Historic 1 Year ISS Mission with Kelly and Kornienko Launches Today – Watch Live

Soyuz Spacecraft Rolled Out For Launch of One-Year Crew . The Soyuz TMA-16M spacecraft is seen after having rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March 25, 2015. NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka of the Russian Federal Space Agency (Roscosmos) are scheduled to launch to the International Space Station in the Soyuz at 3:42 p.m. EDT, Friday, March 27 (March 28, Kazakh time). Credit: NASA/Bill Ingalls

Soyuz Spacecraft Rolled Out For Launch of One-Year Crew
The Soyuz TMA-16M spacecraft is seen after having rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March 25, 2015. NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka of the Russian Federal Space Agency (Roscosmos) are scheduled to launch to the International Space Station in the Soyuz at 3:42 p.m. EDT, Friday, March 27 (March 28, Kazakh time). Credit: NASA/Bill Ingalls
Watch live on NASA TV link below[/caption]

At long last, the first ever crew embarking on a 1 year mission to the International Space Station (ISS) – comprising NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko (both veterans) – is slated for blastoff just hours from now aboard a Soyuz capsule from the Baikonur Cosmodrome, Kazakhstan.

The history making launch is scheduled for 3:42 p.m. EDT/1942 GMT Friday, March 27 (March 28, Kazakh time) – with veteran Russian cosmonaut Gennady Padalka rounding out the three man crew of Expedition 43.

The Soyuz spacecraft and rocket have been rolled out to the launch pad for the one-year crew. The crew is boarding the Soyuz.

You can watch the launch live on NASA TV today. Click on this link: http://www.nasa.gov/multimedia/nasatv/index.html

NASA TV live launch coverage begins at 2:30 p.m. EDT.

NASA's Scott @StationCDRKelly with his #Exp43 crew heading for suit up and launch. Credit: NASA
NASA’s Scott @StationCDRKelly with his #Exp43 crew heading for suit up and launch. Credit: NASA

The crew will rendezvous and dock at the ISS at the Poisk module around 9:36 p.m EDT – only about four orbits and six hours after liftoff.

Hatch opening is schedule for about 11:15 p.m. EDT this evening.

NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko comprise  the first ever ISS 1 Year Crew
NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko comprise the first ever ISS 1 Year Crew

The one-year mission represents concrete first steps toward start fulfilling NASA’s “Journey to Mars” objective and sending “Humans to Mars” in the 2030s.

“The one-year mission in space, tests the limits of human research, space exploration and the human spirit,” says NASA.

The Soyuz TMA-16M spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March 25, 2015. NASA Astronaut Scott Kelly, and Russian Cosmonauts Mikhail Kornienko, and Gennady Padalka of the Russian Federal Space Agency (Roscosmos) are scheduled to launch to the ISS on March 27, 2015.  Credit NASA/Bill Ingalls
The Soyuz TMA-16M spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March 25, 2015. NASA Astronaut Scott Kelly, and Russian Cosmonauts Mikhail Kornienko, and Gennady Padalka of the Russian Federal Space Agency (Roscosmos) are scheduled to launch to the ISS on March 27, 2015. Credit NASA/Bill Ingalls

The pathfinding mission is about double the normal time of most expeditions to the Earth orbiting space station, which last four to six months.

The goal is to provide critical knowledge to NASA and researchers hoping to better understand how the human body reacts and adapts to long-duration spaceflight.

The 1 Year mission will provide baseline knowledge to NASA and its station partners – Roscosmos, ESA, CSA, JAXA – on how to prepare to send humans on lengthy deep space mission to Mars and other destinations into our Solar System.

Astronaut Scott Kelly will become the first American to live and work aboard the orbiting laboratory for a year-long mission and set a new American record.

Scott Kelly and Russian Cosmonauts Kornienko and Padalka are all veteran spacefliers.

They have been in training for over two years since being selected in Nov. 2012.

No American has ever spent anywhere near a year in space. 4 Russian cosmonauts conducted long duration stays of about a year or more in space aboard the Mir Space Station in the 1980s and 1990s.

Kelly and Kornienko will stay aboard the ISS until March 3, 2016, when they return to Earth on the Soyuz TMA-18M after 342 days in space. Kelly’s combined total of 522 days in space, will enable him to surpass current U.S. record holder Mike Fincke’s mark of 382 days.

Padalka will return in September after a six month stint, making him the world’s most experienced spaceflyer with a combined five mission total of 878 days in space.

They will conduct hundreds of science experiments focusing on at least 7 broad areas of investigation including medical, psychological and biomedical challenges faced by astronauts during long-duration space flight.

1 Year crew awaits launch aboard the Soyuz TMA-16M spacecraft on March 27, 2015. Credit: NASA
1 Year crew awaits launch aboard the Soyuz TMA-16M spacecraft on March 27, 2015. Credit: NASA

Kelly is a veteran NASA Space Shuttle commander who has previously flown to space aboard both the Shuttle and Soyuz. He also served as a space station commander during a previous six-month stay onboard.

Kelly was recently featured in a cover story at Time magazine.

Here’s an online link to the Time magazine story : http://ti.me/1w25Qgo

@TIME features @StationCDRKelly ‘s 1-year-long mission in it’s 2015: Year Ahead issue. http://ti.me/1w25Qgo
@TIME features @StationCDRKelly ‘s 1-year-long mission in it’s 2015: Year Ahead issue. http://ti.me/1w25Qgo

President Obama gave a shout out to NASA Astronaut Scott Kelly and his upcoming 1 year mission to the International Space Station (ISS) at the 2015 State of the Union address to the US Congress on Tuesday evening, Jan. 20, 2015.

Kelly’s flight will pave the way for NASA’s goal to send astronaut crews to Mars by the 2030s. They will launch in the Orion crew vehicle atop the agencies mammoth new Space Launch System (SLS) rocket, simultaneously under development.

Read my coverage of Orion and SLS progress to stay up to date – including first hand from onsite at the Kennedy Space Center press site for the launch of Orion EFT-1 on Dec. 5, 2015.

Good luck and Godspeed to Kelly, Kornienko and Padalka – starting on the road to Mars !!

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA astronaut Scott Kelly stands as he is recognized by President Barack Obama, while First lady Michelle Obama, front left, and other guest applaud, during the State of the Union address on Capitol Hill in Washington, Tuesday Jan. 20, 2015. This March, Astronaut Scott Kelly will launch to the International Space Station and become the first American to live and work aboard the orbiting laboratory for a year-long mission. Credit: NASA/Bill Ingalls
NASA astronaut Scott Kelly stands as he is recognized by President Barack Obama, while First lady Michelle Obama, front left, and other guest applaud, during the State of the Union address on Capitol Hill in Washington, Tuesday Jan. 20, 2015. This March, Astronaut Scott Kelly will launch to the International Space Station and become the first American to live and work aboard the orbiting laboratory for a year-long mission. Credit: NASA/Bill Ingalls
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Orbital ATK Aims for March 2016 Antares Rocket Launch Restart with New Engines

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com

The newly merged company Orbital ATK is aiming to restart launches of their “upgraded Antares” rocket in March 2016 using completely new engines, following the catastrophic explosion on Oct. 28, 2014 that destroyed the rocket seconds after blastoff from a Virginia launch pad. Antares was carrying a Cygnus module loaded with supplies on a critical space station resupply mission for NASA.

The March 2016 launch date of Antares from the Wallops Island base along Virginia’s eastern shore was announced by David Thompson, Orbital ATK, President and CEO, during a recent conference call with investors and analysts regarding the formal merger of Orbital Sciences and ATK.

“The target date for that [Antares launch] is the 1st of March next year,” said Thompson.

Cygnus will be fully loaded with new supplies for the station crew.

“The first launch … will have a full cargo load on board.”

The Orbital Sciences Corp. commercial Antares rocket was destroyed in a raging inferno about 15 seconds after liftoff on Oct. 28 when one of the Soviet-era built first stage engines apparently exploded and cascaded into a spectacular aerial fireball just above the launch pad 0A at NASA’s Wallops Flight Facility on the doomed Orb-3 mission carrying the Cygnus resupply module to the International Space Station (ISS).

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital’s privately developed Cygnus pressurized cargo freighter was loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on the Orb-3 mission. The module and all its contents were destroyed.

Orbital established an independent accident investigation review board immediately following the launch failure.

“We are about four months now into the recovery from the failure,’ said Thompson.

A turbopump failure in one of the rockets Soviet-era first stage engines has been identified as the most likely cause of the Antares destruction, according to official statements from David Thompson.

The AJ26 engines were originally manufactured some 40 years ago in the then Soviet Union as the NK-33. They were refurbished and “Americanized” by Aerojet Rocketdyne.

Credit: Ken Kremer – kenkremer.com
Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

“The next Cygnus will be launched on the upgraded Antares from Wallops Island. The target date for that is the 1st of March next year.”

After the launch failure Orbital, decided to ditch the trouble plagued AJ-26 and “re-engineered” the vehicle with new engines.

The Antares first stage had been powered by a pair of the aging AJ26 engines. These will now be replaced by a pair of newly manufactured Russian RD-181 engines, assembled and purchased from NPO Energomash.

“The first launch of the re-engineered vehicle in March of next year … will have a full cargo load on board.”

Thompson said the March 2016 launch target date will be preceded by a hot fire test of the first stage engines, which is currently planned to take place in January 2015. They will not conduct a demonstration launch and have opted for a full up space station resupply flight.

“We’re going to go with the cargo load on the first launch. What we are going to do in advance of that, in January of next year, is we’re going to take the first stage of Antares out to the launch pad with the new engines and do a flight readiness firing, somewhat similar to what we did back in early 2013, in advance of the first Antares flight,” said Thompson.

“But other than that, unless something came up there that was surprising, we should then be able to proceed pretty expeditiously to the first launch of the re-engineered vehicle in March of next year, and that will have a full cargo load on board.”

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Thompson also reiterated that Orbital will fully meet its resupply services contarct with NASA and make up for the lost cargo.

The Orbital-3, or Orb-3, mission that ended in disaster on Oct 28, was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion. Under the CRS program Orbital is to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

“The focus all along has been to do everything we can to fulfill our commitments to delivering cargo to the space station for NASA, and to minimize any disruption that we can to the delivery schedules.”

