SpaceX Launch and Historic Landing Attempt Reset to Jan. 10

Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace

The oft delayed launch of the SpaceX Falcon 9 rocket on the CRS-5 cargo resupply mission for NASA to the International Space Station (ISS) has been reset to Saturday, Jan. 10.

Liftoff is currently targeted for 4:47 a.m. EST Saturday, Jan. 10, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida following a postponement from Friday, Jan. 9.

The launch was unexpectedly scrubbed with one minute, 21 seconds left on the countdown clock for technical reasons earlier this week just prior to the targeted blastoff time of 6:20 a.m. EST on Tuesday, Jan. 6.

A thrust vector control actuator for the Falcon 9’s second stage failed to perform as expected, resulting in a launch abort, said NASA.

NASA and SpaceX decided to take another day to fully evaluate the issue and ensure a launch success.

The launch will be the first Falcon 9 liftoff for 2015.

The overnight launch should put on a spectacular sky show for spectators along the Florida space coast.

There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Tuesday, Jan. 13.

SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing.  Credit: Elon Musk/SpaceX
SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing. Credit: Elon Musk/SpaceX

Overall, CRS-5 is the company’s fifth commercial resupply services mission to the International Space Station.

In additional to being a critical cargo mission required to keep the space station stocked with provisions for the crew and research experiments, the mission features a history making attempt to recover the first stage of the Falcon 9 rocket.

The rocket recovery and landing attempt is a key step towards carrying out SpaceX CEO Elon Musk’s bold vision of rocket reusability.

Towards that end, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the precision landing of his firm’s Falcon 9 rocket after it concludes its launch phase to the ISS.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, Jan. 3, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

However, the absolute overriding goal of the mission is to safely deliver NASA’s contracted cargo to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing on Jan. 5 at the Kennedy Space Center.

Landing on the off-shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Student Space Flight teams at NASA Wallops - Will Refly on SpaceX CRS 5.   Science experiments from these students representing 18 school communities across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5.  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops – Experiments Will Refly on SpaceX CRS 5. Science experiments from these students, representing 18 school communities across America, were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares’ launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer – kenkremer.com

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

Also loaded onboard are 17 student experiments known collectively as the “Yankee Clipper” mission. The experiments are sponsored by the National Center for Earth and Space Science Education which oversees the Student Spaceflight Experiments Program (SSEP) in partnership with NanoRacks LLC.

They had been selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS, but were all lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The experiments have been reconstituted to fly on the CRS-5 mission.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed hopefully by late 2015 on an alternate rocket, the Atlas V.

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The weather forecast stands at 80% GO for favorable conditions at launch time.

NASA Television live launch coverage begins at 3:30 a.m. EST on Jan. 10 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Student Scientists Get Second Chance to Fly Experiments to ISS Aboard Falcon 9 After Antares Loss

Student Space Flight teams at NASA Wallops - Will Refly on SpaceX CRS 5. Science experiments from these students representing 18 school communities across America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer - kenkremer.com

Student Space Flight teams at NASA Wallops – Will Refly on SpaceX CRS 5
Science experiments from these students representing 18 school communities across America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer – kenkremer.com[/caption]

When it comes to science and space exploration, you have to get accustomed to a mix of success and failure.

If you’re wise you learn from failure and turn adversity around into a future success.

Such is the case for the resilient student scientists who learned a hard lesson of life at a young age when the space science experiments they poured their hearts and souls into for the chance of a lifetime to launch research investigations aboard the Antares rocket bound for the International Space Station (ISS) on the Orb-3 mission, incomprehensibly exploded in flames before their eyes on Oct. 28, 2014.

Those student researchers from across America are being given a second chance and will have their reconstituted experiments re-flown on the impending SpaceX CRS-5 mission launch, thanks to the tireless efforts of NASA, NanoRacks, CASIS, SpaceX and the Student Spaceflight Experiments Program (SSEP) which runs the program.

The SpaceX CRS-5 launch to the ISS on the Falcon 9 rocket planned for this morning, Jan. 6, was scrubbed with a minute to go for technical reasons and has been reset to no earlier than Jan. 9.

SSEP Director Dr. Jeff Goldstein shows a NanoRacks Mix-Stix tube used by the student investigations on the NanoRacks/Student Spaceflight Experiments Program -Yankee Clipper mission during presentation at NASA Wallops prior to Oct. 28 Antares launch failure.  17 of 18 experiments will re-fly on SpaceX CRS-5 launch.  Credit: Ken Kremer - kenkremer.com
SSEP Director Dr. Jeff Goldstein shows a NanoRacks Mix-Stix tube used by the student investigations on the NanoRacks/Student Spaceflight Experiments Program -Yankee Clipper mission during presentation at NASA Wallops prior to Oct. 28 Antares launch failure. 17 of 18 experiments will re-fly on SpaceX CRS-5 launch. Credit: Ken Kremer – kenkremer.com

The experiments are known collectively as the ‘Yankee Clipper’ mission.

Antares Orb-3 was destroyed shortly after the exhilarating blastoff from NASA’s Wallops Flight Facility on the Virginia shore.

Everything aboard the Orbital Sciences Antares rocket and ‘the SS Deke Slayton’ Cygnus cargo freighter was lost, including all the NASA supplies and research as well as the student investigations.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

“The student program represents 18 experiments flying as the Yankee Clipper,” said Dr. Jeff Goldstein, in an interview with Universe Today at NASA Wallops prior to the Antares launch. Goldstein is director of the National Center for Earth and Space Science Education, which oversees SSEP in partnership with NanoRacks LLC.

“Altogether 8 communities sent delegations. 41 student researchers were at NASA Wallops for the launch and SSEP media briefing.”

“The 18 experiments flying as the SSEP Yankee Clipper payload reflect the 18 communities participating in Mission 6 to ISS.”

“The communities represent grade 5 to 16 schools from all across America including Washington, DC; Kalamazoo, MI; Berkeley Heights and Ocean City, NJ; Colleton County and North Charleston, SC, and Knox County and Somerville, TN.”

Goldstein explains that within days of the launch failure, efforts were in progress to re-fly the experiments.

“Failure happens in science and what we do in the face of that failure defines who we are,” said Goldstein, “NASA and NanoRacks moved mountains to get us on the next launch, SpaceX CRS-5. We faced an insanely tight turnaround, but all the student teams stepped up to the plate.”

Even the NASA Administrator Charles Bolden lauded the students efforts and perseverance!

“I try to teach students, when I speak to them, not to be afraid of failure. An elementary school student once told me, when I asked for a definition of success, that ‘success is taking failure and turning it inside out.’ It is important that we rebound, learn from these events and try again — and that’s a great lesson for students,” said NASA Administrator Bolden.

“I am delighted that most of the students will get to see their investigations re-flown on the SpaceX mission. Perseverance is a critical skill in science and the space business.”

Virtually all of the experiments have been reconstituted to fly on the CRS-5 mission, also known as SpaceX-5.

“17 of the 18 student experiments lost on Orb-3 on October 28 are re-flying on SpaceX-5. These experiments comprise the reconstituted Student Spaceflight Experiments Program (SSEP) Yankee Clipper II payload for SSEP Mission 6 to ISS,” noted Goldstein.

“This shows the resilience of the federal-private partnership in commercial space, and of the commitment by our next generation of scientists and engineers.”

The wide range of experiments include microgravity investigations on how fluids act and form into crystals in the absence of gravity crystal growth, mosquito larvae development, milk expiration, baby bloodsuckers, development of Chrysanthemum and soybean seeds and Chia plants, effect of yeast cell division and implications for human cancer cells, and an examination of hydroponics.

Student experiments are aboard. Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace
Student experiments are aboard. Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace

That dark day in October witnessed by the students, Goldstein, myself as a fellow scientist, and others is something we will never forget. We all chose to learn from the failure and move forward to greater accomplishments.

Don’t surrender to failure. And don’t give in to the ‘Do Nothing – Can’t Do’ crowd so prevalent today.

Remember what President Kennedy said during his address at Rice University on September 12, 1962:

“We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NanoRacks Mix-Stix, which are used by the student investigations on the NanoRacks/National Center for Earth and Space Science Education -Yankee Clipper.   Credit: Credit: Ken Kremer - kenkremer.com
NanoRacks Mix-Stix, which are used by the student investigations on the NanoRacks/National Center for Earth and Space Science Education -Yankee Clipper. Credit: Ken Kremer – kenkremer.com

Drone Ship at Sea Preparing for Bold SpaceX Rocket Recovery Landing Attempt

SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing. Credit: Elon Musk/SpaceX

Aiming to one day radically change the future of the rocket business, SpaceX CEO Elon Musk has a bold vision unlike any other in a historic attempt to recover and reuse rockets set for Jan. 6 with the goal of dramatically reducing the enormous costs of launching anything into space.

Towards the bold vision of rocket reusability, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the first stage of his firm’s Falcon 9 rocket after it concludes its launch phase to the International Space Station (ISS).

“Drone spaceport ship heads to its hold position in the Atlantic to prepare for a rocket landing,” tweeted Musk today (Jan. 5) along with a photo of the drone ship underway (see above).

The history making and daring experimental landing is planned to take place in connection with the Tuesday, Jan. 6, liftoff of the Falcon 9 booster and Dragon cargo freighter bound for the ISS on a critical resupply mission for NASA.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

SpaceX Falcon 9 first stage rocket will attempt precison landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014 from Cape Canaveral, Florida.  Credit: SpaceX
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for January 6, 2015, from Cape Canaveral, Florida. Credit: SpaceX

The SpaceX Dragon CRS-5 mission is slated to blast off at 6:20 am EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Falcon 9 and Dragon have gone vertical in advance of the 6:20am ET launch on Jan. 6, 2015. Credit: SpaceX.
Falcon 9 and Dragon have gone vertical in advance of the 6:20 am ET launch on Jan. 6, 2015. Credit: SpaceX.

The absolute overriding goal of the mission is to safely deliver NASA’s contracted payload to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today (Jan. 5) at the Kennedy Space Center. Landing on the off shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Koenigsmann estimated the odds of success at the landing attempt at about 50% at best according to an estimate from Musk himself.

“It’s an experiment. There’s a certain likelihood that this will not work out right, that something will go wrong.”

The two stage Falcon 9 and Dragon stands 207.8 feet (63.3 meters) tall and is 12 feet in diameter. The first stage is powered by nine Merlin 1D engines that generate 1.3 million pounds of thrust at sea level and rises to 1.5 million pounds of thrust as the Falcon 9 climbs out of the atmosphere, according to a SpaceX fact sheet.

The first stage Merlins will fire for three minutes until the planned engine shutdown and main engine cutoff known as MECO, said Koenigsmann.

The rocket will be in space at an altitude of over 100 miles zooming upwards at 1300 m/s (nearly 1 mi/s).

Then, a single Merlin 1D will be commanded to re-fire for three separate times to stabilize and lower the rocket during the barge landing attempt.

Four hypersonic grid fins had been added to the first stage and placed in an X-wing configuration. They will be deployed only during the reentry attempt and will be used to roll, pitch, and yaw the rocket in concert with gamboling of the engines.

It will take about nine minutes from launch until the first stage reaches the barge, said Koenigsmann. That’s about the same time it takes for Dragon to reach orbit.

He added that, depending on the internet connectivity, SpaceX may or may not know the outcome in real time.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

Here’s a description from SpaceX:

“To help stabilize the stage and to reduce its speed, SpaceX relights the engines for a series of three burns. The first burn—the boostback burn—adjusts the impact point of the vehicle and is followed by the supersonic retro propulsion burn that, along with the drag of the atmosphere, slows the vehicle’s speed from 1300 m/s to about 250 m/s. The final burn is the landing burn, during which the legs deploy and the vehicle’s speed is further.”

“To complicate matters further, the landing site is limited in size and not entirely stationary. The autonomous spaceport drone ship is 300 by 100 feet, with wings that extend its width to 170 feet. While that may sound huge at first, to a Falcon 9 first stage coming from space, it seems very small. The legspan of the Falcon 9 first stage is about 70 feet and while the ship is equipped with powerful thrusters to help it stay in place, it is not actually anchored, so finding the bullseye becomes particularly tricky. During previous attempts, we could only expect a landing accuracy of within 10km. For this attempt, we’re targeting a landing accuracy of within 10 meters.”

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO, Elon Musk, briefs reporters, including Universe Today, in Cocoa Beach, FL, prior to a previous SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The cargo delivery is the entire point of the CRS-5 mission.

The official CRS-5 Mission Patch
The official CRS-5 Mission Patch

The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct. 28 from NASA’s Wallops Flight Facility in Virginia, Antares launches are on hold.

Therefore the US supply train to the ISS is now wholly dependent on SpaceX.

NASA Television live launch coverage begins at 5 a.m. EST on Jan. 6 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

SpaceX and NASA On Track For Spectacular Predawn Jan. 6 Launch of Critical Cargo Mission to ISS

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

SpaceX is on track to rollout their Falcon 9 rocket carrying the Dragon cargo freighter this evening, Monday, Jan, 5, 2015 to launch pad 40 on a mission bound for the International Space Station (ISS) to deliver critical supplies.

The Dragon CRS-5 mission is slated to blast off at 6:20 a.m. EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The predawn launch should put on a spectacular sky show for spectators along the Florida space coast.

There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Friday, Jan. 9.

SpaceX Falcon 9 ready for rollout to launch pad for Dragon CRS-5 mission.  Credit: SpaceX
SpaceX Falcon 9 ready for rollout to launch pad for Dragon CRS-5 mission. Credit: SpaceX

The launch has already been postponed several times, most recently from Dec. 19, 2014 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

A second static fire test of the SpaceX Falcon 9 successfully went the full duration of approximately 3 seconds and cleared the path for a liftoff attempt after the Christmas holidays.

The delay allowed the teams to recoup and recover and enjoy the festive holiday season.

“It was a good decision to postpone the launch until after the holidays,” said Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today at the Kennedy Space Center (KSC).

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct. 28 from NASA’s Wallops Flight Facility in Virginia, officials have been prudently cautious to ensure that all measures were carefully rechecked to maximize the possibilities of a launch success.

SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit:  SpaceX
SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit: SpaceX

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract

The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.

A frontal boundary has settled in over Central Florida. This front and its associated cloudiness will be very slow to move south of the Space Coast. With the clouds only slowly eroding overhead, the primary weather concern remains thick clouds, according to Sweat.

The unmanned cargo freighter is loaded with more than 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the space station.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15.  Credit: NASA/Barry ‘Butch’ Wilmore
Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15. Credit: NASA/Barry ‘Butch’ Wilmore

Assuming all goes well, Dragon will rendezvous at the ISS on Thursday, Jan. 8, for grappling and berthing by the ISS astronauts maneuvering the 57 foot-long (17 meter-long) Canadian built robotic arm.

The SpaceX CRS-5 launch is the first cargo launch to the ISS since the doomed Orbital Sciences Antares/Cygnus launch ended in catastrophe on Oct. 28.

With Antares launches on indefinite hold, the US supply train to the ISS is now wholly dependent on SpaceX.

Orbital Sciences has now contracted United Launch Alliance
(ULA) to launch the firms Cygnus cargo freighter to the ISS by late 2015 on an Atlas V rocket.

A secondary objective of SpaceX is to attempt to recover the Falcon 9 first stage on an off shore barge.

NASA Television live launch coverage begins at 5 a.m. EST on Jan. 6.

 SpaceX Falcon 9 rocket is set to soar to ISS after completing  successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com
SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of replanned CRS-5 mission for NASA launching on Jan. 6, 2015. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Good Morning, Space Station … A Dragon Soars Soon!

Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15. Credit: NASA/Barry ‘Butch’ Wilmore

Good Morning, Space Station!

It’s sunrise from space – one of 16 that occur daily as the massive lab complex orbits the Earth about every 90 minutes while traveling swiftly at about 17,500 mph and an altitude of about 250 miles (400 kilometers).

Just stare in amazement at this gorgeous sunrise view of “Our Beautiful Earth” taken earlier today, Jan. 3, 2015, aboard the International Space Station (ISS) by crewmate and NASA astronaut Barry “Butch” Wilmore.

And smack dab in the middle is the Canadian-built robotic arm that will soon snatch a soaring Dragon!

Wilmore is the commander of the ISS Expedition 42 crew of six astronauts and cosmonauts hailing from three nations: America, Russia and Italy.

He is accompanied by astronauts Terry Virts from NASA and Samantha Cristoforetti from the European Space Agency (ESA) as well as by cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia.

All told the crew of four men and two women see 16 sunrises and 16 sunsets each day. During the daylight periods, temperatures reach 200 ºC, while temperatures plunge drastically during the night periods to -200 ºC.

Here’s another beautiful ISS sunset view captured on Christmas by Terry Virts:

Astronaut Terry Virts on the International Space Station shared this beautiful sunrise image on Twitter saying "Sunrise on Christmas morning - better than any present I could ask for!!!!"  Credit: NASA/Terry Virts
Astronaut Terry Virts on the International Space Station shared this beautiful sunrise image on Twitter saying “Sunrise on Christmas morning – better than any present I could ask for!!!!” Credit: NASA/Terry Virts

Virts tweeted the picture and wrote: “Sunrise on Christmas morning – better than any present I could ask for!!!!”

Another treasure from Virts shows the many splendid glorious colors of Earth seen from space but not from the ground:

“In space you see intense colors, shades of blue that I’d never seen before,” says NASA astronaut Terry Virts. Credit: NASA/@astro_terry
Sunset Over the Gulf of Mexico
“In space you see intense colors, shades of blue that I’d never seen before,” says NASA astronaut Terry Virts. Credit: NASA/@astro_terry

“In space you see intense colors, shades of blue that I’d never seen before,” says Virts from his social media accounts (http://instagram.com/astro_terry/) (http://instagram.com/iss).

“It’s been said a thousand times but it’s true: There are no borders that you can see from space, just one beautiful planet,” he says. “If everyone saw the Earth through that lens I think it would be a much better place.”

And many of the crews best images are taken from or of the 7 windowed Cupola.

Here’s an ultra cool shot of Butch waving Hi!

“Hi from the cupola!” #AstroButch.  Credit: NASA/ISS
“Hi from the cupola!” #AstroButch. Credit: NASA/ISS

And they all eagerly await the launch and arrival of a Dragon! Indeed it’s the SpaceX cargo Dragon currently slated for liftoff in three days on Tuesday, Jan. 6.

Weather odds are currently 60% favorable for launch of the unmanned space station resupply ship on the SpaceX CRS-5 mission.

The launch was postponed from Dec. 19 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

A second static fire test of the SpaceX Falcon 9 went the full duration of approximately 3 seconds and cleared the path for a liftoff attempt after the Christmas holidays.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

CRS-5 is slated to blast off at 6:20 a.m. EST Tuesday, Jan. 6, 2015, atop a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida.

NASA Television live launch coverage begins at 5 a.m. EST.

Assuming all goes well, Dragon will rendezvous at the ISS on Thursday, Jan. 8, for grappling and berthing by the astronauts maneuvering the 57 foot-long (22 m) Canadian built robotic arm.

Remember that you can always try and catch of glimpse of the ISS flying overhead by checking NASA’s Spot the Station website with a complete list of locations.

It’s easy to plug in and determine visibilities in your area worldwide.

And don’t forget to catch up on the Christmas holiday and New Year’s 2015 imagery and festivities from the station crews in my recent stories – here, here and here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Happy New Year! Celebrating from space with @AstroTerry.  Credit: NASA/Terry Virts
Happy New Year! Celebrating from space with @AstroTerry. Credit: NASA/Terry Virts
ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

2015 Expected to be a Record-Breaking Year for Soyuz-2 Workhorse

A Soyuz-2 rocket lifts off from Kourou on April 3, 2014, with Sentinel-1A satellite. Credit: ESA

2014 was a banner year for the Russian Space Agency, with a record-setting fourteen launches of the next generation unmanned Soyuz-2 rocket. A number of other firsts took place in the course of the year as well, cementing the Soyuz family of rockets as the most flown and most reliable rocket group ever.

But already it seems as though the new year will be an even better year, with a full 20 missions already scheduled to take place, a number of them holdovers from 2014.

The Soyuz 2 launcher currently operates alongside the Soyuz-U (mainly used for launching the unmanned Progress Resupply Spacecraft to the International Space Station) and the Soyuz FG (primarily used for human flights with the Soyuz Spacecraft for missions to ISS), but according to Spaceflight 101, the Soyuz 2 will eventually replace the other vehicles once they are phased out.

In fact, in October of 2014, the Soyuz 2 had its first launch of a Progress cargo spacecraft. Other achievements were that the last two launches of the year were conducted without the aid of DM blocks – a derivative of the Blok D upper stage launch rocket developed during the 1960’s.

As Leonid Shalimov, the CEO of NPO Avtomatiki, the Russian electronic engineering and research organization, said in an interview with the government-owned Russian news agency TASS: “Fourteen launches of Soyuz-2 were carried out in 2014 – a record number in the company history,” he said. “Meanwhile, a total of 19 launches were planned in the outgoing year, five have been postponed till 2015.”

Soyuz-2 rocket preparing to launch from the Plesetsk Cosmodrome in June, 2013. Image Credit: Russian Space News
Soyuz-2 rocket preparing to launch from the Plesetsk Cosmodrome in June, 2013. Image Credit: Russian Space News

As a leader in the development of radio-electronic equipment and rocket space systems, the company is behind the development of a number of automated and integrated control systems that are used in space, at sea, heavy industry, and by oil and natural gas companies.

However, it is arguably the company’s work with Soyuz-2 rockets that has earned the most attention. As a general designation for the newest version of the rocket, the Soyuz-2 is essentially a three-stage rocket carrier and will be used to transport crews and supplies into Low Earth Orbit (LEO).

Compared to previous generations of the rocket, the Soyuz-2 features updated engines with improved injection systems on the first-stage boosters, as well as the two core engine stages.

Unlike previous incarnations, the Soyuz-2 can also be launched from a fixed launched platform since they are capable of performing rolls while in flight to change their heading. The old analog control systems have also been upgraded with a new digital flight control and telemetry systems that can adapt to changing conditions in mid-flight.

Russia is developing a new generation Advanced Crew Transportation System. Its first flight to the Moon is planned for 2028. Credit: TASS
The Advanced Crew Transportation System, a next-generation reusable craft intended for a Russian lunar mission in 2028. Credit: TASS

In total, some 42 launches of this rocket have taken place over the past decade, the first taking place on November 8th, 2004  from the Plesetsk Cosmodrome – located about 200 km outside of Archangel.

The majority of launches were for the sake of deploying weather, observation and communication satellites.

You can see a full list of Soyuz launches and missions scheduled for 2015 here at the RussianSpaceWeb.

Long-term, the Soyuz-2 is also expected to play a key role in Russia’s plan for a manned lunar mission, which is tentatively scheduled to take place in 2028.

Further Reading: TASS

Our Beautiful Earth – Happy New Year Photos and Greetings from the ISS Crew

Spectacular View of the Alps From Space! Expedition 42 Flight Engineer Samantha Cristoforetti of the European Space Agency (ESA) took this photograph of the Alps from the International Space Station. She wrote, "I'm biased, but aren't the Alps from space spectacular? What a foggy day on the Po plane, though! #Italy" Credit: NASA/ESA/Samantha Cristoforetti

Spectacular View of the Alps From Space!
Expedition 42 Flight Engineer Samantha Cristoforetti of the European Space Agency (ESA) took this photograph of the Alps from the International Space Station. She wrote, “I’m biased, but aren’t the Alps from space spectacular? What a foggy day on the Po plane, though! #Italy” Credit: NASA/ESA/Samantha Cristoforetti
Updated with more images[/caption]

As we say goodbye to 2014 and ring in New Year 2015, the Expedition 42 crew living and working aboard the International Space Station enjoys the new gallery of images they’ve sent back of “Our Beautiful Earth.”

The current six person crew includes astronauts and cosmonauts from three nations – America, Russia, and Italy – and the four men and two women are celebrating New Year’s 2015 aboard the massive orbiting lab complex.

Happy New Year! Celebrating from space with @AstroTerry.  Credit: NASA/Terry Virts
Happy New Year! Celebrating from space with @AstroTerry. Credit: NASA/Terry Virts

They comprise Expedition 42 Commander Barry “Butch” Wilmore and Terry Virts from NASA, Samantha Cristoforetti from the European Space Agency (ESA), and cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia.

Beauty everywhere! Flying from the Mediterranean to the Caspian Sea, this appeared through the clouds.#HelloEarth.  Credit: NASA/ESA/Samantha Cristoforetti
Beauty everywhere! Flying from the Mediterranean to the Caspian Sea, this appeared through the clouds.#HelloEarth. Credit: NASA/ESA/Samantha Cristoforetti

The ISS has been continuously occupied by humans for 15 years. And they are joined by Robonaut 2 who recently got legs.

This area saw some serious action about 350 million years ago! Gweni-Fada meteorite crater in #Chad. Credit: NASA/ESA/Samantha Cristoforetti
This area saw some serious action about 350 million years ago! Gweni-Fada meteorite crater in #Chad. Credit: NASA/ESA/Samantha Cristoforetti

Terry Virts and Samantha Cristoforetti have been especially prolific in picture taking and posting to social media for us all to enjoy the view while speeding merrily along at 17,500 mph from an altitude of about 250 miles (400 kilometers) above Earth.

Here’s a special New Year video greeting from Wilmore and Virts:

Video Caption: Happy New Year from the International Space Station from NASA astronauts Barry “Butch” Wilmore and Terry Virts. Credit: NASA

“Happy New Year from the International Space Station!” said Wilmore.

“We figure that we will be over midnight somewhere on the Earth on New Year’s for 16 times throughout this day. So we plan to celebrate New Year’s 16 times with our comrades and our people down on Earth.”

No sunsets until Jan 4th- we are in a "high beta" orbit now, so this is as dark as it gets.  Credit: NASA/Terry Virts
No sunsets until Jan 4th- we are in a “high beta” orbit now, so this is as dark as it gets. Credit: NASA/Terry Virts

“We wish everybody a happy, healthy, and prosperous 2015 as we get the awesome privilege of celebrating New Year’s here on the space station with our six station crewmates,” added Virts!

“We’ll enjoy our 16 New Year’s celebrations here.”

Part of the #Aral sea peaking through the clouds as we flew into #Kazakhstan! #HelloEarth.  Credit: NASA/ESA/Samantha Cristoforetti
Part of the #Aral sea peaking through the clouds as we flew into #Kazakhstan! #HelloEarth. Credit: NASA/ESA/Samantha Cristoforetti

They plan to celebrate the dawn of 2015 with fruit juice toasts, NASA reports.

The year 2015 starts officially for the station crew at midnight by the Universal Time Clock (UTC), also known as Greenwich Mean Time (GMT), in London, or at 7 p.m. EST Dec. 31.

If I couldn't be in space right now I'd want to be here- #Hawaii.  Credit: NASA/Terry Virts
If I couldn’t be in space right now I’d want to be here- #Hawaii. Credit: NASA/Terry Virts

New Year’s Day 2015 is a day off for the crew.

And I’m certain they’ll be gazing out the windows capturing more views of “Our Beautiful Earth!”

42 è la risposta! // 42 is the answer! #Expedition42 Guide to the galaxy. Credit: @NASA_Astronauts #AstroButch
42 è la risposta! // 42 is the answer! #Expedition42 Guide to the galaxy. Credit: @NASA_Astronauts #AstroButch

And don’t forget to catch up on the Christmas holiday imagery and festivities from the station crews in my recent stories – here and here.

#NewYork NewYork! Can almost see the Statue of Liberty. Which is, by the way, #UNESCO#WorldHeritage! Credit: NASA/ESA/Samantha Cristoforetti
#NewYork NewYork! Can almost see the Statue of Liberty. Which is, by the way, #UNESCO#WorldHeritage! Credit: NASA/ESA/Samantha Cristoforetti

Be sure to remember that you can always try and catch of glimpse of the ISS flying overhead by checking NASA’s Spot the Station website with a complete list of locations.

It’s easy to plug in and determine visibilities in your area worldwide. And try to shoot a time-lapse view like mine below.

ISS streaks over Princeton, NJ - time lapse image.  Credit: Ken Kremer
ISS streaks over Princeton, NJ – time lapse image. Credit: Ken Kremer

Meanwhile the crew continues science operations and preparations for next week’s arrival of the next unmanned space station resupply ship on the SpaceX CRS-5 mission.

CRS-5 is slated to blast off atop a SpaceX Falcon 9 rocket on Jan. 6 from Cape Canaveral Air Force Station in Florida.

 SpaceX Falcon 9 rocket is set to soar to ISS after completing  successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com
SpaceX Falcon 9 rocket is set to soar to the ISS after completing a successful static fire test on Dec. 19 ahead of the planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth.  Credit: NASA/ESA
ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA, and Terry Virts, NASA, send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA
ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

Spectacular Earth Timelapse Video: Christmas Gift from Alexander Gerst’s 2014 ISS Voyage

Another new snapshot of Earth’s “beautiful Southern Lights” taken from the ISS on 5 July 2014. Credit: ESA/Alexander Gerst

Video Caption: Watch the Earth roll by through the perspective of German astronaut Alexander Gerst in this 4K six-minute timelapse video of images taken from on board the International Space Station (ISS) during 2014. Credit: Alexander Gerst/ESA

ESA astronaut Alexander Gerst from Germany who recently returned from a six month voyage to the International Space Station (ISS) has a special Christmas gift for all – a stunning six-minute timelapse compilation of his favorite images of Earth taken during his “Blue Dot” mission in 2014.

“A 4K timelapse showing our planet in motion, from my favourite Earth images taken during the Blue Dot mission,” wrote Gerst in connection with his spectacular timelapse video released to coincide with Christmastime.

“I wish all of you a merry Christmas! It was a wild year for me, thanks for joining me on this fascinating journey!” said Gerst in English.

“Wünsche euch allen fröhliche Weihnachten! War ein wildes Jahr für mich, vielen Dank, dass ihr mit dabei wart!” said Gerst in German.

You can watch the Earth roll by through Gerst’s perspective in this six-minute timelapse video combining over 12,500 images taken during his six-month mission aboard the ISS that shows the best our beautiful planet has to offer.

“Marvel at the auroras, sunrises, clouds, stars, oceans, the Milky Way, the International Space Station, lightning, cities at night, spacecraft and the thin band of atmosphere that protects us from space,” according to the video’s description.

Gerst would often would set cameras to automatically take pictures at regular intervals while doing his science research or preparing for the docking of other spacecraft at the ISS in order to get the timelapse effect shown in the video.

“Scary. The sunlight is far from reaching down the abyss of Neoguri's 65 km-wide eye.” Taken from the ISS on 8 July 2014. Credit: ESA/NASA/Alexander Gerst
“Scary. The sunlight is far from reaching down the abyss of Neoguri’s 65 km-wide eye.” Taken from the ISS on 8 July 2014. Credit: ESA/NASA/Alexander Gerst

The robotic arm capture and berthing of the SpaceX Dragon cargo ship and the release of the Orbital Sciences Cygnus cargo freighter are particularly magnificent in a rarely seen timelapse glimpse of visiting vehicles that are absolutely essential to keeping the station afloat, stocked, and humming with research activities.

Gerst served aboard the ISS between May and November this year as a member of the Expedition 40 and 41 crews.

Gerst launched to the ISS on his rookie space flight on May 28, 2014, aboard the Russian Soyuz TMA-13M capsule along with Russian cosmonaut Maxim Suraev and NASA astronaut Reid Wiseman.

They joined the three station flyers already aboard – cosmonauts Alexander Skvortsov & Oleg Artemyev, and astronaut Steve Swanson – to restore the station crew complement to six.

Gerst and Wiseman became well known and regarded for their prolific and expertly crafted photography skills.

ESA astronaut Alexander Gerst, Russian commander Maxim Suraev and NASA astronaut Reid Wiseman returned to Earth on 10 November 2014, landing in the Kazakh steppe.  Credit: ESA–S. Corvaja
ESA astronaut Alexander Gerst, Russian commander Maxim Suraev, and NASA astronaut Reid Wiseman returned to Earth on 10 November 2014, landing in the Kazakh steppe. Credit: ESA–S. Corvaja

They returned to Earth safely on Nov. 10, 2014, with a soft landing on the Kazakh steppes.

Alex is Germany’s third astronaut to visit the ISS. He conducted a spacewalk with Wiseman on Oct. 7 while aboard. He is trained as a geophysicist and a volcanologist.

ESA astronaut Alexander Gerst spent six hours and 13 minutes outside the International Space Station with NASA astronaut Reid Wiseman on Tuesday, 7 October 2014. This was the first spacewalk for both astronauts but they performed well in the weightlessness of orbit.  Credit: NASA/ESA
ESA astronaut Alexander Gerst spent six hours and 13 minutes outside the International Space Station with NASA astronaut Reid Wiseman on Tuesday, 7 October 2014. This was the first spacewalk for both astronauts but they performed well in the weightlessness of orbit. Credit: NASA/ESA

Read my story detailing Christmas 2014 festivities with the new crews at the ISS – here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Station Astronauts Send Christmas Greetings from the International Space Station

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA
Story/pics expanded. Send holiday tweet to crew below![/caption]

There is a long tradition of Christmas greetings from spacefarers soaring around the High Frontier and this year is no exception!

The Expedition 42 crew currently serving aboard the International Space Station has decorated the station for the Christmas 2014 holiday season and send their greetings to all the people of Earth from about 240 miles (400 km) above!

“Merry Christmas from the International Space Station!” said astronauts Barry Wilmore and Terry Virts of NASA and Samantha Cristoforetti of ESA, who posed for the group shot above.

Italian astronaut Samantha Cristoforetti is in the holiday spirit as the station is decorated with stockings for each crew member and a tree.  Credit: NASA/ESA
Italian astronaut Samantha Cristoforetti is in the holiday spirit as the station is decorated with stockings for each crew member and a tree. Credit: NASA/ESA

“It’s beginning to look like Christmas on the International Space Station,” said NASA in holiday blog update.

“The stockings are out, the tree is up and the station residents continue advanced space research to benefit life on Earth and in space.”

And the six person crew including a trio of Russian cosmonauts, Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov who celebrate Russian Orthodox Christmas, are certainly hoping for and encouraging a visit from Santa. Terry Virts even tweeted a picture of the special space style milk and cookies awaiting Santa and his Reindeer for the imminent arrival!

“No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed,” tweeted Virts.

No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed.  Credit: NASA/Terry Virts
No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed. Credit: NASA/Terry Virts

And here’s a special Christmas video greeting from Wilmore and Virts:

Video Caption: Aboard the International Space Station, Expedition 42 Commander Barry Wilmore and Flight Engineer Terry Virts of NASA offered their thoughts and best wishes to the world for the Christmas holiday during downlink messages from the orbital complex on Dec. 17. Wilmore has been aboard the research lab since late September and will remain in orbit until mid-March 2015. Virts arrived at the station in late November and will stay until mid-May 2015. Credit: NASA

“We wish you all a Merry Christmas and Happy New Year. Christmas for us is a time of worship. It’s a time that we think back to the birth of what we consider our Lord. And we do that in our homes and we plan to do the same thing up here and take just a little bit of time just to reflect on those topics and, also, just as the Wise Men gave gifts, we have a couple of gifts,” Wilmore says in the video.

“It’s such an honor and so much fun to be able to celebrate Christmas up here. This is definitely a Christmas that we’ll remember, getting a chance to see the beautiful Earth,” added Virts. “Have fun with your family. Merry Christmas!”

And you can send a holiday tweet to the crew – here:
holiday-tweet-banner-02

Meanwhile the crew is still hard at work doing science and preparing for the next space station resupply mission launch by SpaceX from Cape Canaveral, Florida.

A SpaceX Falcon 9 rocket is now set to blastoff on Jan. 6, 2015 carrying the Dragon cargo freighter on the CRS-5 mission bound for the ISS.

The launch was postponed from Dec. 19 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

 SpaceX Falcon 9 rocket is set to soar to ISS after completing  successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com
SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

A second static fire test of the SpaceX Falcon 9 went the full duration and cleared the path for the Jan. 6 liftoff attempt.

Among the science studies ongoing according to NASA are:

“Behavioral testing for the Neuromapping study to assess changes in a crew member’s perception, motor control, memory and attention during a six-month space mission. Results will help physicians understand brain structure and function changes in space, how a crew member adapts to returning to Earth and develop effective countermeasures.”

“Another study is observing why human skin ages at a quicker rate in space than on Earth. The Skin B experiment will provide scientists a model to study the aging of other human organs and help future crew members prepare for long-term missions beyond low-Earth orbit.”

Merry Christmas to All!

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Successful Engine Test Enables SpaceX Falcon 9 Soar to Space Station in Jan. 2015

SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

KENNEDY SPACE CENTER, FL – To ensure the highest possibility of success for the launch of a critical resupply mission to the International Space Station (ISS), SpaceX has announced the successful completion of a second static fire test of the first stage propulsion system of the firms commercial Falcon 9 rocket on Dec. 19.

The successful engine test clears the path towards a liftoff now rescheduled to early January 2015.

The launch of the Falcon 9 had been slated for Dec. 19, but NASA and SpaceX decided just 1 day before liftoff on Dec. 18 to postpone the launch of the CRS-5 resupply mission into the new year, when the first static fire test failed to run for its full duration of approximately three seconds.

“SpaceX completed a successful static fire test of the Falcon 9 rocket [on Dec. 19] in advance of the CRS-5 mission for NASA,” said SpaceX in a statement.

The second test was done because the first test of the Merlin 1D engines did not run for its full duration of about three seconds.

SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit:  NASA
SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit: SpaceX

“While the Dec. 17 static fire test accomplished nearly all of our goals, the test did not run the full duration, ”SpaceX spokesman John Taylor confirmed to Universe Today.

“The data suggests we could push forward without a second attempt, but out of an abundance of caution, we are opting to execute a second static fire test prior to launch.”

Both tests were conducted at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

“We opted to execute a second test,” noted SpaceX.

The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter had been slated to liftoff on Dec. 19 on its next unmanned cargo run dubbed CRS-5 to the ISS under NASA’s Commercial Resupply Services (CRS) contract.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct 28 from NASA’s Wallops Flight Facility in Virginia, officials are being prudently cautious to ensure that all measures are being carefully rechecked to maximize the possibilities of a launch success.

The new launch date for CRS-5 is now set for no earlier than Jan. 6, 2015

“Given the extra time needed for data review and testing, coupled with the limited launch date availability due to the holidays and other restrictions, our earliest launch opportunity is now January 6 with January 7 as a backup,” said SpaceX.

The unmanned cargo freighter is loaded with more than 3,700 pounds of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

Among the other mission goals, SpaceX is planning a daring and bold attempt to propulsively land and recover the first stage on an ocean going platform called the “autonomous spaceport drone ship.”

SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014, from Cape Canaveral, Florida. Credit: SpaceX
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014, from Cape Canaveral, Florida. Credit: SpaceX

Watch for Ken’s ongoing SpaceX launch coverage from onsite at the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer