed was the result of spoiled food!) she maintained herself for the full three days and parachuted down during re-entry, landing a bit hard and bruising her face.

After returning home, Tereshkova went on to become a cosmonaut engineer and spent the rest of her life in key political positions. She married fellow cosmonaut Andrian Nikolayev and had a daughter. After her flight, the women’s corps was dissolved. Vostok 6 was to be the last of the Vostok flights, and it would be nineteen years before another woman would go into space (see Sally Ride, below).

John Glenn Jr.:

Colonel Glenn, USMC (retired) was a Marine Corps fighter pilot and a test pilot before becoming an astronaut. Due to his experience, he was chosen by NASA to be part of the Mercury Seven in 1959. On February 20, 1962, Glenn flew the Friendship 7 mission, and thus became the first American astronaut to orbit the Earth and the fifth person to go into space.

John Glenn enters his Friendship 7 spacecraft on On Feb. 20, 1962. Credit: NASA
John Glenn enters his Friendship 7 spacecraft on On Feb. 20, 1962. Credit: NASA

For his contributions to spaceflight, John Glenn earned the Space Congressional Medal of Honor. After an extensive career as an astronaut, Glenn retired from NASA on January 16th, 1964, to enter politics. He won his first bid to become a US Senator in 1974, representing Ohio for the Democratic Party, and was reelected numerous times before retiring in January of 1999.

With the death of Scott Carpenter on October 10, 2013, he became the last surviving member of the Mercury Seven. He was also the only astronaut to fly in both the Mercury and Space Shuttle programs – at age 77, he flew as a Payload Specialist on Discovery mission (STS-95). For his history of service, he was awarded the Presidential Medal of Freedom in 2012.

Neil Armstrong:

Neil Armstrong is arguably the most famous astronauts, and indeed one of the most famous people that has ever lived. As commander of the historic Apollo 11 mission, he will forever be remembered as the first man to ever walk on a body other than Earth. Born on August 5th, 1930, in Wapakoneta, Ohio, he graduated from Purdue University and served the National Advisory Committee for Aeronautics High-Speed Flight Station before becoming an astronaut.

Neil A. Armstrong inside the Lunar Module after EVA
Neil A. Armstrong inside the Lunar Module after EVA. Credit: NASA

In accordance with the Holloway Plan, Neil studied at Purdue for two years and then committed to three years of military service as a naval aviator before completing his degree. During this time, he trained in the use of jet aircraft and became a test pilot at Andrews Air Force base, meeting such personalities as Chuck Yeager.

In 1962, when NASA was looking to create a second group of astronauts (after the Mercury 7), Armstrong joined and became part of the Gemini program. He flew two missions, as the command pilot and back-up command pilot for Gemini 8 and Gemini 11 (both in 1966), before being offered a spot with the Apollo program.

On July 16th, 1969, Armstrong went into space aboard the Apollo 11 spacecraft, alongside “Buzz” Aldrin and Michael Collins. On the 20th, after the lunar module set down on the surface,  he became the first person to walk on the Moon.  As he stepped onto the lunar surface, Armstrong uttered the famous words, “That’s one small step for a man, one giant leap for mankind.”

After retiring from NASA in 1971, Armstrong completed his master’s degree in aerospace engineering, became a professor at the University of Cincinnati, and a private businessman.

On Augusts 25th, 2012, he died at the age of 82 after suffering complications from coronary artery bypass surgery. On September 14th, his cremated remains were scattered in the Atlantic Ocean during a burial-at-sea ceremony aboard the USS Philippine Sea.

For his accomplishments, Armstrong was awarded the Presidential Medal of Freedom, the Congressional Space Medal of Honor, and the Congressional Gold Medal in 2009.

James Lovell Jr.:

Lovell was born on March 25th, 1928 in Cleveland, Ohio. Like Shepard, he graduated from the US Naval Academy and served as a pilot before becoming one of the Mercury Seven. Over the course of his career, he flew several missions into space and served in multiple roles. The first was as the pilot of the Apollo 8 command module, which was the first spacecraft to enter lunar orbit.

He also served as backup commander during the Gemini 12 mission, which included a rendezvous with another manned spacecraft. However, he is most famous for his role as commander the Apollo 13 mission, which suffered a critical failure en route to the Moon but was brought back safely due to the efforts of her crew and the ground control team.

Lovell is a recipient of the Congressional Space Medal of Honor and the Presidential Medal of Freedom. He is one of only 24 people to have flown to the Moon, the first of only three people to fly to the Moon twice, and the only one to have flown there twice without making a landing. Lovell was also the first person to fly in space four times.

Original crew photo. Left to right: Lovell, Mattingly, Haise. Credit: NASA
Original crew photo, (left to right) Jim Lovell, Thomas K. Mattingly, and Fred W. Haise. Credit: NASA

Dr. Sally Ride:

Sally Ride became renowned in the 1980s for being one of the first women to go into space. Though Russians had already sent up two female astronauts – Valentina Tereshkova (1963) and Svetlana Savitskaya (1982) – Ride was the first American female astronaut to make the journey. Born on May 26th, 1951, in La Jolla, California, Ride received her doctorate from Stanford University before joining NASA in 1978.

On June 18th, 1983, she became the first American female astronaut to go into space as part of the STS-7 mission that flew aboard the space shuttle Challenger. While in orbit, the five-person crew deployed two communications satellites and Ride became the first woman to use the robot arm (aka. Canadarm).

Her second space flight was in 1984, also on board the Challenger. In 1986, Ride was named to the Rogers Commission, which was charged with investigating the space shuttle Challenger disaster. In 2003, she would serve on the committee investigating the space shuttle Columbia disaster, and was the only person to serve on both.

Sally Ride communicates with ground controllers from the flight deck during the six-day mission in Challenger, 1983. Credit: U.S. National Archives and Records Administration
Sally Ride communicates with ground controllers from the flight deck during STL-7 in 1983. Credit: U.S. National Archives and Records Administration

Ride retired from NASA in 1987 as a professor of physics and continued to teach until her death in 2012 from pancreatic cancer. For her service, she was given numerous awards, which included the National Space Society’s von Braun Award, two NASA Space Flight Medals, and was inducted into the National Women’s Hall of Fame and the Astronaut Hall of Fame.

Chris Hadfield:

Last, but certainly not least, there’s Chris Hadfield, the Canadian astronaut, pilot and engineer who became famous for his rendition of “Space Oddity” while serving as the commander of the International Space Station. Born on August 29th, 1959 in Sarnia, Ontario, Hadfield became interesting in flying at a young age and in becoming an astronaut when he watched the televised Apollo 11 landing at age nine.

After graduating from high school, Hadfield joined the Canadian Armed Forces and spent two years at Royal Roads Military College followed by two years at the Royal Military College, where he received a bachelor’s degree in mechanical engineering in 1982. He then became a fighter pilot with the Royal Canadian Air Force, flying missions for NORAD. He also flew as a test pilot out of Andrews Air Force Base as part of an officer exchange.

In 1992, Hadfield became part of the Canadian Space Agency and was assigned to NASA’s Johnson Space Center in Houston, as a technical and safety specialist for Shuttle Operations Development. He participated in two space missions – STS-74 and STS-100 in 1995 and 2001, respectively – as a Mission Specialist. These missions involved rendezvousing with Mir and the ISS.

Canadian astronaut Chris Hadfield, the first Canadian to serve as commander of the ISS. Credit: CTV
Canadian astronaut Chris Hadfield performing his rendition of “Space Oddity”. Hadfield is the first Canadian to serve as commander of the ISS. Credit: CTV

On December 19th 2012, Hadfield launched in the Soyuz TMA-07M flight for a long duration stay on board the ISS as part of Expedition 35. He became the first Canadian to command the ISS when the crew of Expedition 34 departed in March 2013, and received significant media exposure due to his extensive use of social media to promote space exploration.

Forbes described Hadfield as “perhaps the most social media savvy astronaut ever to leave Earth”. His promotional activities included a collaboration with Ed Robertson of The Barenaked Ladies and the Wexford Gleeks, singing “Is Somebody Singing? (I.S.S.) via Skype. The broadcast of this event was a major media sensation, as was his rendition of David Bowie’s “Space Oddity“, which he sung shortly before departing the station in May 2013.

For his service, Hadfield has received numerous honors, including the Order of Canada in 2014, the Vanier Award in 2001, NASA Exceptional Service Medal in 2002, the Queen’s Golden Jubilee Medal in 2002, and the Queen’s Diamond Jubilee Medal in 2012. He is also the only Canadian to have received both a military and civilian Meritorious Service Cross, the military medal in 2001 and the civilian one in 2013.

Universe Today has interesting articles on Neil Armstrong, “Buzz” Edwin Aldrin, and the enduring legacy of Apollo 11.

If you are looking for more information, you should check out famous aviators and astronauts and astronaut biographies.

Astronomy Cast has an episode on the US space shuttle.

Sources:
NASA: Alan Shepard Jr
NASA: Neil Armstrong
NASA: John Glenn
NASA: James Lovell Jr.
NASA: Sally Ride

NASA Orders First Ever Commercial Human Spaceflight Mission from Boeing

Boeing was awarded the first service flight of the CST-100 crew capsule to the International Space Station as part of the Commercial Crew Transportation Capability agreement with NASA in this artists concept. Credit: Boeing

The restoration of America’s ability to launch American astronauts to the International Space Station (ISS) from American soil in 2017 took a major step forward when NASA ordered the first ever commercial human spaceflight mission from Boeing.

NASA’s Commercial Crew Program (CCP) office gave the first commercial crew rotation mission award to the Boeing Company to launch its CST-100 astronaut crew capsule to the ISS by late 2017, so long as the company satisfactorily meets all of NASA’s human spaceflight certification milestones.

Thus begins the history making new era of commercial human spaceflight.

“This occasion will go in the books of Boeing’s nearly 100 years of aerospace and more than 50 years of space flight history,” said John Elbon, vice president and general manager of Boeing’s Space Exploration division, in a statement.

“We look forward to ushering in a new era in human space exploration.”

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 ‘space taxi’ under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

“Final development and certification are top priority for NASA and our commercial providers, but having an eye on the future is equally important to the commercial crew and station programs,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.

“Our strategy will result in safe, reliable and cost-effective crew missions.”

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry four to seven person crews to the ISS. Credit: Ken Kremer – kenkremer.com

The CST-100 will be carried to low Earth orbit atop a manrated United Launch Alliance Atlas V rocket launching from Cape Canaveral Air Force Station, Florida.

Boeing will first conduct a pair of unmanned and manned orbital CST-100 test flights earlier in 2017 in April and July, prior to the operational commercial crew rotation mission to confirm that their capsule is ready and able and met all certification milestone requirements set by NASA.

“Orders under the CCtCap contracts are made two to three years prior to the missions to provide time for each company to manufacture and assemble the launch vehicle and spacecraft. In addition, each company must successfully complete the certification process before NASA will give the final approval for flight,” says NASA.

Boeing got the mission order from NASA because they have “successfully demonstrated to NASA that the Commercial Crew Transportation System has reached design maturity appropriate to proceed to assembly, integration and test activities.”

Boeing recently completed the fourth milestone in the CCtCap phase dubbed the delta integrated critical design review.

Read my earlier exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander and who now leads Boeings CST-100 program; here and here.

The commercial crew program is designed to return human spaceflight launches to the United States and end our sole source reliance on Russia and the Soyuz capsule.

ISS Soyuz crew rotation missions are currently on hold due to the recent launch failure of the Russian Soyuz booster and Progress resupply vessel earlier this month.

Since the forced retirement of NASA’s shuttle orbiters in 2011, US astronauts have been totally dependent on the Russians for trips to space and back.

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

SpaceX also received a NASA award worth $2.6 Billion to build the Crew Dragon spacecraft for launch atop the firms man-rated Falcon 9 rocket.

SpaceX conducted a successful Pad Abort Test of the Crew Dragon on May 6, fulfilling a key NASA milestone, as I reported here.

NASA will order a commercial mission from SpaceX sometime later this year. At a later date NASA will decide which company will fly the first commercial crew rotation mission to the ISS.

Both the CST-100 and Crew Dragon will typically carry a crew of four or five NASA or NASA-sponsored crew members, along with some 220 pounds of pressurized cargo. Each will also be capable of carrying up to seven crew members depending on how the capsule is configured.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

The spacecraft will be capable to remaining docked at the station for up to 210 days and serve as an emergency lifeboat during that time.

The NASA CCtCAP contracts call for a minimum of two and a maximum potential of six missions from each provider.

The station crew will also be enlarged to seven people that will enable a doubling of research time.

“Commercial Crew launches are critical to the International Space Station Program because it ensures multiple ways of getting crews to orbit,” said Julie Robinson, International Space Station chief scientist.

“It also will give us crew return capability so we can increase the crew to seven, letting us complete a backlog of hands-on critical research that has been building up due to heavy demand for the National Laboratory.”

NASA’s Commercial Crew Program initiative aims to restore US access to the ISS. Credit: NASA
NASA’s Commercial Crew Program initiative aims to restore US access to the ISS. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

SpaceX Dragons Coming and Going at Record Setting Pace

Release of SpaceX-6 Dragon on May 21, 2015 from the International Space Station for Pacific Ocean splashdown later in the day. Credit: NASA/Terry Virts

Release of SpaceX-6 Dragon on May 21, 2015 from the International Space Station for Pacific Ocean splashdown later in the day. Credit: NASA/Terry Virts
Story updated with further details and photos[/caption]

SpaceX Dragons seem to be flying nearly everywhere these days, coming and going at a record pace to the delight and relief of NASA, researchers and the space faring crews serving aboard the International Space Station (ISS). As one Dragon returned to Earth from space today, May 21, another Dragon prepares to soar soon to space.

The commercial SpaceX-6 cargo Dragon successfully splashed down in the Pacific Ocean at 12:42 p.m. EDT (1642 GMT) today, Thursday, about 155 miles southwest of Long Beach, California, some five hours after it was released from the grip of the stations robotic arm this morning at 7:04 a.m. EDT by the Expedition 43 crew as the craft were flying some 250 miles (400 km) above Australia.

The ocean splashdown marked the conclusion to the company’s sixth cargo resupply mission to the ISS under a commercial contract with NASA. Overall this was the seventh trip by a Dragon spacecraft to the station since the inaugural flight in 2012.

Following the launch failure and uncontrolled destructive plummet back to Earth of the Russian Progress 59 cargo freighter earlier this month, the station and its six person international crews are more dependent than ever on the SpaceX commercial supply train to orbit to keep it running and humming with productive science.

Working from a robotics work station in the domed cupola, NASA astronaut Scott Kelly released the Dragon CRS-6 spacecraft from the grappling snares of the 57.7-foot-long (17-meter-long) Canadian-built robotic arm with help from fellow NASA astronaut Terry Virts. Kelly is a member of the first 1 Year ISS mission crew, along with Russian cosmonaut Mikhail Kornienko.

The capsule then performed an intricate series of three departure burns and maneuvers to move beyond the imaginary 656-foot (200-meter) “keep out sphere” around the station and begin its five and a half hour long trip back to Earth.

The station crew had packed Dragon with almost 3,100 pounds of NASA cargo from the International Space Station. The including research samples pertaining to a host of experiments on how spaceflight and microgravity affect the aging process and bone health as well as no longer need items and trash to reduce station clutter.

The SpaceX Dragon cargo spacecraft was released from the International Space Station's robotic arm at 7:04 a.m. EDT Thursday. The capsule then performed a series of departure burns and maneuvers to move beyond the 656-foot (200-meter) "keep out sphere" around the station and begin its return trip to Earth.  Credits: NASA TV
The SpaceX Dragon cargo spacecraft was released from the International Space Station’s robotic arm at 7:04 a.m. EDT Thursday. The capsule then performed a series of departure burns and maneuvers to move beyond the 656-foot (200-meter) “keep out sphere” around the station and begin its return trip to Earth. Credits: NASA TV

“Spaceflight-induced health changes, such as decreases in muscle and bone mass, are a major challenge facing our astronauts,” said Julie Robinson, NASA’s chief scientist for the International Space Station Program Office at NASA’s Johnson Space Center in Houston, in a statement.

“We investigate solutions on the station not only to keep astronauts healthy as the agency considers longer space exploration missions but also to help those on Earth who have limited activity as a result of aging or illness.”

The Dragon was retrieved from the ocean by recovery boats following the parachute assisted splashdown. It will be transported to Long Beach, California for removal and return of the NASA cargo. The capsule itself will be shipped to SpaceX’s test facility in McGregor, Texas, for processing to remove cargo and inspection of its performance.

Dragon splashes down into the Pacific Ocean, carrying 3,100 lbs of cargo and science for NASA on May 21, 2015, Credit: SpaceX.
Dragon splashes down into the Pacific Ocean, carrying 3,100 lbs of cargo and science for NASA on May 21, 2015, Credit: SpaceX.

“The returning Space Aging study, for example, examines the effects of spaceflight on the aging of roundworms, widely used as a model for larger organisms,” noted NASA in a statement.

“By growing millimeter-long roundworms on the space station, researchers can observe physiological changes that may affect the rate at which organisms age. This can be applied to changes observed in astronauts, as well, particularly in developing countermeasures before long-duration missions.”

Dragon departed after having spent a record setting stay of 33 days berthed to the station at an Earth facing port on the Harmony node.

Dragon is also the only current US means for sending cargo to the station after the loss of the Orbital Sciences Cygnus craft in the Antares rocket explosion last October.

The SpaceX CRS-6 Dragon successfully blasted off atop a Falcon 9 booster from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 (Commercial Resupply Services-6) mission.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

The resupply vessel had arrived three days later on April 17 and was successfully snared by the Expedition 43 Flight Engineer Samantha Cristoforetti of the European Space Agency, the first female Italian astronaut.

Dragon launched on April 14 with more than 4,300 pounds of supplies, science experiments, and technology demonstrations, including critical materials to support about 40 of more than 250 science and research investigations during the station’s Expeditions 43 and 44.

An Espresso machine was also aboard and delivered to enhance station morale during the daily grind some 250 miles above Earth.

Among the research investigations were a fresh batch of 20 rodents for the Rodent Research Habitat, and experiments on osteoporosis to counteract bone deterioration in microgravity, astronaut vision loss, protein crystal growth, and synthetic muscle for prosthetics and robotics.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Following the complete success of the SpaceX Dragon CRS-6 mission, NASA just announced that the next SpaceX Dragon is currently slated to launch on June 26 at 11:09 a.m. EDT.

The Dragon will carry critical US equipment enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters.

Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Video caption: SpaceX CRS-6 Falcon 9 Launch to the International Space Station on April 14, 2015. Credit: Alex Polimeni

2nd Launch Disaster in 3 Weeks Strikes Russia, Destroying Proton Rocket and Mexican Comsat

Russian Proton rocket blasts off at 11:47 a.m. local time (1:47 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan but ended in disaster about eight minutes later with destruction of the rocket and Mexican satellite payload heading to orbit Credit: Roscosmos

Russian Proton rocket blasts off at 11:47 a.m. local time (1:47 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan but ended in disaster about eight minutes later with destruction of the rocket and Mexican comsat satellite payload heading to orbit. Credit: Roscosmos
Story updated with additional details [/caption]

For the second time in less than three weeks, a major disaster struck the Russian space program when the launch of a Proton-M rocket ended in catastrophic failure about eight minutes after today’s (May 16) liftoff from the Baikonur Cosmodrome in Kazakhstan, resulting in the complete destruction of the Mexican communications satellite payload.

The Proton-M rocket initially lifted off successfully at 11:47 a.m. local time (1:47 a.m. EDT, 547 GMT) from the Baikonur Cosmodrome in Kazakhstan, but soon experienced an “emergency situation at 497 seconds into the flight,” according to a brief official statement released by Roscosmos, the Russian Federal Space Agency today, after the mishap.

The launch catastrophe was caused by a failure in the rockets Breeze-M third stage, says Roscosmos. It took place during a live broadcast from the agency’s website. A video shows the rocket disappearing into cloudy skies shortly after liftoff.

The failure comes just one week after the spinning, out-of-control Russian Progress 59 cargo freighter bound for the ISS met its undesired early demise when it fell uncontrolled from orbit last Friday, May 8, following its botched April 28 launch on a Russian Soyuz-2.1A carrier rocket, also from Baikonur – as reported by Universe Today – here, here, and here.

The Proton-M carrier rocket was lofting the Mexsat 1 communications satellite, also known as Centenario, under a contract with the Mexican government.

“The failure happened on the 497th second of the flight, at an altitude of 161 kilometers [100 miles]. The third stage, the booster vehicle and the spacecraft almost completely burned up in the atmosphere. As of now there are no reports of debris reaching the ground,” the agency said in a statement.

Prelaunch view of Russian Proton rocket poised at launch pad at the Baikonur Cosmodrome in Kazakhstan.   Credit: Roscosmos
Prelaunch view of Russian Proton rocket poised at launch pad at the Baikonur Cosmodrome in Kazakhstan. Credit: Roscosmos

The Breeze-M third stage was to loft Mexsat 1 to its destination in geostationary orbit over 22,000 miles above Earth at 113 degrees west longitude.

The 58.2 m (191 ft) tall Proton rocket is built and operated by Khrunichev State Research and Production Space Center and marketed by International Launch Services (ILS).

After reaching an altitude of about 161 km (100 mi) the rocket and Mexsat 1 payload fell back to Earth and burned up over the Chita region of Russia, which is located south west of the Siberian Baikal region, said the Russian News agency TASS.

“The rocket and its payload, a Mexican communication satellite, burned up in the atmosphere,” according to a report by Sputnik International, a Russian News agency.

At this time, local residents have not reported or claimed anything regarding possible debris and there is no information about casualties or destruction, TASS noted.

Mi8 helicopters from Russia’s Emergencies Ministry have been dispatched to the area to look for any debris.

The 5.4 ton Mexsat 1 communication satellite was built by Boeing Satellite Systems International for the Mexican government’s Ministry of Communications and Transportation, the Secretaria de Comunicaciones y Transportes (SCT).

Russian Proton rocket in flight after blast off at 11:47 a.m. local time (1:47 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan. It ended in disaster about eight minutes later with destruction of the rocket and Mexican satellite payload heading to orbit.  Credit: Roscosmos
Russian Proton rocket in flight after blast off at 11:47 a.m. local time (1:47 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan. It ended in disaster about eight minutes later with destruction of the rocket and Mexican satellite payload heading to orbit. Credit: Roscosmos

The Breeze-M failure occurred about 1 minute prior to separation of the third stage from Mexsat 1.

“The emergency situation happened at 08:56 Moscow time, one minute to the scheduled separation of the Breeze-M booster and the Mexican MexSat-1 space apparatus,” TASS reported.

A malfunction with the third stage steering engine may be the cause of the doomed flight.

“A preliminary reason of the accident with Proton is a failure of the steering engines of the third stage,” sources told TASS.

“The analysis of the telemetry allows for supposing that there was a failure in one of the third stage’s steering engines. This is now considered as one of the main reasons.”

Exactly one year ago, another Proton rocket crashed at a similar point when the third stage engines failed during the Proton launch of Russia’s advanced Express-AM4R satellite.

“Khrunichev and International Launch Services (ILS) regret to announce an anomaly during today’s Proton mission,” ILS said in a statement issued after the launch failure.

ILS said an accident investigation board has been appointed to determine the cause of the failure and recommend corrective actions.

“A Russian State Commission has begun the process of determining the reasons for the anomaly. ILS will release details when data becomes available,” said ILS.

They hope to return the workhorse Proton to flight as soon as possible.

“ILS remains committed to providing reliable, timely launch services for all its customers. To this end, ILS will work diligently with its partner Khrunichev to return Proton to flight as soon as possible.”

This was the eleventh failure of the Proton-M rocket or Breeze-M upper stage in 116 launches since the inaugural liftoff in April 2001.

Mexsat 1 had a planned lifetime of 15 years. It was to provide mobile satellite services to support national security, civil and humanitarian efforts and will provide disaster relief, emergency services, telemedicine, rural education, and government agency operations.

Media reports indicate it was insured for about $390 million.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Russia Postpones ISS Crew Rotations Following Progress Freighter Failure

The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA

Russia and its International Space Station (ISS) partners have prudently decided to postpone the scheduled upcoming crew rotations, involving departures and launches of station crews, in the wake of the failure of the Russian Progress 59 freighter that spun out of control soon after blastoff on April 28 and was destroyed during an uncontrolled plummet back to Earth on Friday, May 8.

The schedule shifting, whose possibility was reported here over the weekend and confirmed on Tuesday, May 12 by NASA and Roscosmos, literally came barely a day before the planned return to Earth on Wednesday, May 13 of the three person crew comprising of NASA astronaut and current station commander Terry Virts and flight engineers Samantha Cristoforetti of ESA (European Space Agency) and Anton Shkaplerov of Roscosmos. The trio have been working and living aboard the complex since November 2014.

The return of Virts, Cristoforetti and Shkaplerov is now targeted for early June, according to official statements from NASA, ESA and Roscosmos, the Russian space agency. That’s about a month later than the originally planned 171 day mission, in the wake of the failed Progress cargo ship that burned up on reentry.

Although an exact date has not been specified, sources indicate a tentative return target of around June 11.

“The partner agencies agreed to adjust the schedule after hearing the Russian Federal Space Agency’s (Roscosmos) preliminary findings on the recent loss of the Progress 59 cargo craft,” said NASA in a statement. “The exact dates have not yet been established, but will be announced in the coming weeks.”

If that new return date holds, ESA’s Samantha Cristoforetti will become the woman to fly the longest in space, eclipsing the current record holder, NASA astronaut Sunita Williams.

"There's coffee in that nebula"... ehm, I mean... in that #Dragon.  Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA
Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

Blastoff of their replacement crew on the next planned manned Soyuz launch on May 26 from the Baikonur Cosmodrome in Kazakhstan has also been delayed, for about two months most likely to late July. That Expedition 44 crew comprises Russian cosmonaut Oleg Kononenko, Japanese astronaut Kimiya Yui and NASA astronaut Kjell Lindgren.

A rotating international crew of six astronauts and cosmonauts currently serve aboard the ISS. The delayed return of Virts crew from Expedition 43 will lessen the time when the ISS is staffed by a reduced crew of three, which significantly dampens the time allotted to science research.

A Russian state commission investigation board appointed by Roscosmos, is still seeking to determine the cause of the Progress 59 malfunction which occurred right around the time of the separation from its Soyuz-2.1A carrier rockets third stage following blastoff from the Baikonur space center in Kazakhstan.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

A preliminary accident report from the state commission was planned for May 13. But investigators need more time to determine the root cause of the Progress 59 (also known as Progress M-27M) mishap.

Soon after detaching from the rockets third stage, it began to spin out of control at about 1.8 times per second, as seen in a video transmitted from the doomed ship.

NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka will remain aboard the station after the Virts crew returns to begin Expedition 44.

Roscosmos is also working to speed up the launch of the next unmanned Progress 60 (M-28M), potentially from August to early July. But that hinges on the outcome of the state commission investigation.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

The 7 ton Progress vehicle was loaded with 2.5 tons of supplies for the ISS and the six person Expedition 43 crew. Items included personal mail for the crew, scientific equipment, food, water, oxygen, gear and replaceable parts for the station’s life support systems.

NASA officials say that the current ISS Expedition 43 six person crew is in no danger. The station has sufficient supplies to last until at least the fall of 2015, even if no other supplies arrive in the meantime.

Also in the mix is the launch of NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight. Dragon CRS-7 had been slated for liftoff no earlier than June 19. But that date could slip as well.

The Dragon will carry critical US equipment enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Wayward Progress Destroyed During Fiery Plummet, ISS Crew Launches ‘Under Evaluation’

File photo of a Russian Progress cargo freighter. Credit: Roscosmos

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
Story updated with further details[/caption]

The spinning, out-of-control Russian Progress 59 cargo freighter met its undesired early demise when it fell from orbit early Friday, May 8, and was destroyed during the unplanned fiery plummet through the Earth’s atmosphere.

As a result of the loss of the unmanned Progress 59 spacecraft, which was bound for the International Space Station (ISS) on a routine resupply mission, the timelines of upcoming crew rotations and new launches are “under evaluation” – Universe Today learned according to Russian and American space sources.

The doomed Progress freighter “ceased to exist” after it reentered the Earth’s atmosphere 05.04 Moscow time on May 8, 2015 (10:04 p.m. EDT May 7) over the central Pacific Ocean,” according to an official statement from Roscosmos, the Russian Space Agency.

The consequences of the failure might cause “postponements of upcoming station crew changes to June” and blastoffs “to July” according to Russian space industry and media sources.

The vessel, also known as Progress M-27M, burned up minutes later and any surviving pieces fell over the Pacific Ocean.

“Debris fell about 900 kilometers west of the Marquesas Islands in the central Pacific Ocean,” a space industry source told the Russian news agency TASS.

“Roscosmos plans to adjust the program of flights to the International Space Station (ISS) due to the recent accident involving the Progress M-27M spacecraft,” according to the TASS rocket and space industry source.

Roscosmos quickly established an investigation board to determine the cause of the Progress failure and any commonalities it might have with manned launches of the Soyuz rocket and capsule, and report back by 13 May.

“The results of investigation of the incident related to “Progress M-27M” will be presented no later than 13 May following the completion of the state commission,” Roscosmos stated.

Russian mission controllers lost control of the Progress 59 spacecraft shortly after its otherwise successful launch to the ISS on April 28 from the Baikonur space center in Kazakhstan atop a Soyuz-2.1A carrier rocket.

Soon after detaching from the rockets third stage, it began to spin out of control at about 1.8 times per second, as seen in a video transmitted from the doomed ship.

After control could not be reestablished, all hope of docking with the ISS was abandoned by Roscosmos.

NASA officials said that the current ISS Expedition 43 six person crew is in no danger. The station has sufficient supplies to last until at least September, even if no other supplies arrive in the meantime.

“The spacecraft was not carrying any supplies critical for the United States Operating Segment (USOS) of the station, and the break up and reenty of the Progress posed no threat to the ISS crew,” NASA said in a statement.

“Both the Russian and USOS segments of the station continue to operate normally and are adequately supplied well beyond the next planned resupply flight.”

There is a stock of propellants onboard in the Russian segment that can be used for periodically required station reboosts.

According to TASS, “the cause of the accident with the Russian Progress M-27M spacecraft has not been established yet, Russian Deputy Prime Minister Dmitry Rogozin told journalists on Friday.”

“Not yet,” he said, answering a question on whether causes of the accident had been established.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

Because the cause of Progress failure is not yet clear, the schedules for upcoming crew departures and launches to the ISS via Russian Soyuz rockets and capsules are “under evaluation,” according to sources.

There is a significant potential for a delay in the planned May 13 return to Earth of the three person crew international crew consisting of NASA astronaut and current station commander Terry Virts and flight engineers Samantha Cristoforetti of ESA (European Space Agency) and Anton Shkaplerov of Roscosmos, who have been aboard the complex since November 2014.

They comprise the current Expedition 43 crew, along with the recently arrived crew of NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka who launched onboard a Soyuz capsule on March 27.

Kelly and Kornienko comprise the first ever “1 Year ISS Crew.”

Virts and his crewmates were due to head back to Earth in their Soyuz capsule on May 13. According to Russian sources, their return trip may be postponed to about June 11 to 13.

“The return from orbit of the expedition which is currently there is suggested to be postponed from May 14 to June,” said a TASS source.

Their three person replacement crew on Expedition 44 were due to blastoff on the next planned manned Soyuz launch on May 26 from the Baikonur Cosmodrome in Kazakhstan. This launch may now be delayed as well, to mid or late July.

“More time will be needed to check already manufactured rockets,” said a source. “A manned Soyuz launch may be made in the last ten days of July.”

“The proposal was forwarded by a Roscosmos working group and has not been approved yet,” reports TASS.

An official announcement by Roscosmos of any ISS schedule changes may come next week since the scheduled return of Virts crew is only days away.

Another potential change is that the launch of the next unmanned Progress 60 (M-28M), could potentially be moved up from August to July, hinging on the outcome of the state commission investigation.

To date flights of the Progress vehicle have been highly reliable. The last failure occurred in 2011, shortly after the retirement of NASA’s Space Shuttle orbiters in July 2011. The loss of the Progress did cascade into a subsequent crew launch delay later in 2011.

"There's coffee in that nebula"... ehm, I mean... in that #Dragon.  Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA
“There’s coffee in that nebula”… ehm, I mean… in that #Dragon. Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

The 7 ton Progress vehicle was loaded with 2.5 tons of supplies for the ISS and the six person Expedition 43 crew. Items included personal mail for the crew, scientific equipment, food, water, oxygen, gear and replaceable parts for the station’s life support systems.

The next SpaceX Falcon 9 launch carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS is slated for mid-June. The most recent SpaceX Dragon was launched on the CRS-6 mission on April 14, 2015.

At this time the SpaceX CRS-7 launch remains targeted for liftoff on June 19, 2015.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Weekly Space Hangout – May 8, 2015: Emily Rice & Brian Levine from Astronomy on Tap

Host: Fraser Cain (@fcain)
Special Guest: Emily Rice & Brian Levine from Astronomy on Tap

Guests:
Jolene Creighton (@jolene723 / fromquarkstoquasars.com)
Charles Black (@charlesblack / sen.com/charles-black)
Brian Koberlein (@briankoberlein)
Dave Dickinson (@astroguyz / www.astroguyz.com)
Continue reading “Weekly Space Hangout – May 8, 2015: Emily Rice & Brian Levine from Astronomy on Tap”

Russia’s Out of Control Progress Freighter Doomed to Fiery Finale Friday

File photo of a Russian Progress cargo freighter. Credit: Roscosmos

Russia’s out-of-control Progress 59 cargo freighter is doomed to a fiery finale overnight Friday, May 8, according to Roscosmos, the Russian Space Agency.

The errant spaceship is expected to fall back to Earth and reenter the atmosphere early in the morning Moscow time following the latest orbital analysis by Roscosmos.

“The time window for the failed Progress spacecraft reentry in the Earth’s atmosphere was changed to a span between 01.13 a.m. and 04.51 a.m. Moscow time on May 8, according to Russia’s space agency Roscosmos,” according to the latest update today, May 7, from the Russian Sputnik news outlet.

According to a Roscosmos source, the unmanned Progress 59, also known as M-27M , would most likely make the atmospheric reentry over the Indian Ocean.

Roscosmos said in a statement that Progress 59 “will cease to exist” on Friday.

Most of the debris is expected to burn up. But any remaining fragments are likely to hit north of Madagascar.

Russian mission controllers lost control of the Progress 59 spacecraft ship – bound for the International Space Station (ISS) on a routine resupply mission – shortly after its otherwise successful launch on April 28 from the Baikonur space center in Kazakhstan atop a Soyuz-2.1A carrier rocket.

Soon after detaching from the rockets third stage, it began to spin out of control at about 1.8 times per second, as seen in a video transmitted from the doomed ship.

After control could not be reestablished, all hope of docking with the ISS was abandoned by Roscosmos.

Here’s a short video taken by the spinning Progress with NASA commentary:

The 7 ton vehicle was loaded with 2.5 tons of supplies for the ISS and the six person Expedition 43 crew. Items included personal mail for the crew, scientific equipment, as well as replaceable parts for the station’s life support systems and a stockpile of water and oxygen, according to Russia Today.

The Progress spacecraft is also loaded with a significant amount of fuel as it orbits Earth at an inclination of 51.6 degrees to the equator. This carries it over most of the populated world between 51.6 degrees north and south latitudes. But most of the area is over unpopulated oceans, making the chances of danger from falling debris very small.

The latest ground track reentry prediction for the Progress 59 (M-27M)  spacecraft showing orbital path around Earth as of May 7, 2015. Note: subject to change.  Credit: Aerospace Corp.
The latest ground track reentry prediction for the Progress 59 (M-27M) spacecraft showing orbital path around Earth as of May 7, 2015. Note: subject to change. Credit: Aerospace Corp.

To date the Progress vehicle have been highly reliable. The last failure occurred in 2011, shortly after the retirement of NASA’s Space Shuttle orbiters in July 2011.

Roscosmos has established an investigation board to determine the cause of the Progress failure and any commonalities it might have with manned launches of the Soyuz rocket and capsule.

“The conclusions are to be made by May 13, 2015,” according to a Roscosmos statement.

The potential exists for a delay in the next planned manned Soyuz launch with a three person international crew later on May 26 from the Baikonur Cosmodrome in Kazakhstan.

The ISS crew is in no danger and has sufficient supplies to last until at least September.

Besides the Russian Progress cargo ship, the ISS is resupplied by the commercial US SpaceX Dragon and Orbital Sciences Cygnus vessels and the Japanese HTV. ESA’s ATV has been retired after 5 flights.

The next Falcon 9 launch carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS is slated for mid-June. The most recent Dragon was launched on the CRS-6 mission on April 14, 2015.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

The last Orbital Sciences launch of an Antares rocket with the Orb-3 Cygnus resupply ship ended in a catastrophic explosion just seconds after liftoff on October 28, 2014.

The ISS lifeline hangs by a delicate thread.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Key Facts and Timeline for SpaceX Crewed Dragon’s First Test Flight May 6 – Watch Live

SpaceX Pad Abort Test vehicle poised for May 6, 2015 test flight from SpaceX’s Space Launch Complex 40 (SLC-40) in Cape Canaveral, Florida. Credit: SpaceX

The first critical test flight of SpaceX’s crewed Dragon that will soon launch American astronauts back to orbit and the International Space Station (ISS) from American soil is now less than two days away.

The test flight – called the Pad Abort Test – is slated for the early morning hours of Wednesday, May 6, if all goes well. The key facts and a timeline of the test events are outlined herein.

The test vehicle will reach roughly a mile in altitude (5000 feet, 1500 meters) and last only about 90 seconds in duration from beginning to end.

It constitutes a crucial first test of the crew capsule escape system that will save astronauts lives in a split second in the unlikely event of a catastrophic launch pad failure with the Falcon 9 rocket.

The May 6 pad abort test will be performed from the SpaceX Falcon 9 launch pad from a platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. The test will not include an actual Falcon 9 booster.

SpaceX has just released new images showing the Dragon crew capsule and trunk section being moved to the launch pad and being positioned atop the launch mount on SLC-40. See above and below. Together the Dragon assembly stands about 20 feet (5 meters) tall.

SpaceX Pad Abort Test vehicle being transported at the Florida launch complex. Credit: SpaceX
SpaceX Pad Abort Test vehicle being transported at the Florida launch complex. Credit: SpaceX

A test dummy is seated inside. And SpaceX now says the dummy is not named “Buster” despite an earlier announcement from the company.

“Buster the Dummy already works for a great show you may have heard of called MythBusters. Our dummy prefers to remain anonymous for the time being,” SpaceX said today.

So, only time will tell if that particular mission fact will ever be revealed.

You can watch the Pad Abort Test via a live webcast on NASA TV: http://www.nasa.gov/nasatv

The test window opens at 7 a.m. EDT May 6 and extends until 2:30 p.m. EDT into the afternoon.

The webcast will start about 20 minutes prior to the opening of the window. NASA will also provide periodic updates about the test at their online Commercial Crew Blog.

The current weather forecast predicts a 70% GO for favorable weather conditions during the lengthy test window.

Since the Pad Abort Test is specifically designed to be a development test, in order to learn crucial things about the performance of the escape system, it doesn’t have to be perfect to be valuable.

And delays due to technical issues are a very significant possibility.

“No matter what happens on test day, SpaceX is going to learn a lot,” said Jon Cowart, NASA’s partner manager for SpaceX at a May 1 media briefing at the Kennedy Space Center press site. “One test is worth a thousand good analyses.”

The test is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.

Here’s a graphic illustrating the May 6 SpaceX Pad Abort Test trajectory and sequence of planned events.

Graphic illustrates the SpaceX Pad Abort Test trajectory and sequence of events planned for May 6, 2015 from Cape Canaveral launch complex 40.  Credit: SpaceX
Graphic illustrates the SpaceX Pad Abort Test trajectory and sequence of events planned for May 6, 2015 from Cape Canaveral launch complex 40. Credit: SpaceX

The Crew Dragon will accelerate to nearly 100 mph in barely one second. The test will last less than two minutes and the ship will travel over one mile in the first 20 seconds alone.

The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a split second in a simulated emergency to save the astronauts lives in the event of a real emergency.

The SuperDraco engines are located in four jet packs around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds, to carry astronauts to safety.

The eight SuperDraco’s will propel Dragon nearly 100 meters (328 ft) in 2 seconds, and more than half a kilometer (1/3 mi) in just over 5 seconds.

SpaceX likens the test to “an ejection seat for a fighter pilot, but instead of ejecting the pilot out of the spacecraft, the entire spacecraft is “ejected” away from the launch vehicle.”

Here’s a timeline of events from SpaceX:

T-0: The eight SuperDracos ignite simultaneously and reach maximum thrust, propelling the spacecraft off the pad.

T+.5s: After half a second of vertical flight, Crew Dragon pitches toward the ocean and continues its controlled burn. The SuperDraco engines throttle to control the trajectory based on real-time measurements from the vehicle’s sensors.

T+5s: The abort burn is terminated once all propellant is consumed and Dragon coasts for just over 15 seconds to its highest point about 1500 meters (.93 mi) above the launch pad.

T+21s: The trunk is jettisoned and the spacecraft begins a slow rotation with its heat shield pointed toward the ground again.

T+25s: Small parachutes, called drogues, are deployed first during a 4-6 second window following trunk separation.

T+35s: Once the drogue parachutes stabilize the vehicle, three main parachutes deploy and further slow the spacecraft before splashdown.

T+107s: Dragon splashes down in the Atlantic Ocean about 2200 meters (1.4 mi) downrange of the launch pad.

SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX
SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX

“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX.

“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”

The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the Ocean.

Koenigsmann notes that the SpaceX abort system provides for emergency escape all the way to orbit, unlike any prior escape system such as the conventional launch abort systems (LAS) mounted on top of the capsule.

The next Falcon 9 launch is slated for mid-June carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS. On April 14, a flawless Falcon 9 launch boosted the SpaceX CRS-6 Dragon to the ISS.

There was no attempt to soft land the Falcon 9 first stage during the most recent launch on April 27. Due to the heavy weight of the TurkmenÄlem52E/MonacoSat satellite there was not enough residual fuel for a landing attempt on SpaceX’s ocean going barge.

The next landing attempt is set for the CRS-7 mission.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com