Towards that end Orbital ATK has contracted with United Launch Alliance (ULA) to launch at least one and up to two Cygnus cargo missions to the International Space Station (ISS) under NASA’s Commercial Resupply Services (CRS) program.

The first Cygnus mission would liftoff sometime late in the fourth quarter of 2015 aboard an Atlas V 401 vehicle from Space Launch Complex 41 (SLC-41) at Cape Canaveral Air Force Station in Florida.

I watched the unfolding disaster first hand from the media viewing site about 1.8 miles away and filed eyewitness reports at the time. Several of my launch pad remote cameras were set up at the pad. They were impounded and the images were used by investigators during the initial investigation. They were returned to me about a month later and are featured here and in my earlier Antares reports.

Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Credit: Ken Kremer – kenkremer.com

Nobody Knows What These Mysterious Plumes are on Mars

In the Journal Nature, astronomers deliver an exhaustive study of limited albeit high quality ground-based observations of Mars and come up short. A Martian mystery remains. What caused the extremely high-altitude plumes on Mars? (Credit: Nature, Sánchez-Lavega, A. et al. Feb 16, 2015, Figures 1a, 2)

In March 2012, amateur astronomers began observing unusual clouds or plumes along the western limb of the red planet Mars. The plumes, in the southern hemisphere rose to over 200 kilometers altitude persisting for several days and then reappeared weeks later.

So a group of astronomers from Spain, the Netherlands, France, UK and USA have now reported their analysis of the phenomena. Their conclusions are inconclusive but they present two possible explanations.

Was dust lofted to extreme altitudes or ice crystals transported into space.? Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubbble)
Was dust lofted to extreme altitudes or ice crystals transported into space.? Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubbble)

Mars and mystery are synonymous. Among Martian mysteries, this one has persisted for three years. Our own planet, much more dynamic than Mars, continues to raise new questions and mysteries but Mars is a frozen desert. Frozen in time are features unchanged for billions of years.

An animated sequence of images taken by Wayne Jaeschke on March 20, 2012 showing the mystery plume over the western limb of the red planet (upper right). South is up in the photo. (Credit: W. Jaeschke)

In March 2012, the news of the observations caught the attention of Universe Today contributing writer Bob King. Reported on his March 22nd 2012 AstroBob blog page, the plumes or clouds were clear to see. The amateur observer, Wayne Jaeschke used his 14 inch telescope to capture still images which he stitched together into an animation to show the dynamics of the phenomena.

ModernDay_Astrophotographer2Now on February 16 of this year, a team of researchers led by Agustín Sánchez-Lavega of the University of the Basque Country in Bilbao, Spain, published their analysis in the journal Nature of the numerous observations, presenting two possible explanations. Their work is entitled: “An Extremely high-altitude plume seen at Mars morning terminator.”

Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL
Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL

The phenomena occurred over the Terra Cimmeria region centered at 45 degree south latitude. This area includes the tiger stripe array of magnetic fields emanating from concentrations of ferrous (iron) ore deposits on Mars; discovered by the Mars Global Surveyor magnetometer during low altitude aerobraking maneuvers at the beginning of the mission in 1998. Auroral events have been observed over this area from the interaction of the Martian magnetic field with streams of energetic particles streaming from the Sun. Sánchez-Lavega states that if these plumes are auroras, they would have to be over 1000 times brighter than those observed over the Earth.

Auroras photographed from The International Space Station. The distinct Manicouagan impact crater is seen in northern Canada. Terrestial aurora exist at altitudes of 100 km (60 miles) (Credit: NASA)
Auroras photographed from The International Space Station. The distinct Manicouagan impact crater is seen in northern Canada. Terrestial aurora exist at altitudes of 100 km (60 miles) (Credit: NASA)

The researchers also state that another problem with this scenario is the altitude. Auroras over Mars in this region have been observed up to 130 km, only half the height of the features. In the Earth’s field, aurora are confined to ionospheric altitudes – 100 km (60 miles). The Martian atmosphere at 200 km is exceedingly tenuous and the production of persistent and very bright aurora at such an altitude seems highly improbable.

The duration of the plumes – March 12th to 23rd, eleven days (after which observations of the area ended) and April 6th to 16th – is also a problem for this explanation. Auroral arcs on Earth are capable of persisting for hours. The Earth’s magnetic field functions like a capacitor storing charged particles from the Sun and some of these particles are discharged and produced the auroral oval and arcs. Over Mars, there is no equivalent capacitive storage of particles. Auroras over Mars are “WYSIWYG” – what you see is what you get – directly from the Sun. Concentrated solar high energy streams persisting for this long are unheard of.

The second explanation assessed by the astronomers is dust or ice crystals lofted to this high altitude. Again the altitude is the big issue. Martian dust storms will routinely lift dust to 60 km, still only one-third the height of the plumes. Martian dust devils will lift particles to 20 km. However, it is this second explanation involving ice crystals – Carbon Dioxide and Water – that the researchers give the most credence. In either instance, the particles must be concentrated and their reflectivity must account for the total brightness of the plumes. Ice crystals would be more easily transported to these heights, and also would be most highly reflective.

The paper also considered the shape of the plumes. The remarkable quality of modern amateur astrophotography cannot be overemphasized. Also the duration of the plumes was considered. By local noon and thereafter they were not observed. Again, the capabilities tendered by ground-based observations were unique and could not be duplicated by the present set of instruments orbiting Mars.

A Martian dust devil roughly 12 miles (20 kilometers) high was captured on Amazonis Planitia region of Mars, March 14, 2012 by the HiRISE camera on NASA's Mars Reconnaissance Orbiter. The plume is little more than three-quarters of a football field wide (70 yards, or 70 meters). (Image credit: NASA/JPL-Caltech/UA)
A Martian dust devil roughly 12 miles (20 kilometers) high was captured on Amazonis Planitia region of Mars, March 14, 2012 by the HiRISE camera on NASA’s Mars Reconnaissance Orbiter. The plume is little more than three-quarters of a football field wide (70 yards, or 70 meters). (Image credit: NASA/JPL-Caltech/UA)

Still too many questions remain and the researchers state that “both explanations defy our present understanding of the Mars’ upper atmosphere.” By March 20th and 21st, the researchers summarized that at least 18 amateur astronomers observed the plume using from 20 to 40 cm telescopes (8 to 16 inch diameter) at wavelengths from blue to red. At Mars, the Mars Color Imager on MRO (MARCI) could not detect the event due to the 2 hour periodic scans that are compiled to make global images.

Of the many ground observations, the researchers utilized two sets from the venerable astrophotographers Don Parker and Daiman Peach. While observations and measurements were limited, the researchers analysis was exhaustive and included modeling assuming CO2, Water and dust particles. The researchers did find a Hubble observation from 1997 that compared favorably with the 2012 events and likewise modeled that event for comparison. However, Hubble results provided a single observation and the height estimate could not be narrowly constrained.

Explanation of these events in 2012 are left open-ended by the research paper. Additional observations are clearly necessary. With increased interest from amateurs and continued quality improvements plus the addition of the Maven spacecraft suite of instruments plus India’s Mars Orbiter mission, observations will eventually be gained and a Martian mystery solved to make way for yet another.

References:

An Extremely High-Altitude Plume seen at Mars’ Morning Terminator, Journal Nature, February 16, 2015

Amateur astronomer photographs curious cloud on Mars, AstroBob, March 22, 2012

Weekly Space Hangout – February 13, 2015 – Paul Gilster and his “Centauri Dreams”

Host: Fraser Cain (@fcain)
Special Guest: Paul Gilster (centauri-dreams.org / @centauri_dreams),author of “Centauri Dreams”
Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Dave Dickinson (@astroguyz / www.astroguyz.com)
Brian Koberlein (@briankoberlein)

This Week’s Stories:

SpaceX news
A (very!) salty ocean for Enceladus?
Cassini begins a year of moon imaging
The February ‘Black Moon’
The Number of Reachable Asteroids has Doubled
Stars formed earlier than we thought
Dark matter seen in center of Milky Way
Neil Armstrong Had a Man Purse and It Was Full of Awesome Stuff From His Moon Trip
Lunar Surface Flown Apollo 11 Artifacts From the Neil Armstrong Estate on loan to the Smithsonian’s National Air and Space Museum, Washington D.C.
Pad 39B to Gain New Flame Deflector and Trench Upgrade
Japan’s Akatsuki Spacecraft to Make Second Attempt to Enter Orbit of Venus in December, 2015
Dark Matter Could Create Halos of Light Around Galaxies
NASA, Space Station Partners Announce Future Mission Crew Members
Has Galaxy X Been Found?
Total Solar Eclipse on March 20, 2015
Europe’s Experimental Mini-Space Shuttle Launch
NASA Titan Submarine Concept
Cassini Data Indicates Enceladus’ Ocean Similar to Soda Lakes on Earth
Russia Steps Up as UAE Launched New Space Agency
Surprise! Earth’s Core has a Core
SDO Turns 5!
Astronomers Capture Birth of Multiple Star System
DARPA to Begin Testing Satellite-Launching Fighter Jet This Year
Dark Matter Exists in the Inner Parts of Our Galaxy
Titan Flyby (T-109): Mapping Titan’s North Pole in Infrared
The Hunt for Gravitational Waves Could Be Nearing Success
Twinkle Twinkle Little Exoplanet [hunter]
Future Space Station Crew Dons Jedi Robes for Star Wars-Inspired Poster

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+, and suggest your ideas for stories we can discuss each week!

Gorgeous Sunrises, Auroras, Landscapes, and More from Space Station Crew

Almost disappearing behind the solar panels before sunrise: the US East coast from DC to Boston. #HelloEarth. Credit: NASA/ESA/Samantha Cristoforetti

The Expedition 42 crew aboard the International Space Station (ISS) continues to delight us with stunning views of ‘Our Beautiful Earth from Space.’

Here’s a collection of a few of the newest sunrises, auroras, landscapes, nightlights, and more snapshots from the multinational crew of six astronauts and cosmonauts living and working aboard the ISS orbiting some 250 miles (400 kilometers) overhead.

And don’t forget that at sunset tonight (Feb. 8), a SpaceX Falcon 9 rocket is due to blastoff at 6:10 p.m., EST, if all goes well carrying the DSCOVR space weather satellite about a million miles (1.5 million kilometers) away to the L1 Lagrange point.

The Falcon 9 will blastoff from Cape Canaveral, Florida, pictured below:

From Key West to the Gulf of Mexico and #Atlanta, a very nice, clear, half moonlit night.  Credit: NASA/Terry Virts.   KSC and Cape Canaveral launch pads along Florida east coast at right.
From Key West to the Gulf of Mexico and #Atlanta, a very nice, clear, half moonlit night. Credit: NASA/Terry Virts.
KSC and Cape Canaveral launch pads along Florida east coast at right.

Tens of millions of you are included in the lead sunrise photo of the U.S. East Coast – taken by ESA astronaut Samantha Cristoforetti perched aboard the orbiting lab complex.

And here’s a “speechless sunrise” taken today by NASA astronaut Terry Virts. We agree!

#speechless from this #sunrise.   Credit: NASA/Terry Virts
#speechless from this #sunrise. Credit: NASA/Terry Virts
Always happy to see this lovely sight that has become familiar in #Patagonia.  Credit: NASA/ESA/Samantha Cristoforetti
Always happy to see this lovely sight that has become familiar in #Patagonia. Credit: NASA/ESA/Samantha Cristoforetti
This, on the contrary, I've seen only once: the Strait of Magellan and la Tierra del Fuego free of clouds!  Credit: NASA/ESA/Samantha Cristoforetti
This, on the contrary, I’ve seen only once: the Strait of Magellan and la Tierra del Fuego free of clouds! Credit: NASA/ESA/Samantha Cristoforetti
#Moscow shining like a bright star under the aurora.    Credit: NASA/Terry Virts
#Moscow shining like a bright star under the aurora. Credit: NASA/Terry Virts
#aurora over Anchorage and Fairbanks #Alaska.   Credit: NASA/Terry Virts
#aurora over Anchorage and Fairbanks #Alaska. Credit: NASA/Terry Virts

The current six person crew includes astronauts and cosmonauts from three nations; America, Russia and Italy including four men and two women serving aboard the massive orbiting lab complex.

They comprise Expedition 42 Commander Barry “Butch” Wilmore and Terry Virts from NASA, Samantha Cristoforetti from the European Space Agency (ESA) and cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia.

Brazilian clouds showing off their #majesty.  Credit: NASA/Terry Virts
Brazilian clouds showing off their #majesty. Credit: NASA/Terry Virts
L+72/73: Logbook. Wow, this has been a busy week! But we can still catch up a little bit...  ESA astronaut Samantha Cristoforetti
L+72/73: Logbook. Wow, this has been a busy week! But we can still catch up a little bit… ESA astronaut Samantha Cristoforetti

L+72/73: Logbook. Wow, this has been a busy week! But we can still catch up a little bit… ESA astronaut Samantha Cristoforetti
….https://plus.google.com/app/basic/stream/z12iczzoqovhfdo2z23odnbwmz3cir0ox04?cbp=1hmsp4t51xmr3&sview=27&cid=5&soc-app=115&soc-platform=1&spath=%2Fapp%2Fbasic%2F%2BSamanthaCristoforetti%2Fposts …

Soyuz- everyone’s ride to space and back!

#soyuz #earth #beauty.  Credit: NASA/Terry Virts
#soyuz #earth #beauty. Credit: NASA/Terry Virts

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

'I wish I could bring all of you up to see this!'  Credit: NASA/Terry Virts
‘I wish I could bring all of you up to see this!’ Credit: NASA/Terry Virts
ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

SpaceX Prepares for Crucial Crew Dragon Capsule Pad Abort Test

SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX

SpaceX is preparing for the first of two critical abort tests for the firm’s next generation human rated Dragon V2 capsule as soon as March.

The purpose of the pair of abort tests is to demonstrate a crew escape capability to save the astronauts’ lives in case of a rocket failure, starting from the launch pad and going all the way to orbit.

The SpaceX Dragon V2 and Boeing CST-100 vehicles were selected by NASA last fall for further funding under the auspices of the agency’s Commercial Crew Program (CCP) as the world’s privately developed spaceships to ferry astronauts back and forth to the International Space Station (ISS).

Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.

During the Sept. 16, 2014, news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.

The first abort test involving the pad abort test is currently slated to take place soon from the company’s launch pad on Cape Canaveral Air Force Station in Florida, according to Gwynne Shotwell, president of SpaceX.

“First up is a pad abort in about a month,” said Shotwell during a media briefing last week at NASA’s Johnson Space Center in Houston, Texas.

SpaceX engineers have been building the pad abort test vehicle for the unmanned test for more than a year at their headquarters in Hawthorne, California.

Dragon V2 builds on and significantly upgrades the technology for the initial cargo version of the Dragon which has successfully flown five operational resupply missions to the ISS.

“It took us quite a while to get there, but there’s a lot of great technology and innovations in that pad abort vehicle,” noted Shotwell.

First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014.  Credit: SpaceX.
First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014. Credit: SpaceX.

The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a simulated emergency.

The SuperDraco engines are located in four jet packs around the base. Each engine can produce up to 120,000 pounds of axial thrust to carry astronauts to safety, according to a SpaceX description.

Here is a SpaceX video of SuperDraco’s being hot fire tested in Texas:

Video caption: Full functionality of Crew Dragon’s SuperDraco jetpacks demonstrated with hotfire test in McGregor, TX. Credit: SpaceX

For the purpose of this test, the crew Dragon will sit on top of a facsimile of the unpressurized trunk portion of the Dragon. It will not be loaded on top of a Falcon 9 rocket for the pad abort test.

The second abort test involves a high altitude abort test launching atop a SpaceX Falcon 9 rocket from Vandenberg Air Force Base in California.

“An in-flight abort test [follows] later this year,” said Shotwell.

“The Integrated launch abort system is critically important to us. We think it gives incredible safety features for a full abort all the way through ascent.”

“It does also allow us the ultimate goal of fully propulsive landing.”

Both tests were originally scheduled for 2014 as part of the firm’s prior CCiCAP development phase contract with NASA, SpaceX CEO Elon Musk told me in late 2013.

“Assuming all goes well, we expect to conduct [up to] two Dragon abort tests next year in 2014,” Musk explained.

Last year, NASA granted SpaceX an extension into 2015 for both tests under SpaceX’s CCiCAP milestones.

SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during a prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The SpaceX Dragon V2 will launch atop a human rated Falcon 9 v1.1 rocket from Space Launch Complex 40 at Cape Canaveral.

“We understand the incredible responsibility we’ve been given to carry crew. We should fly over 50 Falcon 9’s before crewed flight,” said Shotwell.

To accomplish the first manned test flight to the ISS by 2017, the US Congress must agree to fully fund the commercial crew program.

“To do this we need for Congress to approve full funding for the Commercial Crew Program,” Bolden said at last week’s JSC media briefing.

Severe budget cuts by Congress forced NASA into a two year delay in the first commercial crew flights to the ISS from 2015 to 2017 – and also forced NASA to pay hundreds of millions of more dollars to the Russians for crews seats aboard their Soyuz instead of employing American aerospace workers.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA
Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA

Obama Administration Proposes $18.5 Billion Budget for NASA – Bolden

In the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address at NASA's televised fiscal year 2016 budget rollout event with Kennedy Space Center Director Bob Cabana looking on, at right. NASA's Orion, SpaceX Dragon and Boeing CST-100 spacecraft were on display. Photo credit: NASA/Gianni Woods

The Obama Administration today (Feb. 2) proposed a NASA budget allocation of $18.5 Billion for the new Fiscal Year 2016, which amounts to a half-billion dollar increase over the enacted budget for FY 2015, and keeps the key manned capsule and heavy lift rocket programs on track to launch humans to deep space in the next decade and significantly supplements the commercial crew initiative to send our astronauts to low Earth orbit and the space station later this decade.

NASA Administrator Charles Bolden formally announced the rollout of NASA’s FY 2016 budget request today during a “state of the agency” address at the Kennedy Space Center (KSC), back dropped by the three vehicles at the core of the agency’s human spaceflight exploration strategy; Orion, the Boeing CST-100 and the SpaceX Dragon.

“To further advance these plans and keep on moving forward on our journey to Mars, President Obama today is proposing an FY 2016 budget of $18.5 billion for NASA, building on the significant investments the administration has made in America’s space program over the past six years,” Administrator Bolden said to NASA workers and the media gathered at the KSC facility where Orion is being manufactured.

“These vehicles are not things just on paper anymore! This is tangible evidence of what you [NASA] have been doing these past few years.”

In the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address on Feb 2, 2015 at NASA's televised fiscal year 2016 budget rollout event.   Photo credit: NASA/Gianni Woods
In the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address on Feb 2, 2015 at NASA’s televised fiscal year 2016 budget rollout event. Photo credit: NASA/Gianni Woods

Bolden said the $18.5 Billion budget request will enable the continuation of core elements of NASA’s main programs including first launch of the new commercial crew vehicles to orbit in 2017, maintaining the Orion capsule and the Space Launch System (SLS) rocket to further NASA’s initiative to send ‘Humans to Mars’ in the 2030s, extending the International Space Station (ISS) into the next decade, and launching the James Webb Space Telescope in 2018. JWST is the long awaited successor to NASA’s Hubble Space Telescope.

“NASA is firmly on a journey to Mars. Make no mistake, this journey will help guide and define our generation.”

Funding is also provided to enable the manned Asteroid Redirect Mission (ARM) by around 2025, to continue development of the next Mars rover, and to continue formulation studies of a robotic mission to Jupiter’s icy moon Europa.

“That’s a half billion-dollar increase over last year’s enacted budget, and it is a clear vote of confidence in you – the employees of NASA – and the ambitious exploration program you are executing,” said Bolden.

Overall the additional $500 million for FY 2016 translates to a 2.7% increase over FY 2015. That compares to about a 6.4% proposed boost for the overall US Federal Budget amounting to $4 Trillion.

The Boeing CST-100 and the SpaceX Dragon V2 will restore the US capability to ferry astronauts to and from the International Space Station (ISS).

In September 2014, Bolden announced the selections of Boeing and SpaceX to continue development and certification of their proposed spaceships under NASA’s Commercial Crew Program (CCP) and Launch America initiative started back in 2010.

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

Since the retirement of the Space Shuttle program in 2011, all NASA astronauts have been totally dependent on Russia and their Soyuz capsule as the sole source provider for seats to the ISS.

“The commercial crew vehicles are absolutely critical to our journey to Mars, absolutely critical. SpaceX and Boeing have set up operations here on the Space Coast, bringing jobs, energy and excitement about the future with them. They will increase crew safety and drive down costs.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

CCP gets a hefty and needed increase from $805 Million in FY 2015 to $1.244 Billion in FY 2016.

To date the Congress has not fully funded the Administration’s CCP funding requests, since its inception in 2010.

The significant budget slashes amounting to 50% or more by Congress, have forced NASA to delay the first commercial crew flights of the private ‘space taxis’ from 2015 to 2017.

As a result, NASA has also been forced to continue paying the Russians for crew flights aboard the Soyuz that now cost over $70 million each under the latest contract signed with Roscosmos, the Russian Federal Space Agency.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

Bolden has repeatedly stated that NASA’s overriding goal is to send astronauts to Mars in the 2030s.

To accomplish the ‘Journey to Mars’ NASA is developing the Orion deep space crew capsule and mammoth SLS rocket.

However, both programs had their budgets cut in the FY 2016 proposal compared to FY 2015. The 2015 combined total of $3.245 Billion is reduced in 2016 to $2.863 Billion, or over 10%.

The first test flight of an unmanned Orion atop the SLS is now slated for liftoff on Nov. 2018, following NASA’s announcement of a launch delay from the prior target of December 2017.

Since the Journey to Mars goal is already underfunded, significant cuts will hinder progress.

Orion just completed its nearly flawless maiden unmanned test flight in December 2014 on the Exploration Flight Test-1 (EFT-1) mission.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

There are some losers in the new budget as well.

Rather incomprehensibly funding for the long lived Opportunity Mars Exploration Rover is zeroed out in 2016.

This comes despite the fact that the renowned robot just reached the summit of a Martian mountain at Cape Tribulation and is now less than 200 meters from a science goldmine of water altered minerals.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater's western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge.  This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Funding for the Lunar Reconnaissance Orbiter (LRO) is also zeroed out in FY 2016.

Both missions continue to function quite well with very valuable science returns. They were also zeroed out in FY 2015 but received continued funding after a senior level science review.

So their ultimate fate is unknown at this time.

Overall, Bolden was very upbeat about NASA’s future.

“I can unequivocally say that the state of NASA is strong,” Bolden said.

He concluded his remarks saying:

“Because of the dedication and determination of each and every one of you in our NASA Family, America’s space program is not just alive, it is thriving! Together with our commercial and international partners, academia and entrepreneurs, we’re launching the future. With the continued support of the Administration, the Congress and the American people, we’ll all get there together.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Falcon Heavy Rocket Launch and Booster Recovery Featured in Cool New SpaceX Animation

SpaceX Falcon Heavy rocket poised for launch from the Kennedy Space Center in Florida in this artists concept. Credit: SpaceX

SpaceX released a cool new animation today, Jan. 27, showing an updated look at their Falcon Heavy rocket and plans for booster recovery. See below.

The Falcon Heavy is the brainchild of billionaire entrepreneur Elon Musk, SpaceX CEO and founder, and illustrates his moving forward with the firm’s next giant leap in spaceflight.

The rocket is designed to lift over 53 tons (117,00 pounds) to orbit and could one day launch astronauts to the Moon and Mars.

The commercial Falcon Heavy rocket has been under development by SpaceX for several years and the initial launch is now planned for later this year from Launch Complex 39A at the Kennedy Space Center (KSC) in Florida.

The new rocket is comprised of three Falcon 9 cores.

The Falcon Heavy will be the most powerful rocket developed since NASA’s Saturn V rocket that hurled NASA’s Apollo astronauts to the Moon in the 1960s and 1970s – including the first manned landing on the Lunar surface by Neil Armstrong and Buzz Aldrin in July 1969.

Here is the updated animation of the SpaceX Falcon Heavy flight and booster recovery:

Video Caption: Animation of SpaceX Falcon Heavy launch and booster recovery. Credit: SpaceX

The video shows the launch of the triple barreled Falcon Heavy from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Then it transitions to the recovery of all three boosters by a guided descent back to a soft touchdown on land in the Cape Canaveral/Kennedy Space Center area.

SpaceX, headquartered in Hawthorne, CA, signed a long term lease with NASA in April 2014 to operate seaside pad 39A as a commercial launch facility for launching the Falcon Heavy as well as the manned Dragon V2 atop SpaceX’s man-rated Falcon 9 booster.

Launch Complex 39A has sat dormant for over three years since the blastoff of the final shuttle mission STS-135 in July 2011 on a mission to the International Space Station (ISS).

Launch Pad 39A has lain dormant save dismantling since the final shuttle launch on the STS-135 mission in July 2011.  Not a single rocket has rolled up this ramp at the Kennedy Space Center in nearly 3 years. SpaceX has now leased Pad 39A from NASA and American rockets will thunder aloft again with Falcon rocket boosters starting in 2015. Credit: Ken Kremer/kenkremer.com
Launch Pad 39A has lain dormant, save dismantling, since the final shuttle launch on the STS-135 mission in July 2011. Not a single rocket has rolled up this ramp at the Kennedy Space Center in over 3 years. SpaceX has now leased Pad 39A from NASA and American rockets will thunder aloft again with Falcon rocket boosters starting in 2015. Credit: Ken Kremer/kenkremer.com

SpaceX is now renovating and modifying the pad as well as the Fixed and Mobile Service Structures, RSS and FSS. They will maintain and operate Pad 39A at their own expense, with no US federal funding from NASA.

When it does launch, the liquid fueled Falcon Heavy will become the most powerful rocket in the world according to SpaceX, generating nearly four million pounds of liftoff thrust from 27 Merlin 1D engines. It will then significantly exceeding the power of the Delta IV Heavy manufactured by competitor United Launch Alliance (ULA), which most recently was used to successfully launch and recover NASA’s Orion crew capsule on its maiden unmanned flight in Dec. 2014

STS-135: Last launch from Launch Complex 39A. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
STS-135: Last launch from Launch Complex 39A.
NASA’s 135th and final shuttle mission takes flight on July 8, 2011, at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

SpaceX recently completed a largely successful and history making first attempt to recover a Falcon 9 booster on an ocean-going “drone ship.” The rocket nearly made a pinpoint landing on the ship but was destroyed in the final moments when control was lost due to a loss of hydraulic fluid.

Read my story with a SpaceX video – here – that vividly illustrates what SpaceX is attempting to accomplish by recovering and ultimately reusing the boosters in order to dramatically cut the cost of access to space.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

CATS Out of The Bag, Crawling Around ISS for Science Down Below

This video frame shows a robotic arm on the space station, called the Japanese Experiment Module Remote Manipulator System, successfully installing NASA's Cloud-Aerosol Transport System (CATS) to the Space Station’s Japanese Experiment Module on Jan. 22, 2015. Credit: NASA

The Japanese robotic arm installs the CATS experiment on an external platform on Japan’s Kibo lab module. The SpaceX Dragon commercial cargo craft is seen at the right center of the image. Credit: NASA TV
See way cool installation video below[/caption]

“Robotic controllers let the CATS out of the bag!” So says NASA spokesman Dan Huot in a cool new NASA timelapse video showing in detail how CATS crawled around the space stations gangly exterior and clawed its way into its new home – topped off with a breathtaking view of our home planet that will deliver science benefits to us down below.

The CATS experiment was installed on the exterior of the International Space Station (ISS) via a first ever type of robotic handoff, whereby one of the stations robotic arms handed the rectangular shaped instrument off to a second robotic arm. Sort of like relays runners passing the baton while racing around the track for the gold medal.

In this case it was all in the name of science. CATS is short for Cloud Aerosol Transport System.

Ground controllers at NASA’s Johnson Space Center in Houston plucked CATS out of the truck of the recently arrived SpaceX Dragon cargo delivery vehicle with the Special Purpose Dexterous Manipulator (Dextre). Then they passed it off to a Japanese team of controllers at JAXA, manipulating the second arm known as the Japanese Experiment Module Remote Manipulator System. The JAXA team then installed CATS onto an external platform on Japans Kibo laboratory.

CATS is a new Earth Science instrument dedicated to collecting continuous data about clouds, volcanic ash plumes and tiny airborne particles that can help improve our understanding of aerosol and cloud interactions and improve the accuracy of climate change models.

The remote-sensing laser instrument measures clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere that directly impacts the global climate.

Data from CATS will be used to derive properties of cloud/aerosol layers at three wavelengths: 355, 532, 1064 nm.

Check out this cool NASA ‘Space to Ground’ video showing CATS installation

Video caption: NASA’s Space to Ground on 1/23/15 covers CATS Out of The Bag. This is your weekly update on what’s happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us.

All the movements were conducted overnight by robotic flight controllers on the ground. They installed CATS to an external platform on Japan’s Kibo lab module.

CATS is helping to open a new era on the space station research dedicated to expanding its use as a science platform for making extremely valuable remote sensing observations for Earth Science.

The CATS instrument is the fourth successful NASA Earth science launch out of five scheduled during a 12-month period. And it is the second to be installed on the exterior of the ISS, following ISS-RapidScat that was brought by the SpaceX CRS-4 Dragon.

The fifth launch — the Soil Moisture Active Passive satellite — is scheduled for Jan. 29 from Vandenberg Air Force Base in California.

CATS was launched to the station as part of the payload aboard the SpaceX Dragon CRS-5 cargo vessel bolted atop the SpaceX Falcon 9 for the spectacular nighttime blastoff on Jan. 10 at 4:47 a.m. EST from Cape Canaveral Air Force Station in Florida.

CATS was loaded in the unpressurized rear trunk section of Dragon.

Kibo Laboratory The new CATS experiment delivered by the SpaceX commercial cargo craft will be installed on a platform outside Japan’s Kibo Laboratory module. Credit: NASA
Kibo Laboratory
The new CATS experiment delivered by the SpaceX commercial cargo craft will be installed on a platform outside Japan’s Kibo Laboratory module. Credit: NASA

The Dragon CRS-5 spacecraft was loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, the CATS science payload, student research investigations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person crew serving aboard the ISS.

It successfully rendezvoused at the station on Jan. 12 after a two day orbital chase, delivering the critical cargo required to keep the station stocked and humming with science.

Artist concept of CATS on ISS. Credit: NASA
Artist concept of CATS on ISS. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer